Improving Online Rent-or-Buy Algorithms with
Sequential Decision Making and ML Predictions

Soumya Banerjee

Department of Mathematics and Statistics
Minnesota State University
Mankato, MN 56001

baner jee.soumyadipta@gmail.com

Abstract

In this work we study online rent-buy problems as a sequential decision making
problem. We show how one can integrate predictions, typically coming from a
machine learning (ML) setup, into this framework. Specifically, we consider the
ski-rental problem and the dynamic TCP acknowledgment problem. We present
new online algorithms with or without predictions and obtain explicit performance
bounds in-terms of the accuracy of the prediction. Our algorithms are close to
optimal with accurate predictions while hedging against less accurate predictions.

1 Introduction

Online algorithms embody decision making in an environment with uncertainty. By design, such
algorithms disregard special features of the input and aim to provide robust performance guarantees
on all possible inputs. Such algorithms have been successfully used in many real world problems,
see [2] for a thorough discussion.

Machine learning (ML) paradigm aims to identify statistically significant features of the input and
leverage these features to generate precise future predictions at the cost of increased error in worst
case scenario (cf. the no free lunch theorem). Typically, ML systems are trained by minimizing
some expected loss function and such system may have large error on outliers. ML systems are
also sensitive to training and test data and they can perform badly due to adversarial examples or
distribution drift.

A natural question is: Is it possible to enhance an online algorithm with a predictor that leverages
good input predictions while hedging against bad predictions?

It is reasonable to expect that performance is proportional to the exactness of the prediction. But,
naively following predictions, even if a good predictor is available, can lead to substandard perfor-
mance, see [15] §2.1] for an example. It is important to quantitatively relate the performance to the
precision of the prediction. This has important practical implications, e.g. performance gains from a
ML setup may not justify the the additional cost of implementing it.

The metric that is commonly used to evaluate the performance of an online algorithm is called
competitive ratio (see [2]]). The competitive ratio of an online algorithm A is the smallest number c,
where ¢ > 1, such that the (expected) cost of the (possibly randomized) algorithm is bounded by the
expected cost of the optimal offline algorithm over all possible inputs

E(Cost(A)) < cE(Costept) + @, where « is a fixed constant.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Recently, several authors have considered the problem of enhancing classical online algorithms using
ML advisors, see [[13} 112} 115]. The general framework used in these studies consist of modifying an
online algorithm A to an online algorithm A’ such that:

1. No assumptions are made about the implementation details of the predictor.
2. The algorithm AL accepts the prediction as an input.

3. A variable n, roughly measuring the prediction error of the ML advisor, is introduced. (The
precise definition of the variable is problem dependent.)

4. The competitive ratio of the algorithm A is calculated as a function of 7. It is denoted by
c(n)-

Following [[12} [15], the algorithm A% is called ~y-robust if + is the least upper bound of c(7) for all
prediction errors 7. If ¢(0) = 3, then AMZ is said to be B-consistent. In general, robustness bounds
the performance against all predictions, and consistency measures the performance in the ideal case
of perfect predictions.

In practice, predictions are seldom perfect. In such a situation, consistency and the robustness of
an algorithm are not enough to provide a precise estimation of the competitive ratio. Conceptually,
the quantity 1 measures the prediction error of a statistical model. Inherently 7 estimates a random
variable. While consistency of an estimator, in the sense of statistics i.e. E(n) = 0, is desirable,
it is not the only important factor. The variance of 7 often plays a significant role. For example,
assuming c(n) is a sufficiently smooth function of 7 in a neighborhood of zero, consider the Taylor
expansion of c(n) around zero: c(n) = c(0) + c’(0)n + c”(0)n?/2 + Taking expectation we see
that on an average the variance of 7 dominates the value of competitive ratio for imperfect predictions.
Robustness and consistency are not sufficient to capture this functional dependence.

We consider a framework where instead of 1 we consider a natural random variable (depending on
the problem) such that its tail probability encapsulates the prediction error. We call it the accuracy of
the predictor. We express the competitive ratio of our algorithms in terms of this parameter. This
formulation generalizes the notions of robustness and consistency and provides a precise quantitative
dependence of the competitive ratio on the precision of the predictor.

Our problems We consider the ski rental problem and the dynamic TCP acknowledgment problem.
These problems are well known instances of rent/buy problems. At each step, the algorithm must
decide between renting (which incurs small incremental cost) or buying (which incurs a large upfront
cost) in the face of uncertain future, see §2)and §3|for a detailed description of the problems. For
these problems, several randomized algorithms with a competitive ratio of _<; are known, see
(109} 16l 14 [11].

Our approach Abstractly, one can consider a rent-buy problem as an instance of a sequential
decision making problem. At each epoch the algorithm chooses a decision from a decision space and
the environment (assumed oblivious) provides a feedback. Every decision incurs a cost and the goal
of the algorithm is to minimize the total cost. We present a sequential decision theoretic framework
for the ski rental problem. The decision theoretic framework for the dynamic TCP acknowledgment
problem is due to Seiden (see [16l]).

In this setting it is natural to view ML-predictor as expert advice. Algorithms combining expert advice
to achieve near optimal performance have been extensively studied under the rubric of boosting
in machine learning literature, see [, [17, 13| [1} [11]. Specifically, we use Freund and Schapire’s
beautiful Hedge(3) algorithm [5]]. We note that this algorithm is a specific instance of the more
general philosophy of multiplicative weights update method which appears as the key idea in several
well known algorithms in computer science, see [1] for a detailed discussion.

Main results Let 8 € (0, 1) be a hyper parameter. For the ski rental problem, we propose a new
online algorithms (with or without ML-prediction) that has competitive ratio of loﬂgf(?). It turns out
that at 8 = 0.4, this competitive ratio is lower than — (see ~i

e—1
In the case of dynamic TCP acknowledgment problem, we obtain a algorithm that has a competitive

ratio of l(c;gg_([f; with respect to any ML-predictor. In the terminology of [12]], our algorithm is k’ﬂgf(f)

consistent. We note that in this case the accuracy of the prediction must be above a certain threshold
to achieve a performance that is better than _=;. We note that our framework generalizes easily to
include multiple ML-predictors (see [6] for related work in this direction).

2 Ski Rental Problem

At a ski resort, ski equipment rents at $1 a day and it is priced at $b. It snows for T days (where T is
unknown). The ski rental problem asks for a strategy that minimizes the total cost incurred by a skier.

In hindsight, if T > b, then the best strategy is to buy the equipment and if T < b then the best
strategy is to rent the equipment. The algorithm: If it snows, rent until day b — 1 and buy on day
b has a competitive ratio of 2. It is a less trivial fact that there exists randomized algorithms with a

competitive ratio efl ~ 1.58198, see [9, 110, 7,116, [14].

Suppose the skier has access to a (non-clairvoyant) predictor which predicts the number T - an
estimate of the true value of T. The goal then is to incorporate this extra information to improve the
performance of the algorithm.

A toy example In 15, Algorithm 2] the authors provide a deterministic algorithms thatis (1+A"1)-
robust and (1 + \)-consistent, where A € (0,1). This algorithm only depends on the nature of the

prediction: if T >borT < b; it doesn’t use the prediction itself. In Algorithmbelow, we consider
a minor modification showing how to leverage the information contained in the value of the prediction

T to improve either robustness or consistency.

Algorithm 1 A modified version of [15, Algorithm 2].

Require: Parameters b, T,7, \ € (0,1).
Functions 1 (A, b, T), wa(A, b, T) are described in Proposition [2.1|below.
if T > b then .
buy on p1 (A, b, T)b
elseif 7' < b then _
buy on s (A, b, T)b
end if

Proposition 2.1. (Optimizing robustness) Set, i1 = max{\,7/b} when T > b and py =
min{b/\, b/T} when T < b; then Algorithmis max{(1+b/u1), (1 + pa/b)}-robust.
(Optimizing consistency) Set, 3 = min{\,T/b} when T > b and j5 = min{b/\,b/T} when
T < by then the algorithm is max{(1 + p1/b), (1 4+ ua/b)}-consistent.

The proof of this proposition is very similar to the proof of [15, Theorem 2.2] and we omit the details.

In we compare the empirical performance of Algorithm [I]and Algorithm 2 of [[I5] on the same
data set.

2.1 Hedge(5) algorithm for ski rental problem

We now present a multiplicative weight algorithm for the ski-rental problem.
For brevity, let 0 denote rent and 1 denote buy. We consider the three element decision space
A ={0]0,1]0,1|1}.

Intuitively, on a given day ¢ the action 0|0 means renting on day ¢ given that it was rented on day
t — 1, 1|0 buying on day ¢ given that it was rented the day before and finally 1|1 corresponds to
(virtually) buying the equipment on day ¢ provided it was already purchased on day ¢ — 1|’} On the
first day, the actions 1|0 and 1|1 both lead to buying.

The algorithm proceeds as follows: We choose two parameters 5 € (0,1), p > 0. (The significance
of these parameters will be discussed below in §2.1.1}) If it snows on day ¢, then we assign weight

'The decision 1|1 acts as a useful placeholder.

w}, to action a € A. Subsequently, an action a is chosen with probability p}, = w},/ >~ - 4 w},. The

weights are then updated w' 1 = 8/Pw! where the loss !, corresponding to action a is tabulated
in Table [[lbelow.

The algorithm runs for T days. Complete details Actiona € A Loss (%
are presented in Algorithm 2]below. In hindsight,

. . 010 1
the optimal actions Aqp are: 110 b
(@) If T > b then Aoy = (1[1,1]1,...) € AT; 111 bift = 1, 0 otherwise
and (b) If T < b then A,y = (0]0,00,...) €
AT, Table 1: Cost of actions.

Algorithm 2 Hedge(/3) algorithm for ski rental problem.
Require: Parameters 3 € (0,1), p > 0, .4 = {0|0, 1|1, 1|0}.
1: Initialize weights w} = 1/|A| fora € A
2: fort =(1,2,...,T)do

32 Setpl —wh/Y e qwl forae A

4: Select a € A with probability pl,

5: if a = 1|0 or @ = 1|1 then exit > Conditional Termination
6: else

7 Update Weights wit! « Ble/Pwt fora € A > See Tablefor l,.
8 end if

9: end for

We have the following bounds on the competitive ratio of the above algorithm.

Theorem 2.1. Let 8 € (0,1) and p > 0. Then, we have an upper bound on the expected cost of the
algorithm E(C,ig) in terms of the optimal cost Cope. It is given by the equation

In(3Y/?) In(2)
E(Caig) < Bp —17°° T g1/ 1"

Proof. The competitive ratio of Algorithm 2]without the termination condition (see line[3]) can only
become larger. We analyze the expected cost without this condition.

Consider the potential ' = 3~ _ , w},. We have the inequality

@ = 3 g e < <Z<l - ﬁl/p)empz) @ = (- (1- 87 Y ph)et
acA a a

Att =T, weget ®T <[, (1- (1 gY7) ¥, phth) < e 1A X0 pifi We note that

Z;rzl > a Pl = E(Caig), sO T < e—(1=8"/")E(Cas) _On the other hand, for any fixed action a € A,

we have w! 3Tt /P =] 3C»:/P Combining the upper and lower bounds on ®T and using w} < 1/2
we get the desired bound.

2.1.1 The parameters p and The graph of logxy(x-1).
The parameter 3 is central to the algorithm. Itis 7 e
important because at 5 = 0.4 the value of lg(fﬂl) < e
e 125
e—1"

The parameter p acts as a normalizing factor that <.
is computationally useful in implementing Algo-
rithm 2] It allows us to avoid underflow errors. It
has several different interpretations in the multi-
plicative weight context, see [[1]]. In the original *°
treatment of Hedge(/3) algorithm p is set to 1. 60 2 o4 o5 s o

2.2 Hedge(3) with ML prediction

An ML predictor provides us with an estimate T of the true but unknown value of T. We say that a
ML advisor is a-accurate if the conditional probabilities

Pr[T >b|T>b]>a = Pr[T<blT >bl<1-a
and Pr[T < b|T <b] >a = Pr[T>b|T <b]<1-a

where o € [1/2,1]. A value of & = 1 corresponds to a perfect predictor whereas @ = 1/2
corresponds to random uninformative predictor.

Intuitively, we incorporate the ML-prediction and its accuracy into the Hedge(/3) as a prior. Given a
prediction, say T <b, imagine that we have T (which is unknown) advisors. On the first day, the
proportion « of the advisors suggest renting and the rest suggest buying. We assume that among
these a'T-advisors, who suggest renting, the prediction that T = ¢, for 1 <+¢ < b — 1, are equally
likely El So, on day ¢ we discard the incorrect predictions i.e. we remove (i — 1)a'T /b advisors and
after adjusting the prior accordingly (see line[I2]in Algorithm [3]below) we decide between renting or
buying.

Theorem 2.2. Let 5 € (0,1) and p > 0. Then, we have an upper bound on the expected cost of the
AlgorithmE] E(Caig), in terms of the optimal cost Copy is given by

In(5"/7) In(a)
E(Calg) S m opt m~ (2)
The fundamental inequality, equation[I] used in the proof of the Theorem[2.1] also holds for Algorithm
[l As aresult, the proof of the above proposition follows from the same reasoning.
Remark 2.1. We do not know of a closed analytic formula that explicates the dependence of the
competitive ratio on . We empirically observe the better performance of this algorithm in simulations,

see 2.3

When T >> b, Algorithm 3|has the added benefit that is terminates after b iterations.

Algorithm 3 Hedge(3) algorithm with an c-accurate ML advisor.

Require: Parameters 3 € (0,1), p > 0, A = {0, 1}. ML-Prediction 7" and its accuracy o € [1/2, 1].
1: if T > b then

2 Initialize prior mp = 1 — o, ™ = «
3: elsel’ < b

4: Initialize prior m1p = a, 71 =1 — «
5: end if
6
7
8

. Initialize weights w} = mo, w] = 1.
: fort =(1,2,...,min(T,b)) do

coph e wh /Y e wl fora € A

9: Select a € A with probability p!,

10: if a = 1 then exit > Conditional Termination
11: else

12: Update prior: 7 < Trl‘:rzo/bb and my < Tl

13: Update weights: wft! < 7, 8%/ Pw! fora € A > Where £y = 1,41 = b.
14: end if

15: end for

2.3 Experiments

We study the empirical performance of our algorithms for the ski rental problem via simulations. We
set b = 100 and the number of snow days T is drawn uniformly from [1, 4b].

2One can use a different distribution if more information is available.

w
o

|l
o

"~
)

>
Competitve Ratio
&

Competitive Ratio

0.5 * Algorithm 2
e Randomized e/(e-1) Algorithm
o Algorithm 3

0 50 100 150 200 250 300 350 400
Number of snow days (T)

Figure 1: (A) = Algorithm 2 of [13] & Figure 2: We consider the competitive ratios of

€

(B) = Algorithm [T} Empirical perfor- Algorithm [2|in red, the randomized —£5 algorithm
mance on synthetic data. in blue and Algorithm [3]in green.

In Figure following the data generation scheme of [13], we generate predictions 7' = min(T +¢, 1)
where € is drawn from a normal distribution with mean 0 and variance o. For each value of o we
plot the average competitive ratio of 10000 independent trials. The blue (o) and green (e) plots show
the average competitive ratios of Algorithm 2 of [15] at A = 1, 0.8 respectively. The red (e) and the
magenta (e) plots show the average competitive ratio of Algorithm with gy (x,y) = po(z,y) =
min(z,y) and A = 1, 0.8 respectively. Figure shows that using the information in the prediction
can lead to significant improvement in the competitive ratio.

In Figure we generate 1000 samples of T uniformly from [1, 4b]. We plot the average competitive
ratio of 100 independent trials with T generated with accuracy o = 0.8. We fix g at 0.5 and p at
20 respectively. Algorithm [2]is plotted in red (e) and Algorithm [3]is plotted in green (e). The blue
(e) plot presents average compete ratio (over the same data) for the classical randomized e/(e — 1)
algorithm.

In Figure 2} we observe that when T'/b < 0.5 the constant overhead (the term In(«)/(8Y/? — 1) in
Equation [2) is dominant. When T'/b > 1, Algorithm outperforms Algorithm [2|and the randomized
e/(e — 1) algorithm. This is expected because when ¢ >> 0 the the weights w/, in Algorithmcan
suffer from large underflow errors whereas underflow error in Algorithm 3]is bounded.

3 Dynamic TCP acknowledgment problem

Data packets arrive at a location at times 0 < a1 < ... < a, < oco. Wecall A = (aq,as,...,a,)an
incoming sequence. All incoming data packets must be acknowledged at some point of time after
their arrival. It is possible to acknowledge multiple incoming packets together. The cost of a single
acknowledgment is 1.

At time ¢, the latency of a subset S C A is given by
Lat(S,t) = Y (t — a;)1(a, <t}
aj €S
where 1, <4 is the indicator function. (We disregard any data packets in S after time ¢.)

A schedule T is a partition of an incoming sequence A into disjoint contiguous subsets. A feasible
acknowledgment time, adapted to a schedule 7 is a monotonically increasing ordered set 7 = (¢ :
J € m) such that for every J € m we have t; > max,, e a;. The cost of a schedule 7 with an
acknowledgment time 7 is given by

Cost(m, T) = ||+ Y _ Lat(J,t,). 3)

Jemw

In the offline setting, when A is known and the pair (7opt, Topt) minimizes the total cost among all
schedules and feasible acknowledgment times, i.e.

Cost(Topt, Topt) = (miTn) Cost(m, T).
In [4], Dooley et al. describe an offline algorithm that produces (7opt, Topt) for any incoming sequence

In the online setting randomized algorithms with competitive ratio =5 is known due to the work of

several authors, see [9, 116, [14]. We recall Seiden’s optimal offline aigorithm below.

Algorithm 4 Seiden’s sequential algorithm for the Dynamic Online TCP problem

=
e—1°

Require: Let P(z) denote the continuous probability distribution on [0, 1] with density
1: loop
2 Pick x from P(z).
3 if no more packets are coming then

4 If needed, send the final acknowledgment and exit.

5: else if no more packets arrive before time = then

6 If needed send acknowledgment for all outstanding packets at time x.

7 end if

8: end loop

3.1 ML predictor

The output from a ML-predictor provides a schedule 7/~ and a feasible acknowledgment time 7~
(adapted to m£). Now for an incoming sequence .A it may happen that either 7% is not a schedule
for A (it is not a complete partition) or TML s not feasible. In either case, we can canonically
enlarge ™ by appending any outstanding packets and adding a final acknowledgment at the very
end to 7ML, After this necessary extension’} in general (7%, TML) will not be optimal for A

anymore.

Definition 3.1. In the TCP setting, we say that a ML advisor is e-close and «-accurate if for all input
sequences .A the tail probability

Pr[Cost(n™ L, TMEY > (1 4 €) Costopt] < 1 — av.

Here « € [0, 1] and it implicitly depends on .

Since —%; randomized algorithms are known, in practice one should expect ¢ < 1/(e — 1) and the

corresponding « is close to one. A simple consequence of the above definition that holds for any
reasonable (e, o) ML-predictor is that

e —

E[Cost(n™L, TML)] < (¢ —(1—a)+(1+ e)a> Cost(Topt; Topt)- @)

We present a Hedge(/3) online algorithm with an ML-predictor with accuracy (e, «), see Algorithm
The algorithm performs well with accurate predictions while hedges against less accurate predictions.

Denoting the expected cost of Algorithm[5]by E(Casw) and that of the ML advisor by E(Cas1) we
have

—log(8) E(Carr) —log()
1-7 '

Combining the above bound with the equation E] we notice that a ML advisor with parameters (e, o)
improves the online TCP acknowledgment algorithm if

log(8) e
-1 \e—-1

3For brevity, we use the same notation — 7% and 7% — to denote these extensions.

E(Cyvw)

IN

e
e—1

(1—a)+(1+e)a> <

Algorithm 5 A Hedge(3) algorithm from the Dynamic TCP problem. We assume we are provided
with a ML advisor with parameters (e, «v).

Require: A (e, o) ML advisor providing acknowledgment sequence 7ME = (¢ML . ML) and
the probability distribution P(z) with density e*/(e — 1).

1: Set weights, wg =1 — a, w1 = a.

2: loop
3: Pick 7 € {0, 1} with probability p; = w;/(wo + w1).
4: if 2 = 0 then
5: Pick z from P(z).
6: t<x
7: else
8: y <+ the next element of 7ML
9: t<+y
10: end if
11: if no more packets are coming then
12: If needed, send the final acknowledgment and exit.
13: else if no more packets arrive before time ¢ then
14: S < arrival time of all the outstanding packets acknowledged at time ¢
15: Send acknowledgment
16: Update weights wg < S22 and w; BHHHEY)
17: end if
18: end loop

In particular, for an ML setup to improve competitive ration it is necessary that its accuracy « satisfy

log(8)

3-1 <1

(1-a)

4 Conclusion and Further Work

In this paper we show that one can use the multiplicative weight update method to boost online
rent/buy problems with ML predictions in a natural way. It will be interesting to see if it is possible
to extend such a framework to other online problems.

Practical performance of online algorithms have been studied, see [8]]. It will be interesting to
construct practical ML-systems that can learn and accurately predict distribution of incoming inputs.
The results of this paper suggest that beyond a certain threshold can provide significant performance
gains.

Broader Impact

The current paper presents theoretical results that revisits well known problems in computer science
using established ideas from machine learning. Our work presents a transparent framework where
online algorithms and predictions can be merged seamlessly to improve algorithmic performance.
This can help with cost benefit analysis of deploying ML systems to boost performance in processes
that require algorithmic decision making in the face of uncertain inputs.

We do not see any conceivable way in which this work will put any section of society at a disadvantage
or amplify biases in input data.

Acknowledgments and Disclosure of Funding

The author gratefully acknowledges partial financial support from Minnesota State University
(MNSU) in summer 2020 that helped complete the current work.

References

[1] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of Computing, 8(1):121-164, 2012.

[2] Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 2005.

[3] Thomas M Cover. Universal portfolios. In The Kelly Capital Growth Investment Criterion:
Theory and Practice, pages 181-209. World Scientific, 2011.

[4] Daniel R Dooly, Sally A Goldman, and Stephen D Scott. Tcp dynamic acknowledgment delay
(extended abstract) theory and practice. In Proceedings of the thirtieth annual ACM symposium
on Theory of computing, pages 389-398, 1998.

[5] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learning and
an application to boosting. In European conference on computational learning theory, pages
23-37. Springer, 1995.

[6] Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy with expert
advice. In International Conference on Machine Learning, pages 2319-2327, 2019.

[7] Anna Karlin, Mark Manasse, Lyle McGeoch, and Susan Owicki. Randomized competitive
algorithms for non-uniform problems. In First Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 301-309, 1990.

[8] Anna R Karlin. On the performance of competitive algorithms in practice. In Online Algorithms,
pages 373-384. Springer, 1998.

[9] Anna R Karlin, Claire Kenyon, and Dana Randall. Dynamic tcp acknowledgement and other
stories about e/(e-1). In Proceedings of the thirty-third annual ACM symposium on Theory of
computing, pages 502-509, 2001.

[10] Anna R Karlin, Mark S Manasse, Lyle A McGeoch, and Susan Owicki. Competitive randomized
algorithms for non-uniform problems. In Proceedings of the first annual ACM-SIAM symposium
on Discrete algorithms, pages 301-309, 1990.

[11] Anna R Karlin and Yuval Peres. Game theory, alive, volume 101. American Mathematical Soc.,
2017.

[12] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
arXiv preprint arXiv:1802.05399, 2018.

[13] Andrés Munoz Medina and Sergei Vassilvitskii. Revenue optimization with approximate
bid predictions. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, pages 1856—1864. Curran Associates Inc., 2017.

[14] J. Noga. Unpublished manuscript. 1999.

[15] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml predictions.
In Advances in Neural Information Processing Systems, pages 9661-9670, 2018.

[16] Steven S Seiden. A guessing game and randomized online algorithms. In Proceedings of the
thirty-second annual ACM symposium on Theory of computing, pages 592—-601, 2000.

[17] Vladimir Vovk. A game of prediction with expert advice. Journal of Computer and System
Sciences, 56(2):153-173, 1998.

	Introduction
	Ski Rental Problem
	Hedge() algorithm for ski rental problem
	The parameters and

	Hedge() with ML prediction
	Experiments

	Dynamic TCP acknowledgment problem
	ML predictor

	Conclusion and Further Work

