
WOR and p’s:
Sketches for `p-Sampling Without Replacement

Edith Cohen
Google Research

Tel Aviv University
edith@cohenwang.com

Rasmus Pagh
IT University of Copenhagen

BARC
Google Research
pagh@itu.dk

David P. Woodruff
CMU

dwoodruf@cs.cmu.edu

Abstract

Weighted sampling is a fundamental tool in data analysis and machine learning
pipelines. Samples are used for efficient estimation of statistics or as sparse
representations of the data. When weight distributions are skewed, as is often the
case in practice, without-replacement (WOR) sampling is much more effective than
with-replacement (WR) sampling: it provides a broader representation and higher
accuracy for the same number of samples. We design novel composable sketches
for WOR `p sampling, weighted sampling of keys according to a power p ∈ [0, 2]
of their frequency (or for signed data, sum of updates). Our sketches have size
that grows only linearly with the sample size. Our design is simple and practical,
despite intricate analysis, and based on off-the-shelf use of widely implemented
heavy hitters sketches such as CountSketch. Our method is the first to provide
WOR sampling in the important regime of p > 1 and the first to handle signed
updates for p > 0.

1 Introduction

Weighted random sampling is a fundamental tool that is pervasive in machine learning and data
analysis pipelines. A sample serves as a sparse summary of the data and provides efficient estimation
of statistics and aggregates.

We consider data E presented as elements in the form of key value pairs e = (e.key, e.val). We
operate with respect to the aggregated form of keys and their frequencies νx :=

∑
e|e.key=x e.val,

defined as the sum of values of elements with key x. Examples of such data sets are stochastic
gradient updates (keys are parameters and element values are signed and the aggregated form is the
combined gradient), search (keys are queries, elements have unit values, and the aggregated form are
query-frequency pairs), or training examples for language models (keys are co-occurring terms).

The data is commonly distributed across servers or devices or is streamed and the number of distinct
keys is very large. In this scenario it is beneficial to perform computations without explicitly
producing a table of key-frequency pairs, as this requires storage or communication that grows
linearly with the number of keys. Instead, we use composable sketches which are data structures that
support (i) processing a new element e: Computing a sketch of E ∪ {e} from a sketch of E and e (ii)
merging: Computing a sketch of E1 ∪ E2 from sketches of each Ei and (iii) are such that the desired
output can be produced from the sketch. Composability facilitates parallel, distributed, or streaming
computation. We aim to design sketches of small size, because the sketch size determines the storage
and communication requirements. For sampling, we aim for the sketch size to be not much larger
than the desired sample size.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

The case for p’s: Aggregation and statistics of functions of the frequencies are essential for resource
allocation, planning, and management of large scale systems across application areas. The need
for efficiency prompted rich theoretical and applied work on streaming and sketching methods that
spanned decades [60, 41, 4, 38, 43, 36, 35, 55, 54]. We study `p sampling, which refers to weighted
sampling of keys with respect to a power p of their frequency νpx. These samples support estimates
of frequency statistics of the general form

∑
x f(νx)Lx for functions of frequency f and constitute

sparse representations of the data. Low powers (p < 1) are used to mitigate frequent keys and
obtain a better resolution of the tail whereas higher powers (p > 1) emphasize more frequent keys.
Moreover, recent work suggests that on realistic distributions, `p samples for p ∈ [0, 2] provide
accurate estimates for a surprisingly broad set of tasks [34].

Sampling is at the heart of stochastic optimization. When training data is distributed [57], sampling
can facilitate efficient example selection for training and efficient communication of gradient updates
of model parameters. Training examples are commonly weighted by a function of their frequency:
Language models [59, 66] use low powers p < 1 of frequency to mitigate the impact of frequent
examples. More generally, the function of frequency can be adjusted in the course of training to
shift focus to rarer and harder examples as training progresses [9]. A sample of examples can
be used to produce stochastic gradients or evaluate loss on domains of examples (expressed as
frequency statistics). In distributed learning, the communication of dense gradient updates can be
a bottleneck, prompting the development of methods that sparsify communication while retaining
accuracy [57, 2, 71, 47]. Weighted sampling by the p-th powers of magnitudes complements existing
methods that sparsify using heavy hitters (or other methods, e.g., sparsify randomly), provides
adjustable emphasis to larger magnitudes, and retains sparsity as updates are composed.

The case for WOR: Weighted sampling is classically considered with (WR) or without (WOR)
replacement. We study here the WOR setting. The benefits of WOR sampling were noted in very
early work [44, 42, 72] and are becoming more apparent with modern applications and the typical
skewed distributions of massive datasets. WOR sampling provides a broader representation and
more accurate estimates, with tail norms replacing full norms in error bounds. Figure 1 illustrates
these benefits of WOR for Zipfian distributions with `1 sampling (weighted by frequencies) and `2
sampling (weighted by the squares of frequencies). We can see that WR samples have a smaller
effective sample size than WOR (due to high multiplicity of heavy keys) and that while both WR
and WOR well-approximate the frequency distribution on heavy keys, WOR provides a much better
approximation of the tail.

0 50 100 150 200 250 300 350 400
Number of samples

0

50

100

150

200

250

Di
st

in
ct

 sa
m

pl
es

Effective sample size of with-replacement sampling
(support size 10000)

Distinct L1 WR samples, Zipf 1
Distinct L2 WR samples, Zipf 1

0 50 100 150 200 250 300 350 400
Number of samples

0

5

10

15

20

25

30

35

Di
st

in
ct

 sa
m

pl
es

Effective sample size of with-replacement sampling
(support size 10000)

Distinct L1 WR samples, Zipf 2
Distinct L2 WR samples, Zipf 2

100 101 102 103 104

Rank

10 7

10 5

10 3

10 1

Fr
eq

ue
nc

y

Estimated distribution of frequency by rank from perfect L1/L2 samples
(sample size 100, support size 10000)

Actual, Zipf 2.0
Perfect WOR L1 sample
Perfect WOR L2 sample
Perfect WR L1 sample
Perfect WR L2 sample

Figure 1: WOR vs WR. Left and middle: Effective vs actual sample size Zipf[α = 1] and Zipf[α = 2],
with each point reflecting a single sample. Right: Estimates of the frequency distribution Zipf[α = 2].

Related work. The sampling literature offers many WOR sampling schemes for aggregated
data: [68, 72, 14, 69, 64, 37, 25, 26, 23]. A particularly appealing technique is bottom-k (order)
sampling, where weights are scaled by random variables and the sample is the set of keys with top-k
transformed values [69, 64, 37, 25, 26]. There is also a large body of work on sketches for sampling
unaggregated data by functions of frequency. There are two primary approaches. The first approach
involves transforming data elements so that a bottom-k sample by function of frequency is converted
to an easier problem of finding the top-k keys sorted according to the maximum value of an element
with the key. This approach yields WOR distinct (`0) sampling [53], `1 sampling [41, 22], and
sampling with respect to any concave sublinear functions of frequency (including `p sampling for
p ≤ 1) [20, 24]). These sketches work with non-negative element values but only provide limited
support for negative updates [40, 22]. The second approach performs WR `p sampling for p ∈ [0, 2]
using sketches that are random projections [45, 39, 5, 51, 61, 6, 52, 50]. The methods support signed

2

updates but were not adapted to WOR sampling. For p > 2, a classic lower bound [4, 7] establishes
that sketches of size polynomial in the number of distinct keys are required for worst case frequency
distributions. This task has also been studied in distributed settings [16, 49]; [49] observes the
importance of WOR in that setting though does not allow for updates to element values.

Algorithm 1: WORp (high level)
Components:

Random hash map rx ∼ Exp[1] // Map keys x to i.i.d rx
`q residual Heavy Hitters (rHH) method

Input: Data elements E as key value pairs e = (e.key, e.val)
p ∈ (0, 2] // Specifies p ≤ q for `p sampling
k ≥ 1 // Sample Size
Specify one or two passes // One-pass requires a more accurate/larger sketch

Initialization:
Initialize rHH sketch R // Size determined by p, k, one/two passes

Process data element e = (e.key, e.val):
R.Process(e.key, e.val/r1/pe.key) // Transform element and insert into sketch

Final:
Extract sample from the sketch R // directly (one pass) or with a second pass.

Contributions: We present WORp: A method for WOR `p sampling for p ∈ [0, 2] via compos-
able sketches of size that grows linearly with the sample size (see pseudocode in Algorithm 1).
WORp is simple and practical and uses a bottom-k transform (see Figure 2) to reduce sam-
pling to a top-k problem on the transformed data. The technical heart of the paper is estab-
lishing that for any set of input frequencies, the keys with top-k transformed frequencies are
(residual) heavy hitters (rHH) and therefore can be identified using a small sketch. In terms of
implementation, WORp only requires an off-the-shelf use of popular (and widely-implemented)
HH sketches [60, 56, 15, 35, 58, 10]. WORp is the first WOR `p sampling method (that uses
sample-sized sketches) for the regime p ∈ (1, 2] and the first to fully support negative updates
for p ∈ (0, 2]. As a bonus, we include practical optimizations (that preserve the theoretical guar-
antees) and perform experiments that demonstrate both the practicality and accuracy of WORp.1

Frequencies wxTransformed frequencies wx*
sample

Figure 2: Illustration of
bottom-k sampling.

In addition to the above, we show that perhaps surprisingly, it is possible
to obtain a WOR `p-sample of a set of k indices, for any p ∈ [0, 2], with
variation distance at most 1

poly(n) to a true WOR `p-sample, and using
only k · poly(log n) bits of memory. Our variation distance is extremely
small, and cannot be detected by any polynomial time algorithm. This
makes it applicable in settings for which privacy may be a concern; indeed,
this shows that no polynomial time algorithm can learn anything from
the sampled output other than what follows from a simulator who outputs
a WOR `p-sample from the actual (variation distance 0) distribution.
Finally, for p ∈ (0, 2), we show that the memory of our algorithm is
optimal up to an O(log2 log n) factor.

2 Preliminaries

A dataset E consists of data elements that are key value pairs e = (e.key, e.val). The frequency of
a key x, denoted νx :=

∑
e|e.key=x e.val, is the sum of values of elements with key x. We use the

notation ν for a vector of frequencies of keys.

For a function f and vector w, we denote the vector with entries f(wx) by f(w). In particular, wp

is the vector with entries wpx that are the p-th powers of the entries of w. For vector w ∈ <n and
index i, we denote by w(i) the value of the entry with the i-th largest magnitude in w. We denote by
order(w) the permutation of the indices [n] = {1, 2, . . . , n} that corresponds to decreasing order of
entries by magnitude. For k ≥ 1, we denote by tailk(w) the vector with the k entries with largest
magnitudes removed (or replaced with 0).

1Code for the experiments is provided in the following Colab notebook https://colab.research.
google.com/drive/1Tix7SwsPp7A_OtSuaRf3IwfTH-qo9_81?usp=sharing

3

https://colab.research.google.com/drive/1Tix7SwsPp7A_OtSuaRf3IwfTH-qo9_81?usp=sharing
https://colab.research.google.com/drive/1Tix7SwsPp7A_OtSuaRf3IwfTH-qo9_81?usp=sharing

In the remainder of the section we review ingredients that we build on: bottom-k sampling, imple-
menting a bottom-k transform on unaggregated data, and composable sketch structures for residual
heavy hitters (rHH).

2.1 Bottom-k sampling (ppswor and priority)

Bottom-k sampling (also called order sampling [69]) is a family of without-replacement weighted
sampling schemes of a set {(x,wx)} of key and weight pairs. The weights (x,wx) are transformed
via independent random maps wTx ← wx

rx
, where rx ∼ D are i.i.d. from some distribution

D. The sample includes the pairs (x,wx) for keys x that are top-k by transformed magnitudes
|wT | [63, 69, 37, 17, 13, 25, 27] 2. For estimation tasks, we also include a threshold τ := |wT(k+1)|,
the (k + 1)-st largest magnitude of transformed weights. Bottom-k schemes differ by the choice
of distribution D. Two popular choices are Probability Proportional to Size WithOut Replacement
(ppswor) [69, 17, 27] via the exponential distribution D ← Exp[1] and Priority (Sequential Poisson)
sampling [63, 37] via the uniform distribution D ← U [0, 1]. Ppswor is equivalent to a weighted
sampling process [68] where keys are drawn successively (without replacement) with probability
proportional to their weight. Priority sampling mimics a pure Probability Proportional to Size (pps)
sampling, where sampling probabilities are proportional to weights (but truncated to be at most 1).

Estimating statistics from a Bottom-k sample. Bottom-k samples provide us with unbiased
inverse-probability [44] per-key estimates on f(wx), where f is a function applied to the weight [3,
26, 21, 19]):

f̂(wx) :=

{
f(wx)

Prr∼D[r≤|wx|/τ] if x ∈ S
0 if x /∈ S

. (1)

These estimates can be used to sparsify a vector f(w) to k entries or to estimate sum statistics of the
general form: ∑

x

f(wx)Lx (2)

using the unbiased estimate

̂∑
x

f(wx)Lx :=
∑
x

f̂(wx)Lx =
∑
x∈S

f̂(wx)Lx .

The quality of estimates depends on f and L. We measure the quality of these unbiased estimates by
the sum over keys of the per-key variance. With both ppswor and priority sampling and f(w) := w,
the sum is bounded by a respective one for pps with replacement. The per-key variance bound is

Var[ŵx] ≤ 1

k − 1
wx‖w‖1 (3)

and the respective sum by
∑
x Var[ŵx] ≤ 1

k−1‖w‖
2
1. This can be tightened to Var[ŵx] ≤

min{O(1
k)wx‖tailk(w)‖1, exp

(
−O(k) wx

‖tailk(w)‖1

)
w2
x} and respective bound on the sum of

O(‖tailk(w)‖21/k). For skewed distributions, ‖tailk(w)‖21 � ‖w‖21 and hence WOR sampling is ben-
eficial. Conveniently, bottom-k estimates for different keys x1 6= x2 have non-positive correlations
Cov[ŵx1

, ŵx2
] ≤ 0, so the variance of sum estimates is at most the respective weighted sum of per-

key variance. Note that the per-key variance for a function of weight is Var[f̂(wx)] = f(wx)2

w2
x

Var[ŵx].
WOR (and WR) estimates are more accurate (in terms of normalized variance sum) when the sampling
is weighted by f(w).

2.2 Bottom-k sampling by power of frequency

To perform bottom-k sampling ofwp with distribution D, we draw rx ∼ D, transform the weights
wTx ← wpx/rx, and return the top-k keys in wT . This is equivalent to bottom-k sampling the vector

2Historically, the term bottom-k is due to analogous use of 1/wTx , but here we find it more convenient to
work with "top-k"

4

w using the distribution D1/p, that is, draw rx ∼ D, transform the weights

w∗x ←
wx

r
1/p
x

(4)

and return the top-k keys according to w∗. Equivalence is because (w∗x)p =
(
wx
r
1/p
x

)p
=

wpx
rx

= wTx

and f(x) = xp is a monotone increasing and hence order(w∗) = order(wT). We denote the
distribution ofw∗ obtained from the bottom-k transform (4) as p-D[w] and specifically, p-ppswor[w]
when D = Exp[1] and p-priority[w] when D = U [0, 1]. We use the term p-ppswor for bottom-k
sampling by Exp1/p.

The linear transform (4) can be efficiently performed over unaggregated data by using a random hash
to represent rx for keys x and then locally generating an output element for each input element

(e.key, e.val)→ (e.key, e.val/r1/p
e.key) (5)

The task of sampling by p-th power of frequency νp is replaced by the task of top-k by frequency
ν∗x :=

∑
e∈E∗|e.key=x e.val on the respective output dataset E∗, noting that ν∗x = νx/r

1/p
x . Therefore,

the top-k keys in ν∗ are a bottom-k sample according to D of νp. Note that we can approximate the
input frequency ν′x of a key x from an approximate output frequency ν̂∗x using the hash rx. Note that
relative error is preserved:

ν′x ← ν̂∗xr
1/p
x . (6)

This per-element scaling was proposed in the precision sampling framework of Andoni et al. [6] and
inspired by a technique for frequency moment estimation using stable distributions [45].

Generally, finding the top-k frequencies is a task that requires large sketch structures of size linear in
the number of keys. However, [6] showed that when the frequencies are drawn from p-priority[w]
(applied to arbitrary w) and p ≤ 2 then the top-1 value is likely to be an `2 heavy hitter. Here we
refine the analysis and use the more subtle notion of residual heavy hitters [10]. We show that the
top-k output frequencies in w∗ ∼ p-ppswor[w] are very likely to be `q residual heavy hitters (when
q ≥ p) and can be found with a sketch of size Õ(k).

2.3 Residual heavy hitters (rHH)

An entry in a weight vector w is called an ε- heavy hitter if wx ≥ ε
∑
y wy. A heavy hitter with

respect to a function f is defined as a key with f(wx) ≥ ε
∑
y f(wy). When f(w) = wq , we refer to

a key as an `q heavy hitter. For k ≥ 1 and ψ > 0, a vector w has (k, ψ) residual heavy hitters [10]
when the top-k keys are “heavy" with respect to the tail of the frequencies starting at the (k + 1)-st
most frequent key, that is, ∀i ≤ k, w(i) ≥ ψ

k ‖tailk(w)‖1. This is equivalent to ‖tailk(w)‖1
w(k)

≤ k
ψ . We

say that w has rHH with respect to a function f if f(w) has rHH. In particular, w has `q (k, ψ) rHH
if

‖tailk(w)‖qq
wq(k)

≤ k

ψ
. (7)

Popular composable HH sketches were adopted to rHH and include (see Table 1): (i) `1 sketches
designed for positive data elements. A deterministic counter-based variety [60, 56, 58] with rHH
adaptation [10] and the randomized CountMin sketch [35]. (ii) `2 sketches designed for signed data
elements, notably CountSketch [15] with rHH analysis in [52]. With these designs, a sketch for
`q (k, ψ)-rHH provides estimates ν̂x for all keys x with error bound:

‖ν̂ − ν‖q∞ ≤
ψ

k
‖tailk(ν)‖qq . (8)

With randomized sketches, the error bound (8) is guaranteed with some probability 1 − δ.
CountSketch has the advantages of capturing top keys that are `2 but not `1 heavy hitters and
supports signed data, but otherwise provides lower accuracy than `1 sketches for the same sketch
size. Methods also vary in supported key domains: counters natively work with key strings whereas
randomized sketches work for keys from [n] (see Appendix A for a further discussion). We use these
sketches off-the-shelf through the following operations:

5

• R.Initialize(k, ψ, δ): Initialize a sketch structure

• Merge(R1, R2): Merge two sketches with the same parameters and internal randomization

• R.Process(e): process a data element e

• R.Est(x): Return an estimate of the frequency of a key x .

Sketch (`q , sign) Size ‖ν̂ − ν‖q∞ ≤
Counters (`1, +) [10] O(kψ) ψ

k ‖tailk(ν)‖1
CountSketch (`2,±) [15] O(kψ log n

δ) ψ
k ‖tailk(ν)‖22

Table 1: Sketches for `q (k, ψ) rHH.

3 WORp Overview

Our WORp methods apply a p-ppswor transform to data elements (5) and (for q ≥ p) compute an `q
(k, ψ)-rHH sketch of the output elements. The rHH sketch is used to produce a sample of k keys.

We would like to set ψ to be low enough so that for any input frequencies ν, the top-k keys by
transformed frequencies ν∗ ∼ p-ppswor[ν] are rHH (satisfy condition (7)) with probability at least
1 − δ. We refine this desiderata to be conditioned on the permutation of keys in order(ν∗). This
conditioning turns out not to further constrain ψ and allows us to provide the success probability
uniformly for any potential k-sample. Since our sketch size grows inversely with ψ (see Table 1), we
want to use the maximum value that works. We will be guided by the following:

Ψn,k,ρ=q/p(δ) := sup

{
ψ | ∀w ∈ <n, π ∈ Sn Pr

w∗∼p-ppswor[w]|order(w∗)=π

[
k
|w∗(k)|q

‖tailk(w∗)‖qq
≤ ψ

]
≤ δ
}
,

(9)
where Sn denotes the set of permutations of [n]. If we set the rHH sketch parameter to ψ ← εΨn,k,ρ

then using (8), with probability at least 1− δ,

‖ν̂∗ − ν∗‖q∞ ≤
ψ

k
‖tailk(ν∗)‖qq = ε

Ψn,k,ρ(λ)

k
‖tailk(ν∗)‖qq ≤ ε|ν∗(k)|

q . (10)

We establish the following lower bounds on Ψn,k,ρ(δ):

Theorem 3.1. There is a universal constant C > 0 such that for all n, k > 1, and ρ = q/p

For ρ = 1: Ψn,k,ρ(3e
−k) ≥ 1

C ln n
k

(11)

For ρ > 1: Ψn,k,ρ(3e
−k) ≥ 1

C
max{ρ− 1,

1

ln n
k)
} . (12)

To set sketch parameters in implementations, we approximate Ψ using simulations of what we
establish to be a “worst case" frequency distribution. For this we use a specification of a “worst-case"
set of frequencies as part of the proof of Theorem 3.1 (See Appendix B.1). From simulations we
obtain that very small values of C < 2 suffice for δ = 0.01, ρ ∈ {1, 2}, and k ≥ 10.

We analyse a few WORp variants. The first we consider returns an exact p-ppswor sample, including
exact frequencies of keys, using two passes. We then consider a variant that returns an approximate
p-ppswor sample in a single pass. The two-pass method uses smaller rHH sketches and efficiently
works with keys that are arbitrary strings.

We also provide another rHH-based technique that provides a guaranteed very small variation distance
on k-tuples in a single pass.

4 Two-pass WORp

We design a two-pass method for ppswor sampling according to νp for p ∈ (0, 2] (Equivalently, a
p-ppswor sample according to ν):

6

Sketch size
sign, p words key strings Pr[success]
±, p < 2 O(k logn) O(k) (1− 1

poly(n))(1− 3e−k)

±, p = 2 O(k log2 n) O(k) (1− 1
poly(n))(1− 3e−k)

+, p < 1 O(k) O(k) 1− 3e−k

+, p = 1 O(k logn) O(k) 1− 3e−k

Table 2: Two-pass ppswor sampling of k keys according to νp. Sketch size (memory words and
number of stored key strings). For p ∈ (0, 2] and signed (±) or positive (+) value elements.

• Pass I: We compute an `q (k + 1, ψ)-rHH sketch R of the transformed data elements

(KeyHash(e.key), e.val/r1/p
e.key) . (13)

A hash KeyHash→ [n] is applied when keys have a large or non-integer domain to facilitate use of
CountSketch or reduce storage with Counters. We set ψ ← 1

3q Ψn,k,ρ(δ).

• Pass II: We collect key strings x (if needed) and corresponding exact frequencies νx for keys with
the Bk largest |ν̂∗x|, where B is a constant (see below) and ν̂∗x := R.Est[KeyHash(x)] are the
estimates of ν∗x provided by R. For this purpose we use a composable top-(Bk) sketch structure T .
The size of T is dominated by storing Bk key strings.

• Producing a p-ppswor sample from T : Compute exact transformed frequencies ν∗x ← νxr
1/p
x for

stored keys x ∈ T . Our sample is the set of key frequency pairs (x, νx) for the top-k stored keys by
ν∗x. The threshold τ is the (k + 1)th largest ν∗x over stored keys.

• Estimation: We compute per-key estimates as in (1): Plugging in D = Exp[1]1/p for p-ppswor, we
have f̂(νx) := 0 for x 6∈ S and for x ∈ S is f̂(νx) := f(νx)

1−exp(−(νxτ)p)
.

We establish that the method returns the p-ppswor sample with probability at least 1− δ, propose
practical optimizations, and analyze the sketch size:

Theorem 4.1. The 2-pass method returns a p-ppswor sample of size k according to ν with success
probability and composable sketch sizes as detailed in Table 2. The success probability is defined to
be that of returning the exact top-k keys by transformed frequencies. The bound applies even when
conditioned on the top-k being a particular k-tuple.

Proof. From (10), the estimates ν̂∗x = R.Est[KeyHash(x)] of ν∗x are such that:

Pr

[
∀x ∈ {e.key | e ∈ E}, |ν̂∗x − ν∗x| ≤

1

3
|ν∗(k+1)|

]
≥ 1− δ . (14)

We set B in the second pass so that the following holds:

The top-(k + 1) keys by ν∗ are a subset of the top-(B(k + 1)) keys by ν̂∗. (15)

Note that for any frequency distribution with rHH, it suffices to store O(k/ψ) keys to have (15). We
establish that for our particular distributions, a constant B suffices. For that we used the following:

Lemma 4.1. A sufficient condition for property (15) is that |ν∗(B(k+1))| ≤
1
3 |ν
∗
((k+1))|.

Proof. Note that |ν̂∗x| ≥ 2
3 |ν
∗
(k+1)| for keys that are top-(k + 1) by ν∗ and |ν̂∗(B(k+1))| ≤

|ν∗(B(k+1))|+
1
3 |ν
∗(k + 1)|. Hence |ν̂∗x| ≥ |ν̂∗(B(k+1)| for all keys that are top-(k + 1) by ν∗.

We then use Lemma E.1 to express a “worst-case" distribution for the ratio ν∗B(k+1)/ν
∗
(k+ 1) and use

the latter (using Corollary D.2) to show that the setting of Ψ(δ) according to our proof of Theorem 3.1
(Appendix B-D) implies that the conditions that guarantee the rHH property will also imply a ratio of
at most 1/3 with a constant B.

7

Correctness for the final sample follows from property (15) : T storing the top-(k+1) keys in the data
according to ν∗. To conclude the proof of Theorem 4.1 we need to specify the rHH sketch structure
we use. From Theorem 3.1 we obtain a lower bound on Ψn,k,ρ for δ = 3e−k and we use it to set
ψ. For our rHH sketch we use CountSketch (q = 2 and supports signed values) or Counters
(q = 1 and positive values). The top two lines in Table 2 are for CountSketch and the next two
lines are for Counters. The rHH sketch sizes follow from ψ and Table 1.

4.1 Practical optimizations

We propose practical optimizations that improve efficiency without compromising quality guarantees.

The first optimization allows us to store k′ � B(k + 1) keys in the second pass: We always store the
top-(k + 1) keys by ν̂∗ but beyond that only store keys if they satisfy

ν̂∗x ≥
1

2
ν̂∗(k+1) , (16)

where ν∗ is with respect to data elements processed by the current sketch. We establish correctness:
Lemma 4.2. 1. There is a composable structure that only stores keys that satisfy (16) and

collects exact frequencies for these keys.

2. If (14) holds, the top-(k+ 1) keys by ν∗ satisfy (16) (and hence will be stored in the sketch).

Proof. (i) The structure is a slight modification of a top-k′ structure. Since ν̂∗(k+1) can only increase
as more distinct keys are processed, the condition (16) only becomes more stringent as we merge
sketches and process elements. Therefore if a key satisfies the condition at some point it would have
satisfied the condition when elements with the key were previously processed and therefore we can
collect exact frequencies.

(ii) From the uniform approximation (14), we have ν̂∗(k+1) ≤ 4
3ν
∗
(k+1). Let x be the (k + 1)-th key

by |ν∗|. Its estimated transformed frequency is at at least ν̂∗x ≥ 2
3ν
∗
(k+1) ≥

2
3 ·

3
4 ν̂
∗

(k+1) = 1
2 ν̂
∗

(k+1).

Therefore, if we store all keys x with ν̂∗x ≥ 1
2 ν̂
∗

(k+1) we store the top-(k + 1) keys by ν∗x.

A second optimization allows us to extract a larger effective sample from the sketch with k′ ≥ k keys.
This can be done when we can certify that the top-k′ keys by ν∗ in the transformed data are stored
in the sketch T . Using a larger sample is helpful as it can only improve (in expectation) estimation
quality (see e.g., [28, 31]). To extend this, we compute the uniform error bound ν∗(k+1)/3 (available

because the top-(k + 1) keys by ν∗ are stored). Let L← minx∈T ν̂∗x. We obtain that any key x in
the dataset with ν∗x ≥ L+ ν∗(k+1)/3 must be stored in T . Our final sample contains these keys with
the minimum ν∗x in the set used as the threshold τ .

5 One-pass WORp

Our 1-pass WORp yields a sample of size k that approximates a p-ppswor sample of the same size
and provides similar guarantees on estimation quality.

• Sketch: For q ≥ p and ε ∈ (0, 1
3] Compute an `q (k + 1, ψ)-rHH sketch R of the transformed data

elements (5) where ψ ← εqΨn,k+1,ρ.

• Produce a sample: Our sample S includes the keys with top-k estimated transformed frequencies
ν̂∗x := R.Est[x]. For each key x ∈ S we include (x, ν′x), where the approximate frequency
ν′x ← ν̂∗xr

1/p
x is according to (6). We include with the sample the threshold τ ← ν̂∗(k+1).

• Estimation: We treat the sample as a p-ppswor sample and compute per-key estimates as in (1),
substituting approximate frequencies ν′x for actual frequencies νx of sampled keys and the 1-pass
threshold ν̂∗(k+1) for the exact ν∗(k+1). The estimate is f̂(νx) := 0 for x 6∈ S and for x ∈ S is:

f̂(νx) :=
f(ν′x)

1− exp
(
−(

ν′x
ν̂∗(k+1)

)p
) =

f(ν̂∗xr
1/p
x)

1− exp
(
−rx(

ν̂∗x
ν̂∗(k+1)

)p
) (17)

8

`p α p′ perfect WR perfect WOR 1-pass WORp 2-pass WORp
`2 Zipf[2] ν3 1.16e-04 2.09e-11 1.06e-03 2.08e-11
`2 Zipf[2] ν2 7.96e-05 1.26e-07 1.14e-02 1.25e-07
`1 Zipf[2] ν 9.51e-03 1.60e-03 2.79e-02 1.60e-03
`1 Zipf[1] ν3 3.59e-01 5.73e-03 5.14e-03 5.72e-03
`1 Zipf[2] ν3 3.45e-04 7.34e-10 5.11e-05 7.38e-10

Table 3: NRMSE on estimates of frequency moments on statistics of the form ‖ν‖p
′

p′ from `p samples
(p = 1, 2). Zipf[α] distributions with support size n = 104, k = 100 samples, averaged over 100
runs. CountSketch of size 2k × 31

We relate the quality of the estimates to those of a perfect p-ppswor. Since our 1-pass estimates are
biased (unlike the unbiased perfect p-ppswor), we consider both bias and variance. The proof is
provided in Appendix G.

Theorem 5.1. Let f(w) be such that |f((1+ε)w)−f(w)| ≤ cεf(w) for some c > 0 and ε ∈ [0, 1/2].

Let f̂(νx) be per-key estimates obtained with a one-pass WORp sample and let f̂(νx)
′

be the
respective estimates obtained with a (perfect) p-ppswor sample. Then Bias[f̂(νx)] ≤ O(ε)f(νx) and

MSE[f̂(νx)] ≤ (1 +O(ε))Var[f̂(νx)
′
] +O(ε)f(νx)2.

Note that the assumption on f holds for f(w) = wp with c = (1.5)p. Also note that the bias bound
implies a respective contribution to the relative error of O(ε) on all sum estimates.

6 One-pass Total Variation Distance Guarantee

We provide another 1-pass method, based on the combined use of rHH and known WR perfect `p
sampling sketches [50] to select a k-tuple with a polynomially small total variation (TV) distance
from the k-tuple distribution of a perfect p-ppswor. The method uses O(k) (for variation distance
2−Θ(k), and O(k log n) for variation distance 1/nC for an arbitrarily large constant C > 0) perfect
samplers (each providing a single WR sample) and an rHH sketch. The perfect samplers are processed
in sequence with prior selections “subtracted" from the linear sketch (using approximate frequencies
provided by the rHH sketch) to uncover fresh samples. As with WORp, exact frequencies of sampled
keys can be obtained in a second pass or approximated using larger sketches in a single pass. Details
are provided in Appendix F.

Theorem 6.1. There is a 1-pass method via composable sketches of size O(k polylog(n)) that
returns a k-tuple of keys such that the total variation distance from the k-tuples produced by a perfect
p-ppswor sample is at most 1/nC for an arbitrarily large constant C > 0. The method applies to
keys from a domain [n], and signed values with magnitudes and intermediate frequencies that are
polynomial in n.

We also show in Appendix F that our sketches in Theorem 6.1 use O(k · log2 n(log log n)2) bits
of memory for 0 < p < 2, and we prove a matching lower bound on the memory required of any
algorithm achieving this guarantee, up to a (log log n)2 factor. For p = 2 we also show they are of
optimal size, up to an O(log n) factor.

7 Experiments

We simulated 2-pass and 1-pass WORp in Python using CountSketch with 15 repetitions and
table size 2k (total space 30k) as our rHH sketch. Figure 3 reports estimates of the rank-frequency
distribution obtained with 1-pass and 2-pass WORp and perfect WOR (p-ppswor) and perfect WR
samples (shown for reference). For best comparison, all WOR methods use the same randomization
of the p-ppswor transform. Table 3 reports normalized root averaged squared errors (NRMSE) on
example statistics. As expected, 2-pass WORp and perfect 2-ppswor are similar and WR `2 samples
are less accurate with larger skew or on the tail. Note that current state of the art sketching methods
are not more efficient for WR sampling than for WOR sampling, and estimation quality with perfect
methods is only shown for reference. We can also see that 1-pass WORp performs well, although it
requires more accuracy (lager sketch size) since it works with estimated weights (reported results are
with fixed CountSketch size of k × 31 for all methods).

9

100 101 102 103 104

Rank

10 5

10 4

10 3

10 2

10 1

Fr
eq

ue
nc

y

Estimated distribution of frequency by rank from L2 samples
(sample size 100, support size 10000)

Actual, Zipf 1.0
Perfect WOR L2 sample
WR L2 sample
1-pass WORp, p=2
2-pass WORp, p=2

100 101 102 103 104

Rank

10 7

10 5

10 3

10 1

Fr
eq

ue
nc

y

Estimated distribution of frequency by rank from L2 samples
(sample size 100, support size 10000)

Actual, Zipf 2.0
Perfect WOR L2 sample
WR L2 sample
1-pass WORp, p=2
2-pass WORp, p=2

100 101 102 103 104

Rank

10 7

10 5

10 3

10 1

Fr
eq

ue
nc

y

Estimated distribution of frequency by rank from L1 samples
(sample size 100, support size 10000)

Actual, Zipf 2.0
Perfect WOR L1 sample
Perfect WR L1 sample
1-pass WORp, p=1
2-pass WORp, p=1

Figure 3: Estimates of the rank-frequency distribution of Zipf[1] and Zipf[2]. Using WORp 1-pass,
WORp 2-pass with CountSketch (matrix k × 31), perfect WOR, and perfect WR. Estimates from
a (representative) single sample of size k = 100. Left and Center: `2 sampling. Right: `1 sampling.

Conclusion

We present novel composable sketches for without-replacement (WOR) `p sampling, based on
“reducing" the sampling problem to a heavy hitters (HH) problem. The reduction, which is simple
and practical, allows us to use existing implementations of HH sketches to perform WOR sampling.
Moreover, streaming HH sketches that support time decay (for example, sliding windows [8]) provide
a respective time-decay variant of sampling. We present two approaches, WORp, based on a bottom-k
transform, and another technique based on “perfect” with-replacement sampling sketches, which
provides 1-pass WOR samples with negligible variation distance to a true sample. Our methods open
the door for a wide range of future applications: In particular, WORp provides efficient coordinated
bottom-k samples (aka bottom-k sketches) of datasets. WORp produces bottom-k samples with
respect to a specified randomization rx over the support (with 1-pass WORp we obtain approximate
bottom-k samples). Samples of different datasets or different p values or different time-decay
functions that are generated with the same rx are coordinated [12, 70, 65, 17, 32, 13]. Coordination
is a desirable and powerful property: Samples are locally sensitivity (LSH) and change little with
small changes in the dataset [12, 70, 46, 33, 19]. This allows for a compact representation of multiple
samples, efficient updating, and sketch-based similarity searches. Moreover, coordinated samples
(sketches) facilitate powerful estimators for multi-set statistics and similarity measures such as
weighted Jaccard similarity, min or max sums, and 1-sided distance norms [17, 13, 28, 31, 29, 30, 18].

Acknowledgments: D. Woodruff would like to thank partial support from the Office of Naval
Research (ONR) grant N00014-18-1-2562, and the National Science Foundation (NSF) under Grant
No. CCF-1815840. R. Pagh is supported by Villum Foundation grant 16582 to Basic Algorithms
Research Copenhagen (BARC).

References
[1] Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff M. Phillips, Zhewei Wei, and

Ke Yi. Mergeable summaries. ACM Trans. Database Syst., 38(4):26:1–26:28, 2013.

[2] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages 1709–1720. Curran Associates, Inc., 2017.

[3] N. Alon, N. Duffield, M. Thorup, and C. Lund. Estimating arbitrary subset sums with few
probes. In Proceedings of the 24th ACM Symposium on Principles of Database Systems, pages
317–325, 2005.

[4] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency
moments. J. Comput. System Sci., 58:137–147, 1999.

[5] Alexandr Andoni, Khanh Do Ba, Piotr Indyk, and David P. Woodruff. Efficient sketches for
earth-mover distance, with applications. In 50th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA, pages 324–330.
IEEE Computer Society, 2009.

10

[6] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algorithms via precision
sampling. In IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011,
Palm Springs, CA, USA, October 22-25, 2011, 2011.

[7] Ziv Bar-Yossef, Thathachar S Jayram, Ravi Kumar, and D Sivakumar. An information statistics
approach to data stream and communication complexity. Journal of Computer and System
Sciences, 68(4):702–732, 2004.

[8] R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner. Heavy hitters in streams and sliding
windows. In IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on
Computer Communications, 2016.

[9] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In ICML, 2009.

[10] Radu Berinde, Graham Cormode, Piotr Indyk, and Martin J. Strauss. Space-optimal heavy
hitters with strong error bounds. In Proceedings of the Twenty-Eighth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS ’09. Association for Computing
Machinery, 2009.

[11] Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu Wang, and
David P. Woodruff. Bptree: An l2 heavy hitters algorithm using constant memory. In Proceed-
ings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2017, Chicago, IL, USA, May 14-19, 2017, 2017.

[12] K. R. W. Brewer, L. J. Early, and S. F. Joyce. Selecting several samples from a single population.
Australian Journal of Statistics, 14(3):231–239, 1972.

[13] A. Z. Broder. On the resemblance and containment of documents. In Proceedings of the
Compression and Complexity of Sequences, pages 21–29. IEEE, 1997.

[14] M. T. Chao. A general purpose unequal probability sampling plan. Biometrika, 69(3):653–656,
1982.

[15] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams. In
Proceedings of the International Colloquium on Automata, Languages and Programming
(ICALP), pages 693–703, 2002.

[16] Yung-Yu Chung, Srikanta Tirthapura, and David P. Woodruff. A simple message-optimal
algorithm for random sampling from a distributed stream. IEEE Trans. Knowl. Data Eng.,
28(6):1356–1368, 2016.

[17] E. Cohen. Size-estimation framework with applications to transitive closure and reachability. J.
Comput. System Sci., 55:441–453, 1997.

[18] E. Cohen. Distance queries from sampled data: Accurate and efficient. In KDD. ACM, 2014.
full version: http://arxiv.org/abs/1203.4903.

[19] E. Cohen. Multi-objective weighted sampling. In HotWeb. IEEE, 2015. full version:
http://arxiv.org/abs/1509.07445.

[20] E. Cohen. Stream sampling for frequency cap statistics. In KDD. ACM, 2015. full version:
http://arxiv.org/abs/1502.05955.

[21] E. Cohen. Stream sampling framework and application for frequency cap statistics. ACM
Trans. Algorithms, 14(4):52:1–52:40, 2018. preliminary version published in KDD 2015.
arXiv:http://arxiv.org/abs/1502.05955.

[22] E. Cohen, G. Cormode, and N. Duffield. Don’t let the negatives bring you down: Sampling
from streams of signed updates. In Proc. ACM SIGMETRICS/Performance, 2012.

[23] E. Cohen, N. Duffield, C. Lund, M. Thorup, and H. Kaplan. Efficient stream sampling for
variance-optimal estimation of subset sums. SIAM J. Comput., 40(5), 2011.

[24] E. Cohen and O. Geri. Sampling sketches for concave sublinear functions of frequencies. In
NeurIPS, 2019.

11

[25] E. Cohen and H. Kaplan. Summarizing data using bottom-k sketches. In ACM PODC, 2007.

[26] E. Cohen and H. Kaplan. Sketch-based estimation of subpopulation-weight. Technical Report
802.3448, CORR, 2008.

[27] E. Cohen and H. Kaplan. Tighter estimation using bottom-k sketches. In Proceedings of the
34th VLDB Conference, 2008.

[28] E. Cohen and H. Kaplan. Leveraging discarded samples for tighter estimation of multiple-set
aggregates. In ACM SIGMETRICS, 2009.

[29] E. Cohen and H. Kaplan. Get the most out of your sample: Optimal unbiased estimators using
partial information. In Proc. of the 2011 ACM Symp. on Principles of Database Systems (PODS
2011). ACM, 2011. full version: http://arxiv.org/abs/1203.4903.

[30] E. Cohen and H. Kaplan. What you can do with coordinated samples. In The 17th. In-
ternational Workshop on Randomization and Computation (RANDOM), 2013. full version:
http://arxiv.org/abs/1206.5637.

[31] E. Cohen, H. Kaplan, and S. Sen. Coordinated weighted sampling for estimat-
ing aggregates over multiple weight assignments. VLDB, 2, 2009. full version:
http://arxiv.org/abs/0906.4560.

[32] E. Cohen, Y.-M. Wang, and G. Suri. When piecewise determinism is almost true. In Proc.
Pacific Rim International Symposium on Fault-Tolerant Systems, pages 66–71, December 1995.

[33] Edith Cohen, Graham Cormode, Nick Duffield, and Carsten Lund. On the tradeoff between
stability and fit. ACM Trans. Algorithms, 13(1), 2016.

[34] Edith Cohen, Ofir Geri, and Rasmus Pagh. Composable sketches for functions of frequencies:
Beyond the worst case. In ICML, 2020.

[35] G. Cormode and S. Muthukrishnan. An improved data stream summary: The count-min sketch
and its applications. J. Algorithms, 55(1), 2005.

[36] N. Duffield, C. Lund, and M. Thorup. Estimating flow distributions from sampled flow statistics.
In Proceedings of the ACM SIGCOMM’03 Conference, pages 325–336, 2003.

[37] N. Duffield, M. Thorup, and C. Lund. Priority sampling for estimating arbitrary subset sums. J.
Assoc. Comput. Mach., 54(6), 2007.

[38] C. Estan and G. Varghese. New directions in traffic measurement and accounting. In SIGCOMM.
ACM, 2002.

[39] Gereon Frahling, Piotr Indyk, and Christian Sohler. Sampling in dynamic data streams and
applications. Int. J. Comput. Geom. Appl., 18(1/2):3–28, 2008.

[40] R. Gemulla, W. Lehner, and P. J. Haas. A dip in the reservoir: Maintaining sample synopses of
evolving datasets. In VLDB, 2006.

[41] P. Gibbons and Y. Matias. New sampling-based summary statistics for improving approximate
query answers. In SIGMOD. ACM, 1998.

[42] H. O. Hartley and J. N. K. Rao. Sampling with unequal probabilities and without replacement.
Annals of Mathematical Statistics, 33(2), 1962.

[43] N. Hohn and D. Veitch. Inverting sampled traffic. In Proceedings of the 3rd ACM SIGCOMM
conference on Internet measurement, pages 222–233, 2003.

[44] D. G. Horvitz and D. J. Thompson. A generalization of sampling without replacement from a
finite universe. Journal of the American Statistical Association, 47(260):663–685, 1952.

[45] P. Indyk. Stable distributions, pseudorandom generators, embeddings and data stream com-
putation. In Proc. 41st IEEE Annual Symposium on Foundations of Computer Science, pages
189–197. IEEE, 2001.

12

[46] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In Proc. 30th Annual ACM Symposium on Theory of Computing, pages 604–613.
ACM, 1998.

[47] Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir Braverman, Ion Stoica, and Raman
Arora. Communication-efficient distributed SGD with sketching. In Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, 2019.

[48] Svante Janson. Tail bounds for sums of geometrics and exponential variables. https://http:
//www2.math.uu.se/~svante/papers/sj328.pdf, 2017.

[49] Rajesh Jayaram, Gokarna Sharma, Srikanta Tirthapura, and David P. Woodruff. Weighted
reservoir sampling from distributed streams. In Dan Suciu, Sebastian Skritek, and Christoph
Koch, editors, Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, pages
218–235. ACM, 2019.

[50] Rajesh Jayaram and David P. Woodruff. Perfect lp sampling in a data stream. In FOCS, 2018.

[51] T. S. Jayram and David P. Woodruff. The data stream space complexity of cascaded norms.
In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October
25-27, 2009, Atlanta, Georgia, USA, pages 765–774. IEEE Computer Society, 2009.

[52] H. Jowhari, M. Saglam, and G. Tardos. Tight bounds for Lp samplers, finding duplicates in
streams, and related problems. In PODS, 2011.

[53] D. E. Knuth. The Art of Computer Programming, Vol 2, Seminumerical Algorithms. Addison-
Wesley, 1st edition, 1968.

[54] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman, Roy Friedman,
and Vyas Sekar. Nitrosketch: robust and general sketch-based monitoring in software switches.
In Proceedings of the ACM Special Interest Group on Data Communication, SIGCOMM 2019,
Beijing, China, August 19-23, 2019, pages 334–350, 2019.

[55] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir Braverman.
One sketch to rule them all: Rethinking network flow monitoring with univmon. In SIGCOMM,
2016.

[56] G. Manku and R. Motwani. Approximate frequency counts over data streams. In International
Conference on Very Large Databases (VLDB), pages 346–357, 2002.

[57] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Aguera y Arcas. Communication-
Efficient Learning of Deep Networks from Decentralized Data. In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, volume 54 of Proceedings of
Machine Learning Research. PMLR, 2017.

[58] A. Metwally, D. Agrawal, and A. El Abbadi. Efficient computation of frequent and top-k
elements in data streams. In ICDT, 2005.

[59] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of
words and phrases and their compositionality. In NIPS, 2013.

[60] J. Misra and D. Gries. Finding repeated elements. Technical report, Cornell University, 1982.

[61] M. Monemizadeh and D. P. Woodruff. 1-pass relative-error lp-sampling with applications. In
Proc. 21st ACM-SIAM Symposium on Discrete Algorithms. ACM-SIAM, 2010.

[62] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. In Algorithms and Theory
of Computation Handbook. 1999.

[63] E. Ohlsson. Sequential poisson sampling from a business register and its application to the
swedish consumer price index. Technical Report 6, Statistics Sweden, 1990.

[64] E. Ohlsson. Sequential poisson sampling. J. Official Statistics, 14(2):149–162, 1998.

13

https://http://www2.math.uu.se/~svante/papers/sj328.pdf
https://http://www2.math.uu.se/~svante/papers/sj328.pdf

[65] E. Ohlsson. Coordination of pps samples over time. In The 2nd International Conference on
Establishment Surveys, pages 255–264. American Statistical Association, 2000.

[66] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation.
In EMNLP, 2014.

[67] Eric Price. Efficient sketches for the set query problem. In Dana Randall, editor, Proceedings of
the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San
Francisco, California, USA, January 23-25, 2011, pages 41–56. SIAM, 2011.

[68] B. Rosén. Asymptotic theory for successive sampling with varying probabilities without
replacement, I. The Annals of Mathematical Statistics, 43(2):373–397, 1972.

[69] B. Rosén. Asymptotic theory for order sampling. J. Statistical Planning and Inference,
62(2):135–158, 1997.

[70] P. J. Saavedra. Fixed sample size pps approximations with a permanent random number. In Proc.
of the Section on Survey Research Methods, pages 697–700, Alexandria, VA, 1995. American
Statistical Association.

[71] Sebastian U. Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. In
Proceedings of the 32nd International Conference on Neural Information Processing Systems,
NIPS’18. Curran Associates Inc., 2018.

[72] Y. Tillé. Sampling Algorithms. Springer-Verlag, New York, 2006.

A Properties of rHH sketches

Sketches for `1 heavy hitters on datasets with positive values: These include the deterministic
counter-based Misra Gries [60, 1], Lossy Counting [56], and Space Saving [58] and the randomized
Count-Min Sketch [35]. A sketch of size O(ε−1) provides frequency estimates with absolute error
at most ε‖ν‖1. Berinde et al. [10] provide a counter-based sketch of size O(k/ψ) that provides
absolute error at most ψk ‖tailk(ν)‖1.

Sketches for `2 heavy hitters on datasets with signed values: Pioneered by CountSketch [15]:
A sketch of size O(ε−1 log n

δ) provides with confidence 1 − δ estimates with error bound ε‖ν‖22
for squared frequencies. For rHH, a CountSketch of size O(kψ log n

δ) provides estimates for all

squared frequencies with absolute error at most ψk ‖tailk(ν)‖22. These bounds were further refined in
[52] for `p rHH. The dependence on log n was replaced by 1/ψ in [11] for insertion only streams.
Unlike the case for counter-based sketches, the estimates produced by CountSketch are unbiased,
a helpful property for estimation tasks.

Obtaining the rHH keys Keys can be arbitrary strings (search queries, URLs, terms) or integers
from a domain [n] (parameters in an ML model). Keys in the form of strings can be handled by
hashing them to a domain [n] but we discuss applications that require the sketch to return rHH keys
in their string form. Counter-based sketches store explicitly O(k/ψ) keys. The stored keys can be
arbitrary strings. The estimates are positive for stored keys and 0 for other keys. The rHH keys
are contained in the stored keys. The randomized rHH sketches (CountSketch and CountMin)
are designed for keys that are integers in [n]. The bare sketch does not explicitly store keys. The
rHH keys can be recovered by enumerating over [n] and retaining the keys with largest estimates.
Alternatively, when streaming (performing one sequential pass over elements) we can maintain an
auxiliary structure that holds key strings with current top-k estimates [15].

With general composable sketches, key strings can be handled using an auxiliary structure that
increases the sketch size by a factor linear in string length. This is inefficient compared with sketches
that natively store the string. Alternatively, a two-pass method can be used with the first pass
computing an rHH sketch for a hashed numeric representation and a second pass is used to obtain the
key strings of hashed representations with high estimates.

14

Recovering (approximate) frequencies of rHH keys For our application, we would need to have
approximate or exact frequencies of rHH keys. The estimates provided by a (k, ψ) rHH sketch provide
absolute error (statistical) guarantees (see Table 1). One approach is to recover exact frequencies in
a second pass. We can also obtain more accurate estimates (of relative error at most ε) by using a
(k, εψ) rHH sketch.

Testing for failure Recall that the dataset may not have (k, ψ) rHH. We can test if one of the k
largest estimated frequencies to the pth power is below the specified error bound of ≥ ψ

k ‖tailk(ν)‖pp.
If so, we declare “failure.”

B Overview of the proof of Theorem 3.1

For a vector w ∈ <n, permutation π ∈ Sn, and p > 0, let the random variable w∗ ∼ p-ppswor[w] |
π be a p-ppswor transform (4) of w conditioned on the event order(w∗) = π. For q > p and k > 1,
we define the following distribution:

Fw,p,q,k | π :=
‖tailk(w∗)‖qq

(w∗(k))
q

. (18)

Note that for any w ∈ <n and π ∈ Sn,

Pr
w∗∼p-ppswor[w]|order(w∗)=π

[
k
|w∗(k)|

q

‖tailk(w∗)‖qq
≤ ψ

]
= Pr
z∼Fw,p,q,k|π

[
z ≤ k

ψ

]
(19)

Therefore tail bounds on F that hold for any w ∈ <n and π ∈ Sn can be used to establish the claim.

We now define another distribution that does not depend on w and π:
Definition B.1. For 1 ≤ k ≤ n and ρ ≥ 1 we define a distribution Rn,k,ρ as follows.

Rk,n,ρ :=

n∑
i=k+1

(∑k
j=1 Zj

)ρ
(∑i

j=1 Zj

)ρ ,

where Zi ∼ Exp[1] i ∈ [n] are i.i.d.

The proof of Theorem 3.1 will follow using the following two components:

(i) We show (Section C) that for any w ∈ <n and permutation π ∈ Sn,

Fw,p,q,k|π � Rk,n,ρ=(q/p) ,

where the relation � corresponds here to statistical domination of distributions.
(ii) We establish (Section D) tail bounds on Rk,n,ρ=(q/p).

Because of domination, the tails bounds on Rk,n,ρ=(q/p) provide corresponding tail bound for
Fw,p,q,k|π for any w ∈ <n and π ∈ Sn. Together with (19), we use the tail bounds to conclude the
proof of Theorem 3.1.

Moreover, the domination relation is tight in the sense that for some w and π, Fw,p,q,k|π is very
close to Rk,n,q/p: For distributions with k keys with relative frequency ε and π that has these keys in
the first k (as ε→ 0), or for uniform distributions with n� k, Fw,p,q,k|π (as n grows).

The tail bounds (and hence the claim of Theorem 3.1) also hold without the condition on π.
Lemma B.2. The tail bounds also hold for the unconditional distribution Fw,p,q,k.

Proof. The distribution Fw,p,q,k is a convex combination of distributions Fw,p,q,k|π. Specifically,
for each permutation π let pπ be the probability that we obtain this permutation with successive
weighted sampling with replacement. Then

Fw,p,q,k =
∑
π

pπFw,p,q,k|π . (20)

Since tail bounds hold for each term, they hold for the combination.

15

B.1 Approximating ψ by simulations

Ψk,n,ρ(δ) is the solution of the following for ψ:
Pr

z∼Rk,n,ρ
[z ≥ k/ψ] = δ . (21)

We can approximate Ψk,n,ρ(δ) by computing i.i.d. zi ∼ Rk,n,ρ, taking the (1− δ) quantile z′ in the
empirical distribution and returning k/z′.

From simulations we obtain that for δ = 0.01 and ρ ∈ {1, 2}, C = 2 suffices for sample size k ≥ 10,
C = 1.4 suffices for k ≥ 100, and C = 1.1 suffices for k ≥ 1000.

C Domination of the ratio distribution

Lemma C.1 (Domination). For any permutation π, w, p, q ≥ p, and k ≥ 1, the distribution
Fw,p,q,k|π (18) is dominated by Rn,k,q/p. That is, for all z ≥ 0,

Pr
z∼Fw,p,q,k|π

[
z ≤ k

ψ

]
≥ Pr
z∼Rn,k,q/p

[
z ≤ k

ψ

]
(22)

Proof. Assume without loss of generality that order(w) = π. Let w∗ ∼ p-ppswor[w] |
order(w∗) = π. Note by definition w∗ is in decreasing order of magnitude. Define the ran-
dom variable y := w∗p. y are transformed weights of a ppswor sample of w conditioned on the
order π. We use use properties of the exponential distribution (see a similar use in [26]) to express
the joint distribution of {yi}. We use the following set of independent random variables:

Xi ∼ Exp[

n∑
j=i

wpj] .

We have:
yi =

1(∑i
j=1Xi

)q/p . (23)

To see this, recall that y1 is the (inverse) of the minimum of exponential random variables with
parameters w1, . . . , wn and thus is (the inverse of) exponential random variable with parameter
equal to their sum. Therefore, y1 = 1/X1. From memorylessness, the difference between the
(i+ 1)-st smallest inverse and the i-th smallest is an exponential random variable with distribution
Xi. Therefore, the i-th smallest inverse has the claimed distribution (23).

We are now ready to express the random variable that is the ratio (18) in terms of the independent
random variables Xi:∑n

j=k+1 yj

yk
=

∑n
i=k+1

1

(
∑i
j=1Xi)

q/p

1

(
∑k
j=1Xj)

q/p

=

n∑
i=k+1

(∑k
j=1Xj

)q/p
(∑i

j=1Xj

)q/p . (24)

We rewrite this using i.i.d. random variables Zi ∼ Exp[1], recalling that for any w, Exp[w] is the
same as Exp[1]/w. Then we have Xi = Zi/

∑n
j=i w

p
j .

We next provide a simpler distribution that dominates the distribution of the ratio. Let W ′ :=∑n
j=k w

p
j and consider the i.i.d. random variables X ′i = Zi/W

′. Note that Xj ≤ X ′j for j ≤ k and
Xj ≥ X ′j for j ≥ k. Thus, for i ≥ k + 1,∑k

j=1Xj∑i
j=1Xj

=
1

1 +
∑i
j=k+1Xj∑k
j=1Xj

≥ 1

1 +
∑i
j=k+1X

′
j∑k

j=1X
′
j

=

∑k
j=1X

′
j∑i

j=1X
′
j

=

∑k
j=1 Zj∑i
j=1 Zj

(25)

This holds in particular for each term in the RHS of (24). Therefore we obtain∑n
j=k+1 yj

yk
≥

n∑
i=k+1

(∑k
j=1 Zj

)q/p
(∑i

j=1 Zj

)q/p .

16

D Tail bounds on Rk,n,ρ

We establish the following upper tail bounds on the distribution Rn,k,ρ:
Theorem D.1 (Concentration of Rn,k,ρ). There is a constant C, such that for any n, k, ρ

ρ = 1: Pr
r∼Rn,k,ρ

[
r ≥ Ck ln(

n

k
)
]
≤ 3e−k (26)

ρ > 1: Pr
r∼Rn,k,ρ

[
r ≥ Ck 1

ρ− 1

]
≤ 3e−k (27)

We start with a “back of the envelope” calculation to provide intuition: replace the random variables
Zi in Rn,k,ρ (see Definition B.1) by their expectation E[Zi] = 1 to obtain

Sn,k,ρ :=

n∑
i=k+1

kρ

iρ
.

For ρ = 1, Sn,k,ρ ≤ k(Hn −Hk) ≈ k ln(n/k). For ρ > 1 we have Sn,k,ρ ≈ k
ρ−1 . We will see that

we can expect the sums not to deviate too far from this value.

The sum of ` i.i.d. Exp[1] random variables generates an Erlang distribution Erlang[`, 1] (rate
parameter 1). The expectation is Er∼Erlang[`,1] = ` and variance is Varr∼Erlang[`,1][r] = `. We will
use the following Erlang tail bounds [48]:
Lemma D.1. For X ∼ Erlang[`, 1]

ε ≥ 1 : Pr[x ≥ ε`] ≤ 1
εe
−`(ε−1−ln ε) ≤ e1−ε

ε ≤ 1 : Pr[x ≤ ε`] ≤ e−`(ε−1−ln ε)

When ε < 0.159 or ε > 3.2 we have the bound e−`. For ε > 3.2 we also have 1
εe
−`(ε−2.2)

Proof of Theorem D.1. We bound the probability of a “bad event" which we define as the numerator
being “too large” and denominators being too “small.” More formally, the numerator is the sum
N =

∑k
i=1 Zi and we define a bad event as N ≥ 3.2k. Substituting ε = 3.2 and ` = k in the upper

tail bounds from Lemma D.1, we have that the probability of this bad event is bounded by
Pr

r∼Erlang[k,1]
[r > kε] ≤ e−k . (28)

The denominators are prefix sums of of the sequence of random variables. We consider a partition
the sequence Zk+1, . . . , Zn to consecutive stretches of size

`h := 2hk, (h ≥ 1) .

We denote by Sh the sum of stretch h. Note that Sh ∼ Erlang[`h, 1] are independent random
variables. We define a bad event as the probability that for some h ≥ 1, Sh ≤ 0.15`h = 0.14 2hk.
From the lower tail bound of Lemma D.1, we have

Pr[Sh ≤ 0.15`h] = Pr
r∼Erlang[`h,1]

[r < 0.15`h] ≤ e−`h ≤ e−2hk . (29)

The combined probability of the union of these bad events (for the numerator and all stretches) is at
most e−k +

∑
h≥1 e

−2hk ≤ 3e−k.

We are now ready to compute probabilistic upper bound on the ratios when there is no bad event

Rn,k,ρ ≤
∑
h≥1

`h
Nρ

(N +
∑
i<h Si)

ρ

≤
∑
h≥1

`h
(3.2k)

ρ(
3.2k + 0.15

∑
i<h `i

)ρ
= 2k

(3.2k)
ρ

(3.2k)
ρ +

∑
h≥2

2hk
(3.2k)

ρ

(3.2k + (2h − 2)k)
ρ

≤ k(2 +

dlog2(n/k)e∑
h=2

2h
(

3.2

2h + 1.2

)ρ
≤ k

2 + 3.2ρ
dlog2(n/k)e∑

h=2

2−h(ρ−1)


17

For ρ = 1 we have O(k log n). For ρ > 1, we have O(k/(ρ− 1)).

From the proof of Theorem D.1 we obtain:
Corollary D.2. There is a constant B such that when there are no “bad events" in the sense of the

proof of Theorem D.1, ∑k
i=1 Zi∑Bk
i=1 Zi

≤ 1/3 .

Proof. With no bad events, N =
∑k
i=1 Zi < 3.2k and

∑k2h

i=k+1 Zi ≥ 0.15k(2h − 1). Solving for
0.15kB ≥ 6.4k (for B = 2h − 1 for some h) we obtain B = 63.

E Ratio of magnitudes of transformed weights

For k2 > k1 we consider the distribution of the ratio between the kth2 and kth1 transformed weights:

Gw,p,q,k1,k2 | π :=

∣∣∣∣∣w
∗p
(k2)

w∗p(k1)

∣∣∣∣∣
Lemma E.1. For any w ∈ <n, π ∈ Sn, and k1 < k2 ≤ n, the distribution Gw,p,q,k1,k2 | π is
dominated by

G′ρ=q/p,k1,k2 :=

(∑k1
i=1 Zi∑k2
i=1 Zi

)ρ
, (30)

where Zi ∼ Exp[1] are i.i.d.

Proof. Following the notation in the proof of Lemma C.1, the distribution Gw,p,q,k1,k2 can be
expressed as (∑k1

i=1Xi∑k2
i=1Xi

)ρ
where Xi := Zi∑n

j=i w
p
j

.

For i ∈ [n] we define X ′i := Zi∑n
j=k1

wpj
. Now note that X ′i ≥ Xi for i ≤ k1 and X ′i ≥ Xi for i ≥ k1.

Therefore, ∑k1
i=1Xi∑k2
i=1Xi

=
1

1 +
∑k2
i=k1+1Xi∑k1
i=1Xi

≤ 1

1 +
∑k2
i=k1+1X

′
i∑k1

i=1X
′
i

=
1

1 +
∑k2
i=k1+1 Zi∑k1
i=1 Zi

=

∑k1
i=1 Zi∑k2
i=1 Zi

.

F 1-pass with total variation distance on sample k-tuple: upper and lower
bounds

Perfect ppswor returns each subset of k keys S = {i1, . . . , ik} with a certain probability:

p(S) =
∑

π|{π1,...,πk}=S

k∏
j=1

wij
‖w‖1 −

∑
h<j wih

.

Recall that the distribution is equivalent to successive weighted sampling without replacement. It is
also equivalent to successive sampling with replacement if we “skip" repetitions until we obtain k
distinct keys.

18

With p-ppswor and unaggregated data, this is with respect to νpx. The WORp 1-pass method returns
an approximate p-ppswor sample in terms of estimation quality and per-key inclusion probability but
the TV distance on k-tuples can be large.

We present here another 1-pass method that returns a k-tuple with a polynomially small VT distance
from p-ppswor.

Algorithm 2: 1-pass Low Variation Distance Sampling
Input: `p rHH method, perfect `p-single sampler method, sample size k, p, δ, n,
Initialization:

Initialize r = C · k log n independent perfect `p-single sampling algorithms A1, . . . , Ar.
Initialize an `p rHH method R.

Pass 1:
Feed each stream update into A1, . . . , Ar as well as into R.

Produce sample:
S ← ∅
For i = 1, . . . , r

Let Outi be the index returned by Ai
If Outi /∈ S, then
S ← S ∪ {Outi}
For each j > i, feed the update xOuti ← xOuti −R(Outi) into Aj // R(Outi) is

the estimate of xi given by R

If |S| = k then exit and return S
end

Output FAIL // Algorithms returns S before reaching this line with high
probability

Theorem F.1. Let p ∈ (0, 2]. There is a 1-pass turnstile streaming algorithm using k ·poly(log n) bits
of memory which, given a stream of updates to an underlying vector x ∈ {−M,−M + 1, . . . ,M −
1,M}n, with M = poly(n), outputs a set S of size k such that the distribution of S has variation
distance at most 1

nC
from the distribution of a sample without replacement of size k from the

distribution µ = (µ1, . . . , µn), where µi = |xi|p
‖x‖pp , where C > 0 is an arbitrarily large constant.

Proof. The algorithm is 1-pass and works in a turnstile stream given an `p rHH method and perfect
`p-single sampler methods that have this property. We use the `p rHH method of [52], which has this
property and uses O(k · log2 n) bits of memory. We also use the perfect `p-single sampler method
of [50], which has this property and uses log2 n · poly(log log n) bits of memory for 0 < p < 2 and
O(log3 n) bits of memory for p = 2. The perfect `p-single sampler method of [50] can output FAIL
with constant probability, but we can repeat it C log n times and output the first sample found, so that
it outputs FAIL with probability at most 1

nC
for an arbitrarily large constant C > 0, and consequently

we can assume it never outputs FAIL (by say, always outputting index 1 when FAIL occurs). This
gives us the claimed k · poly(log n) total bits of memory.

We next state properties of these subroutines. The `p rHH method we use satisfies: with probability
1− 1

nC
for an arbitrarily large constant C > 0, simultaneously for all j ∈ [n], it outputs an estimate

R(j) for which

R(j) = xi ±
(

1

2k

)1/p

· ‖tailk(x)‖p.

We assume this event occurs and add 1
nC

to our overall variation distance.

The next property concerns the perfect `p-single samplers Aj we use. Each Aj returns an index
i ∈ {1, 2, . . . , n} such that the distribution of i has variation distance at most 1

nC
from the distribution

µ. Here C > 0 is an arbitrarily large constant of our choice.

We next analyze our procedure for producing a sample. Consider the joint distribution of
(Out1, Out2, . . . , Out2Ck logn). The algorithms Ai use independent randomness. However, the

19

input to Ai may depend on the randomness of Ai
′

for i′ < i. However, by definition, conditioned on
Ai not outputting Outi′ for any i′ < i, we have that Outi is independent of Out1, . . . , Outi−1 and
moreover, the distribution of Outi has variation distance 1

nC
from the distribution of a sample s from

µ conditioned on s /∈ {Out1, . . . , Outi−1}, for an arbitrarily large constant C > 0.

Let E be the event that we sample k distinct indices, i.e., do not output FAIL in our overall algorithm.
We show below that Pr[E] ≥ 1 − 1

nC
for an arbitrarily large constant C > 0. Consequently, our

output distribution has variation distance 1nC from an idealized algorithm that samples until it has k
distinct values.

Consider the probability of outputting a particular ordered tuple (i1, . . . , ik) of k distinct indices in
the idealized algorithm that samples until it has k distinct values. By the above, this is

k∏
j=1

(1± 1

nC
)

µij
1−

∑
j′<j µij′

= (1± 2k

nC
)

k∏
j=1

µij
1−

∑
j′<j µij′

,

for an arbitrarily large constant C > 0. Summing up over all orderings, we obtain the probability of
obtaining the sample {i1, . . . , ik} is within (1± 1

nC
) times its probability of being sampled from µ

in a sample without replacement of size k, where C > 0 is a sufficiently large constant.

It remains to show Pr[E] ≤ n−C for an arbitrarily large constant C > 0. Here we use that for
all j ∈ {1, 2, . . . , n}, R(j) = xi ±

(
1
2k

)1/p · ‖tailk(x)‖p. Let Yi be the number of trials until (and
including the time) we sample the i-th distinct item, given that we have just sampled i− 1 distinct
items. The total probability mass on the items we have already sampled is at most i · 1

2k‖tailk(x)‖pp,
and thus the probability we re-sample an item already sampled is at most 1

2 . It follows that E[Yi] ≤ 2.
Thus, the number of trials in the algorithm is stochastically dominated by

∑k
i=1 Zi, where Zi is a

geometric random variable with E[Zi] = 2. This sum is a negative binomial random variable, and by
standard tail bounds relating a sum of independent geometric random variables to binomial random
variables[62] 3, is at most Ck log n with probability 1− 1

nC
for an arbitrarily large constant C > 0.

This completes the proof.

We now analyze the memory in Theorem F.1 more precisely. Algorithm 2 runs r = O(k log n)
independent perfect `p-sampling algorithms of [50]. The choice of r = O(k log n) is to ensure
that the variation distance is at most 1

poly(n) ; however, with only r = O(k) such samplers, the

same argument as in the proof of Theorem F.1 gives variation distance at most 2−Θ(k). Now, each
`p-sampler of [50] uses O(log2 n(log log n)2) bits of memory for 0 < p < 2, and uses O(log3 n)
bits of memory for p = 2. We also do not need to repeat the algorithm O(log n) times to create a high
probability of not outputting FAIL; indeed, already if with only constant probability the algorithm
does not output FAIL, we will still obtain k distinct samples with 2−Θ(k) failure probability provided
we have a large enough r = O(k) number of such samplers.

Algorithm 2 also runs an `p rHH method, and this uses O(k log2 n) bits of memory [52]. Conse-
quently, to acheive variation distance at most 2−Θ(k), Algorithm 2 uses O(k log2 n(log log n)2) bits
of memory for 0 < p < 2, and O(k log3 n) bits of memory for p = 2.

We now show that for 0 < p < 2, the memory used of Algorithm 2 is best possible for any algorithm,
up to a multiplicative O((log log n)2) factor. For p = 2, we show our algorithm’s memory is optimal
up to a multiplicative O(log n) factor. Further, our lower bound holds even for any algorithm with
the much weaker requirement of achieving variation distance at most 1

3 , as opposed to the variation
distance at most 2−Θ(k) that we achieve.

Theorem F.2. Any 1-pass turnstile streaming algorithm which outputs a set S of size k such that
the distribution of S has variation distance at most 1

3 from the distribution of a sample without
replacement of size k from the distribution µ = (µ1, . . . , µn), where µi = |xi|p

‖x‖pp , requires Ω(k log2 n)

bits of memory, provided k < nC0 for a certain absolute constant C0 > 0.

3See, also, e.g., https://math.stackexchange.com/questions/1565559/
tail-bound-for-sum-of-geometric-random-variables

20

https://math.stackexchange.com/questions/1565559/tail-bound-for-sum-of-geometric-random-variables
https://math.stackexchange.com/questions/1565559/tail-bound-for-sum-of-geometric-random-variables

Proof. We use the fact that such a sample S can be used to find a constant fraction of the `q(k, 1)
residual heavy hitters in a data stream. Here we do not need to achieve residual error for our lower
bound, and can instead define such indices i to be those that satisfy |xi|p ≥ 1

k‖x‖
p
p. Notice that there

are at most k such indices i, and any sample S (with or without replacement) with variation distance
at most 1/3 from a true sample has probability at least 1− (1− 1/k)k − 1/3 ≥ 1− 1/e− 1/3 ≥ .29
of containing the index i. By repeating our algorithm O(1) times, we obtain a superset of size O(k)
which contains any particular such index i with arbitrarily large constant probability, and these O(1)
repetitions only increase our memory by a constant factor.

It is also well-known that there exists a point-query data structure, in particular the CountSketch
data structure [15, 67], which only needs O(log |S|) = O(log k) rows and thus O((k log k) log n)
bits of memory, such that given all the indices j in a set S, one can return all items j ∈ S for which
|xj |p ≥ 1

k‖x‖
p
p and no items j ∈ S for which |xj |p < 1

2k‖x‖
p
p. Here we avoid the need for O(log n)

rows since we only need to union bound over correct estimates in the set S.

In short, the above procedure allows us to, with arbitrarily large constant probability, return a set S
containing a random .99 fraction of the indices j for which |xj |p ≥ 1

k‖x‖
p
p, and containing no index

j for which |xj |p < 1
2k‖x‖

p
p.

We now use an existing Ω(k log2 n) bit lower bound, which is stated for finding all the heavy hitters
[52], to show an Ω(k log2 n) bit lower bound for the above task. This is in fact immediate from the
proof of Theorem 9 of [52], which is a reduction from the one-way communication complexity of
the Augmented Indexing Problem and just requires any particular heavy hitter index to be output
with constant probability. In particular, our algorithm, combined with the O((k log k) log n) bits of
memory side data structure of [15] described above, achieves this.

Consequently, the memory required of any 1-pass streaming algorithm for the sampling problem is
at least Ω(k log2 n)−O((k log k) log n) bits, which gives us an Ω(k log2 n) lower bound provided
k < nC0 for an absolute constant C0 > 0, completing the proof.

G Estimates of one-pass WORp

We first review the setup. Our one-pass WORp method returns the top k keys by ν̂∗x as our sample S
and returns ν̂∗(k+1) as the threshold. The estimate of f(νx) is 0 for x 6∈ S and for x ∈ S is

f̂(νx) :=
f(ν̂∗xr

1/p
x)

1− exp

(
−rx(

ν̂∗x
ν̂∗(k′+1)

)p
) . (31)

We assume that f(w) is such that for some constant c,

∀ε < 1/2, |f((1 + ε)w)− f(w)| ≤ cεf(w) . (32)

We need to establish that

Bias[f̂(νx)] ≤ O(ε)f(νx)

MSE[f̂(νx)] ≤ (1 +O(ε))Var[f̂(νx)
′
] +O(ε)f(νx)2 ,

where f̂(νx)
′

are estimates obtained with a (perfect) p-ppswor sample.

Proof of Theorem 5.1. From (10), the rHH sketch has the property that for all keys in the dataset,

‖ν̂∗ − ν∗‖∞ ≤ εν∗(k+1) . (33)

For sampled keys, |ν∗x| ≥ |ν∗(k+1)| and hence |ν̂∗x − ν∗x| ≤ ε|ν∗(k+1)| ≤ ε|ν∗x|. Using (6) we obtain
that ‖ν′x − νx‖ ≤ ε|νx|.
From our assumption (32) , we have |f(ν′x)− f(νx)| ≤ cεf(νx).

21

We consider the inclusion probability and frequency estimate of a particular key x, conditioned on
fixed randomization rz of all other keys z 6= x. The key x is included in the sample if ν̂∗x ≥ ν̂∗(k+1).
We consider the distribution of ν̂∗x as a function of rx ∼ Exp[1]. The value has a form ofE+νx/r

1/p
x ,

where the erro E satisfies |E| ≤ ε|ν∗(k+1)|. The conditioned inclusion probability thus falls in the
range

p′x = Pr[νx/r
1/p
x ± ε|ν∗(k)| ≥ ν̂∗(k)] = Pr

[
rx ≤

(
νx

ν̂∗(k+1) ± ε|ν∗(k)|

)p]

= 1− exp(−

(
νx

ν̂∗(k+1) ± ε|ν∗(k)|

)p
) .

We estimate p′x by

p′′x = 1− exp

(
−rx(

ν̂∗x

ν̂∗(k+1)

)p

)
. (34)

This estimate has a small relative error. This due to the relative error in ν̂∗x and because |(1 −
exp(−(1± ε)b)))− (1− exp(−b))| = O(ε)(1− exp(−b)) and (

ν′x
ν̂∗(k)

)p) is an O(ε) relative error

approximation of (νx
ν̂∗(k)−E

)p.

We first consider the bias. Instead of using the unbiased inverse probability estimate f(νx)/p′x when
x is sampled (with probability p′x) our estimator (17) (f(ν′x)/p′′x approximates both the numerator
and the denominator.

In the numerator of the estimator, we replace f(νx) by the relative error approximation f(ν′x).
Therefore overall, we use a small relative error estimate of the actual inverse probability estimate
when it is non zero, which translates to a bias that is O(ε)f(νx).

We next bound the Mean Squared Error (MSE) of the estimator (17). We express the variance
contribution of exact p-ppswor conditioned on the same randomization rz of all keys z 6= x. This

is Var[f̂(νx)
′
] = (1/px − 1)f(νx)2, where px = Pr[νx/r

1/p
x ≥ ν∗(k)] = 1− exp(−

(
νx
ν∗

(k)

)p
). The

MSE contribution is
p′x(f(ν′x)/p′′x − f(νx))2 + (1− p′x)f(νx)2 . (35)

We observe that the approximate threshold (that determines p′x) approximates the perfect p-ppswor

threshold: |ν̂∗(k) − ν∗(k)| ≤ ε|ν∗(k)|. When px < 1/2, (35) approximates Var[f̂(νx)
′
] with relative

error O(ε).

When px is close to 1 this is dominated by O(ε)f(νx)2.

We remark that our analysis of the error only assumed the rHH error bound (33) which holds for
all sketch types including Counters. The bias analysis can be tightened for CountSketch that
returns unbiased estimates of the frequency.

H Pseudocode

22

Algorithm 3: 2-pass WORp
Input: `q rHH method, sample size k, p, δ, n,
Initialization:
Draw a random hash rx ∼ D // Random map of keys x to rx

ψ ← 1
3Ψn,k,q/p(δ)

Initialize KeyHash // random hash function from strings to [n]

R.Initialize(k, ψ) // Initialize rHH structure randomization
Pass I: // Use composable aggregation (process input keys into rHH
structures and merge rHH structures)

begin
Process data element e = (e.key, e.val) into rHH sketch R
R.Process(KeyHash(e.key), e.val/r1/p

e.key) // Generate and process output

element

Pass II: // For keys with top 2k estimates ν̂∗x, collect exact frequencies
νx.

Initialize a composable top-2k structure T . The structure stores for each key its priority and
frequency. The structure collects exact frequencies for the keys with top 2k priorities.
Merge(T1, T2): Add up values and retain 3k top priority keys.

Process data element e = (e.key, e.val) into T
begin

if e.key ∈ T then
T [e.key].val+ = e.val

else
est← R.Est[KeyHash(e.key)] // ν̂∗key

if est > lowest priority in T then
Insert e.key to T
T [e.key].val← e.val
T [e.key].priority ← est
if |T|>2k then

Eject lowest priority key from T

Produce sample: Sort T by T [x].val ∗ r1/p
x // actual ν∗x for keys in T

Return (x, T [x].val) for top-k keys and (k + 1)th T [x].val ∗ r1/p
x

23

	Introduction
	Preliminaries
	Bottom-k sampling (ppswor and priority)
	Bottom-k sampling by power of frequency
	Residual heavy hitters (rHH)

	WORp Overview
	Two-pass WORp
	Practical optimizations

	One-pass WORp
	One-pass Total Variation Distance Guarantee
	Experiments
	Properties of rHH sketches
	Overview of the proof of Theorem 3.1
	Approximating Psi by simulations

	Domination of the ratio distribution
	Tail bounds on Rk,n,
	Ratio of magnitudes of transformed weights
	1-pass with total variation distance on sample k-tuple: upper and lower bounds
	Estimates of one-pass WORp
	Pseudocode

