
We thank the reviewers for their feedback. Additional feedback and suggestions for improvement from Reviewer #3 is1

greatly appreciated. We address the issues and concerns raised by the reviewers below.2

The data-sets used in experiments [R1& R3]. The treatment of the ski-rental problem with ML-advisor in [1] is germane3

to our present work. In Fig. 1 we use the same simulation setup as that of [1] (cf. Pg. 8 §4.1 of [1]) to provide a4

transparent comparison of algorithmic performance. We strongly agree that using non-normal noise is important, but5

such a discussion within the limited space will significantly deviate from the main idea of the present paper.6

The depiction of the range of T in Fig. 2 was driven by space constraints.
Simulating Algorithms 2 and 3 on the range [1, 4b] instead of [1, 2.5b]
did not provide radically new insights. The graph on the right presents
Algorithm 2 (in red) and Algorithm 3 (in green) with T ∈ [1, 4b].
Comparison with classic approaches [R1]. Some discussion on the
comparison between classic approaches and the recent ones is presented
in [1]. The performance of the classic randomized e(e−1)−1-algorithm
in the experiments leading to Fig. 2 will be included in the updated
version.

7

Takeaways from Fig. 2 [R3]. (1) In algorithmic implementation, the hyperparameter ρ plays a significant role. We fixed8

ρ = 20 in experiments. This lead to underflow issues when T� b, as demonstrated by the increasing trend in the red9

ticks in Fig. 2. This suggests, one should vary ρ within an appropriate range. (2) Algorithm 3 avoids this issue at the10

expense of performance when T� b (higher values of green ticks in that range). (3) The relatively high competitive11

ratio of the hedge algorithm, when T� b, corresponds to the to the fixed overhead constant term in Theorem 2.1.12

The efficacy of the accuracy measure introduced in this paper [R4]. In statistical prediction, a biased estimator with13

low variance can be more effective than a consistent estimator with unknown variance. Hypothetically, consider two14

predictors A and B for ski-rental problem. Suppose, for simplicity, A has a MSE of 3 days and B has a MSE of 515

days. The consistency/robustness framework does not justify why A is a better choice than B. Our accuracy measure16

provides a justification. A quantitative discussion is presented in lines 44 – 51 of the paper. Moreover, it is unclear how17

to extend robustness/consistency to the TCP problem where the decision space is ∆ = [0, 1]n. Such an extension will18

be sensitive to the metric used on ∆ (implicit in the definition of η). The (ε, α)-accuracy measure extends in this setting19

with relative ease and conceptual clarity.20

The accuracy term doesn’t improve the competitve ratio in Theorem 2.2 [R4]. Ensuring that the competitive ratio21

doesn’t inflate significantly due to bad predictions is a central design feature. This fails if the competitive ratio has a22

direct functional dependence on accuracy. However, Thm 2.2 demonstrates how to hedge against bad predictions while23

leveraging accurate predictions (alpha = 1) – thus retaining the essence of online algorithms.24

The robustness and consistency guarantee of Algorithm 1 coming from two different set of parameter settings. [R4] The25

guarantees come from two different functions (not parameters) which depend on a single parameter λ and the data.26

The takeaway from Proposition 2.1 and Fig. 1 of the present paper is that using a hyperparameter and the information27

conveyed by the predictor (T̂) significantly outperforms an algorithm just using the hyperparameter alone (cf. Theorem28

2.2 and Fig. 2(a) of [1]). The same numerical value of the hyperparameter never optimizes robustness and consistency29

simultaneously (cf. the (1 + λ−1)-robust and (1 + λ)-consistent Algorithm 2 of [1]). This is unsurprising because an30

optimal robust algorithm must also hedge against bad predictions while an optimal consistent algorithm assumes perfect31

prediction (cf. line 42 of the paper).32

Comparing Algorithm 5 to an existing online algorithm [R4]. We are not aware of any prior work on Dynamic TCP33

Acknowledgment problem with ML prediction. As observed in line 197, Algorithm 5 can improve over the classic34

e(e− 1)−1-randomized algorithm only under strict accuracy guarantees from the ML-predictor.35

The distinction between this work and the methodology and theoretical results in [1] [R4]. Previous work relevant to36

the current paper is discussed in lines 31 – 32. In this paper, we present a new accuracy measure and compare it with37

existing framework of [1] (cf. lines 40 – 56). Algorithm 1 presents a modification of Algorithm 2 of [1]. With the38

goal of providing a clear and transparent comparison we use the same simulation framework to compare the relative39

performances of these algorithms. The rest of the present paper is about other algorithms which use a completely40

different approach from that of [1]. Additionally, we discuss the Dynamic TCP acknowledgment problem within our41

framework. This problem has not been considered in [1].42
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