
We thank the reviewers for thoughtful feedback, and for acknowledging the importance and novelty of this work. We1

focus on absolute speedups and trade–offs by providing additional results as further evidence of practical effectiveness.2

Time and memory trade–offs of hypersolvers [All]: We agree that the number of function evaluations of the Neural3

ODE vector field f (NFE), while a commonly used measure in the literature, does not take into account the hypersolver4

cost. To address concerns related to hypersolver overheads, Fig. 1 provides additional pareto optimality plots (solution5

error & test acc. loss) against MACs, multiply-accumulate operations of f (for baselines) and f + g (for hypersolvers).6

MACs, similar to FLOPs, are commonly used as an hardware–agnostic algorithmic complexity measure. We note that in7

the current implementation, HyperEuler corrections require less than 50% of the MACs required for an evaluation of8

the f network. In cases where the architecture of f is itself is deeper, the overhead of hypersolvers is reduced, further9

strengthening their pareto efficiency. Memory overheads are of similar magnitude, though memory is less of a concern10

in Neural ODE due to their smaller footprint enabled by the O(1) memory adjoint sensitivity technique for training.11

Absolute speedup [All]: To further contextualize the efficacy of hypersolvers, we provide absolute time and speedup12

plots (TITAN V, CUDA v10.2) in Fig. 2. The baselines are set to perform the minimum number of steps necessary to13

preserve test classification accuracy. In contrast with MACs, these results take into account implementation and hardware14

overheads. It should be noted that the relative baseline ranking can different w.r.t MAC plots due to implementation15

overheads (here torchdiffeq). Here, HyperEuler provides 8x speedup over dopri5 with exact same test accuracy.16

Scope [R3]: We agree with R3 that there exist a vast literature on speeding up simulators and solvers with neural17

networks, and have added the references suggested by R3. We do not claim to be the first to introduce the idea of18

offline solver pretraining, nor do we claim state–of–the–art in the general case. The core contribution is comprised19

of the hypersolver formulation, theoretical guarantees and training strategies tailored for performance in the context20

continuous models. We believe the emerging learning–based interplay between Neural ODEs and their solver (Sec. 6)21

to also be a valuable contribution in itself, especially given the increasing use of Neural ODEs across scientific fields.22

Alternative approaches and surrogate models [R3, R4]: We argue that learning only the residual higher–order term,23

instead of the full map zk 7→ zk+1 is advantageous, in the context of Neural ODEs, for several reasons. We notice that24

the residual fitting requires a substantially smaller NN compared to learning directly the solution of the ODE, which25

does not make explicit use of the vector field f . Th.m 1 further provides theoretical guarantees on the solver’s truncation26

error improvement, relevant for safety–critical applications. Moreover, to the best of our knowledge, this is the first27

Neural ODE solver designed to learn residuals, showcasing large speedups (as shown above) of practical relevance.28

CNF likelihood eval. [R1]: Hypersolvers can also be used during CNF likelihood evaluation. We verified this experi-29

mentally and obtained comparable results to CNF sampling; a discussion will be included.30

Extension of Section 6 [R1, R3]: We agree that Sec. 6 represents an important component of the work and in its31

current form already highlights original aspects of model–solver interplay. We decided, however, to dedicate more32

space to the core formulation and results to provide a solid foundation for more complex hypersolver architectures.33

Sensitivity to tolerance of ground-truth method [R2]: Tolerances can be regarded as hyperparameter of f itself. If34

insufficient, the solutions might have high error and lower Neural ODE task performance; regardless, the hypersolver35

will learn to match the residuals, ensuring the base method is able to track ground–truth solutions. Hypersolvers are36

only sensitive to tolerances in the sense that they represent an upper–bound on the accuracy of hypersolved solutions.37

Generalization to different step–sizes [R4]: Generalization across step–sizes is shown via pareto plots (also Fig. 1).38

The integration interval is fixed to S := [0, 1] for all NFEs; hence, traversing the x–axis corresponds to a denser39

discretization of S. HyperEuler is competitive even far from its training step size ε = 0.1 (10 NFEs).40

Hyper–hyper [R1]: This is a valuable suggestion. By progressively training an ensemble networks on increasing–order41

residuals one could reach a local truncation err. O(δ1δ2 · · · δpε2) instead of O(δεp+1) obtained by directly fitting the42

residual of a p-ord. solver. Understanding whether this is convenient in practice is certainly worth further investigations.43

Clarifications: [R4]���`local → `44


