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We thank the reviewers for their feedback. Additional feedback and suggestions for improvement from Reviewer #3 is
greatly appreciated. We address the issues and concerns raised by the reviewers below.

The data-sets used in experiments [R]& R3]. The treatment of the ski-rental problem with ML-advisor in [1] is germane
to our present work. In Fig. 1 we use the same simulation setup as that of [1] (cf. Pg. 8 §4.1 of [1]) to provide a
transparent comparison of algorithmic performance. We strongly agree that using non-normal noise is important, but
such a discussion within the limited space will significantly deviate from the main idea of the present paper.

The depiction of the range of T in Fig. 2 was driven by space constraints.
Simulating Algorithms 2 and 3 on the range [1, 4b] instead of [1, 2.5b]

did not provide radically new insights. The graph on the right presents “ 2 .
Algorithm 2 (in red) and Algorithm 3 (in green) with T € [1,4b]. G &&;w*‘fx *
Comparison with classic approaches [R1]. Some discussion on the B -

comparison between classic approaches and the recent ones is presented . OO St

in [[1]. The performance of the classic randomized e(e — 1) ~!-algorithm
in the experiments leading to Fig. 2 will be included in the updated
version.

Takeaways from Fig. 2 [R3]. (1) In algorithmic implementation, the hyperparameter p plays a significant role. We fixed
p = 20 in experiments. This lead to underflow issues when T > b, as demonstrated by the increasing trend in the red
ticks in Fig. 2. This suggests, one should vary p within an appropriate range. (2) Algorithm 3 avoids this issue at the
expense of performance when T < b (higher values of green ticks in that range). (3) The relatively high competitive
ratio of the hedge algorithm, when T < b, corresponds to the to the fixed overhead constant term in Theorem 2.1.

The efficacy of the accuracy measure introduced in this paper [R4]. In statistical prediction, a biased estimator with
low variance can be more effective than a consistent estimator with unknown variance. Hypothetically, consider two
predictors A and B for ski-rental problem. Suppose, for simplicity, A has a MSE of 3 days and B has a MSE of 5
days. The consistency/robustness framework does not justify why A is a better choice than B. Our accuracy measure
provides a justification. A quantitative discussion is presented in lines 44 — 51 of the paper. Moreover, it is unclear how
to extend robustness/consistency to the TCP problem where the decision space is A = [0, 1]™. Such an extension will
be sensitive to the metric used on A (implicit in the definition of 7). The (¢, «)-accuracy measure extends in this setting
with relative ease and conceptual clarity.

The accuracy term doesn’t improve the competitve ratio in Theorem 2.2 [R4]. Ensuring that the competitive ratio
doesn’t inflate significantly due to bad predictions is a central design feature. This fails if the competitive ratio has a
direct functional dependence on accuracy. However, Thm 2.2 demonstrates how to hedge against bad predictions while
leveraging accurate predictions (alpha = 1) — thus retaining the essence of online algorithms.

The robustness and consistency guarantee of Algorithm 1 coming from two different set of parameter settings. [R4] The
guarantees come from two different functions (not parameters) which depend on a single parameter \ and the data.
The takeaway from Proposition 2.1 and Fig. 1 of the present paper is that using a hyperparameter and the information
conveyed by the predictor (T) significantly outperforms an algorithm just using the hyperparameter alone (cf. Theorem
2.2 and Fig. 2(a) of [1]). The same numerical value of the hyperparameter never optimizes robustness and consistency
simultaneously (cf. the (1 + A~!)-robust and (1 + \)-consistent Algorithm 2 of [1]]). This is unsurprising because an
optimal robust algorithm must also hedge against bad predictions while an optimal consistent algorithm assumes perfect
prediction (cf. line 42 of the paper).

Comparing Algorithm 5 to an existing online algorithm [R4]. We are not aware of any prior work on Dynamic TCP
Acknowledgment problem with ML prediction. As observed in line 197, Algorithm 5 can improve over the classic
e(e — 1)~ !-randomized algorithm only under strict accuracy guarantees from the ML-predictor.

The distinction between this work and the methodology and theoretical results in [1|] [R4]. Previous work relevant to
the current paper is discussed in lines 31 — 32. In this paper, we present a new accuracy measure and compare it with
existing framework of [[1] (cf. lines 40 — 56). Algorithm 1 presents a modification of Algorithm 2 of [1]]. With the
goal of providing a clear and transparent comparison we use the same simulation framework to compare the relative
performances of these algorithms. The rest of the present paper is about other algorithms which use a completely
different approach from that of [1]. Additionally, we discuss the Dynamic TCP acknowledgment problem within our
framework. This problem has not been considered in [1].
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