
8 Supplementary Material
8.1 Pseudo-code for the learning algorithm

Algorithm 1: Mini-batch training of Log-Likelihood Ratio Minimizing Flow
inputs: datasets A and B; normalizing flow model T (x;φ); density model PM (x;φ);

learning rate η; thresholds (ε, ε); batch size b; initial parameters values φ(0), θ
(0)
A , θ

(0)
B θ

(0)
AT , θ

(0)
S ;

outputs: convergence indicator Ic; weights φ∗ that make T (A;φ∗) and B equivalent w.r.t. M;

foreach X ∈ {A,B} do
t← 0 ; // first learn optimal models θ∗A, θ

∗
B

while ||∇θ logPM (X; θ
(t)
X)|| ≥ ε do

x(t) ← draw batch of size b from X;

θ
(t+1)
X ← θ

(t)
X + η · ∇θ logPM (x(t); θ

(t)
X);

t← t+ 1;
end while
θ∗X ← θ

(t)
X

end foreach
t← 0 ; // now train LRMF

while ||g(t)
T ||+ ||g

(t)
S || ≥ ε do

A(t) ← draw batch of size b from A;

B(t) ← draw batch of size b from B;

g
(t)
S ← ∇θ

[
logPM (T (A(t);φ(t)); θ

(t)
S) + logPM (B(t); θ

(t)
S)
]
;

g
(t)
T ← ∇φ

[
logPM (T (A(t);φ(t)); θ

(t)
S) + log det |∇xT (A(t);φ(t))|

]
;

θ
(t+1)
S ← θ

(t)
S + η · g(t)

S ;

φ(t+1) ← φ(t) + η · g(t)
T ;

t← t+ 1;
end while
θ∗S ← θ

(t)
S ;

φ∗ ← φ(t);

cAB ← logPM (A; θ∗A) + logPM (B; θ∗B) ; // and check convergence

LLRMF ← cAB − logPM (T (A;φ∗); θ∗S)− logPM (B; θ∗S)− log det |∇xT (A;φ∗)|;
if LLRMF ≥ ε then Ic ← failed;

else Ic ← succeeded;

return (Ic, φ
∗)

8.2 Attached code

Attached IPython notebooks were tested to work as expected in Colab. The JAX version
(lrmf_jax_public.ipynb) includes experiments on 1D and 2D Gaussians and Real NVP, the
Tensorflow Probabiliy (TFP) version (lrmf_tfp_public.ipynb) includes experiments on Real
NVP and FFJORD. Files vae_gan_public.ipynb, lrmf.py and lrmf_glow_public.ipynb
contain code we used for VAE-GAN training and GLOW LRMF training

13

8.3 Hyper-parameters

Data. Blobs datasets were samples from 2-dimensional Gaussians with parameters

µA =

[
1.0
1.0

]
, Σ
− 1

2

A =

[
0.5 0.7
−0.5 0.3

]
µB =

[
4.0
−2.0

]
, Σ
− 1

2

B =

[
0.5 3.0
3.0 −2.0

]
.

The moons dataset contains two pairs of moons rotated 50◦ relative to one another generate via
sklearn.datasets.make_moons with ε = 0.05 containing 2000 samples each.

Model. In the affine LRMF with Gaussian density experiment (Figure 8), we parameterized the
positive-definite transformation as T (x,A, b) = ATA·x+b and the Gaussian density with parameters
(µ,Σ−

1
2) to ensure that Σ is always positive definite as well. In Real NVP experiments we stacked

four NVP blocks (spaced by permutations), each block parameterized by a dense neural network for
predicting shift and scale with two 512-neuron hidden layers with ReLUs (the “default” Real NVP).
In VAE-GAN experiments we trained a VAE-GAN on In FFJORD experiments we stacked two
FFJORD transforms parameterized by DNN with [16, 16, 16, 2] hidden layers with hyperbolic
tangent non-linearities. For the GLOW experiment we stacked three GLOW transformations at
different scales each with eight affine coupling blocks spaced by act norms and permutations each
parameterized by a CNN with two hidden layers with 512 filters each. In the GLOW experiment
we parameterized T as the back-to-back composition of same flows used for density estimation, but
initialized from scratch instead of optimal models for A and B. We used the Adam optimizer with
learning rate 10−5 for training.

8.4 Other design considerations

On the relation to the Invariant Risk Minimization.

In a recent arXiv submission, Arjovsky et al. [2] suggested that in the presence of an observable
variability in the environment e (e.g. labeled night-vs-day variability in images) the representation
function Φ(x) that minimizes the conventional empirical risk across all variations actually yields a
subpar classifier. One interpretation of this statement is that instead of searching for a representation
function Φ(x) that minimizes the expected value of the risk

Re(f) = E(X,Y)∼Pe
l(f(X), Y)

across all variations in the environment e:

min
Φ

min
θ

EeRe(f(Φ(·), θ))

one should look for a representation that is optimal under each individual variation of the environment

min
Φ

[
min
θ

EεRe(f(Φ(·), θ))− Eε min
θe
Re(f(Φ(·), θe))

]
Arjovsky et al. [2] linearise this objective combined with the conventional ERM around the optimal
θ, and express the aforementioned optimally across all environments as a gradient penalty term that
equals zero only if Φ is indeed optimal across all environment variations:

min
Φ

min
θ′

EeRe(f(Φ(·), θ′)) + λEe||∇θRe(f(Φ(·), θ′))||2.

If we perform the Taylor expansion of the log-likelihood ratio statistic near the optimal shared model
θS , we get the score test statistic - a “lighter” version of the log-likelihood ratio test that requires
training only a single model. Intuitively, if we train a model from M simultaneously on two datasets
A and B until convergence, i.e. until the average gradient of the loss w.r.t. weights gX = ∇θL(X; θ)
summed across both datasets becomes small ||gA + gB || ≤ ε, then the combined norm of two
gradients computed across each dataset independently would be small ||gA||+ ||gB || ≤ ε, only under
the null hypothesis (A and B are equivalent w.r.t. M). From our experience, this approach works
well for detecting the presence of the domain shift, but is hardly suitable for direct minimization.

Both procedures and resulting objectives are very much reminiscent of the log-likelihood ratio
minimizing flow objective we propose in this paper, and we would have obtained the score test version

14

if we linearized our objective around the optimal θS . The main difference being that Arjovsky et al.
[2] applied the idea of invariance across changing environments to the setting of supervised training
via risk minimization, whereas we apply it to unsupervised alignment via likelihood maximization.

On directly estimating likelihood scores across domains.

One could suggest to estimate the similarity between datasets by directly evaluating and optimizing
some combination of PM (A; θB) and PM (B; θA). Unfortunately, high likelihood values themselves
are not very indicative of belonging to the dataset used for training the model, especially in higher
dimensions, as explored by Nalisnick et al. [18]. One intuitive example of this effect in action is
that for a high-dimensional normally distributed x ∼ Nd(0, I) the probability of observing a sample
in the neighbourhood of zero P (||x|| ≤ r) is small, but if we had a dataset {yi}ni=0 sampled from
that neighbourhood ||yi|| ≤ r, its log-likelihood

∑
i logNd(yi|0, I) would be high, even higher then

the likelihood of the dataset sampled from Nd(0, I) itself. The proposed method, however, is not
susceptible to this issue as we always evaluate the likelihood on the same dataset we used for training.

On matching the parameters of density models.

Two major objections we have to directly minimizing the distance between parameters θ of density
models fitted to respective datasets ||θAT − θB || are that: a) the set of parameters that describes a
given distribution might be not unique, and this objective does not consider this case; and b) one
would have to employ some higher-order derivatives of the likelihood function to account for the fact
that not all parameters contribute equally to the learned density function, therefore rendering this
objective computationally infeasible to optimize for even moderately complicated density models.

On replacing the Gaussian prior with a learned density in normalizing flows.

We explored whether a similar distribution alignment effect can be achieved by directly fitting a
density model to the target distribution B to obtain the optimal θ∗B first, and then fitting a flow model
T (x, φ) to the dataset A but replacing the Gaussian prior with the learned density of B:

max
φ

[
logPM (T−1(A, φ); θ∗B)− log det |∇xT (A;φ)|

]
.

While this procedure worked on distributions that were very similar to begin with, in the majority
of cases the log-likelihood fit to B did not provide informative gradients when evaluated on the
transformed dataset, as the KL-divergence between distributions with disjoint supports is infinite.
Moreover, even when this objective did not explode, multi-modality of PM (x; θB) often caused the
learned transformation to map A to one of its modes. Training both φ and θB jointly or in alternation
yielded a procedure that was very sensitive to the choice of learning rates and hyperparameters, and
failed silently, which were the reasons we abandoned adversarial methods in the first place. The
LRMF method described in this paper is not susceptible to this problem, because we never train a
density estimator on one dataset and evaluate its log-likelihood on another dataset.

8.5 FFJORD LRMF experiment on moons.

As mentioned in the main paper, FFJORD LRMF performed on par with Real NVP version. We had
to fit T (x, φ) to identity function prior to optimizing the LRMF objective, because the glorot uniform
initialized 5-layer neural network with tanh non-linearities (used as a velocity field in FFJORD)
generated significantly non-zero outputs. The dynamics can be found in the Figure 10.

8.6 Proof of Lemma 2.1

Proof. If we define f(x) = logPM (A, x) and g(x) = logPM (B, x), the first statement dΛ ≥ 0
follows from the fact that

∀x f(x) + g(x) ≥ min
x
f(x) + min

x
g(x) ⇒ min

x
(f(x) + g(x))−min

x
f(x)−min

x
g(x) ≥ 0

The second statement f(x∗) = minx f(x), g(x∗) = minx g(x) comes form the fact that the equality
holds only if there exists such x∗ that

f(x∗) + g(x∗) = min
x
f(x) + min

x
g(x)

Assume that f(x∗) 6= minx f(x), then f(x∗) > minx f(x) from the definition of the min, therefore

g(x∗) = (f(x∗) + g(x∗))− f(x∗) < (min
x
f(x) + min

x
g(x))−min

x
f(x) = min

x
g(x),

which contradicts the definition of the minx g(x), therefore f(x∗) = minx f(x).

15

(a)
√
− log(|∂L/∂µ|) vs aµ+ b (b) |∂L/∂µ| vs exp(−(aµ+b)2) (c) same as b for µ ∈ 7 . . . 16

Figure 7: Gradient of the cross-entropy of between two mixture models as a function of the mean of one of the
first components of the first mixture to illustrate the Example 2.2, estimated using JAX.

8.7 Proof of Lemma 2.2

First, we add and remove the true (unknown) entropy H[PA] = −Ea∼PA
logPA(a):

max
θA

Ea∼PA
logPM (a; θA) = max

θA

[
Ea∼PA

logPA(a)− Ea∼PA
log

PA(a)

PM (a; θA)

]
= H[PA]−min

θA
Ea∼PA

[
log

PA(a)

PM (a; θA)

]
= H[PA]−min

θ
DKL(PA;M(θ)). (?)

And then add and remove the (unknown) entropy of the transformed distribution H[T [PA, φ]]. We
also use the change of variable formula T [PA](x) = PA(T−1(x)) · det |∇xT−1(x)|, and substitute
the expression for H[PA] from the previous line (?):

max
θAT

logPM (T (A;φ); θAT) = max
θAT

Ea′∼T [PA,φ] logPM (a′; θAT)

= max
θAT

[
Ea′∼T [PA,φ] log T [PA](a′)− Ea′∼T [PA,φ] log

T [PA, φ](a′)

PM (a′; θAT)

]
= max

θAT

[
Ea∼PA

PA(T−1(T (a, φ), φ)) +

+ log det |∇xT−1(T (a, φ), φ)| − DKL(T [PA, φ];M(θAT))
]

= H[PA]− log det |∇xT (A, φ)| −min
θ
DKL(T [PA, φ];M(θ))

≤max
θA

logPM (A; θA)− log det |∇xT (A, φ)|+ Ebias(A, T,M).

8.8 Simulation results for the Example 2.2

We approximated |∂H[m1,m2(µ)]/∂µ|, where m1 and m2(µ) are two equal mixtures of normal
distributions, by computing the partial derivative using auto-differentiation in JAX. The objective
was L = logsumexp({log(pi(X;µ)) + log 2}i), where log pi(x;µ) is a log probability of the
mixture component from m2, and X is a fixed large enough (n=100k) sample from the m1. Fig-
ure 7 shows that

√
− log(|∂L/∂µ|) fits to aµ + b for a = 0.6, b = −1.168 with R = 0.99996,

therefore making us believe that ‖[∂L(b, µ)/∂µ](0, µ)‖ ∝ exp(−µ2). The code is available in
lrmf_gradient_simulation.ipynb.

16

Figure 8: The dynamics of training an affine log-likelihood ratio minimizing flow (LRMF) w.r.t. the
Gaussian family on the blob and moons datasets. The LRMF is trained to match A (blue) with B (red), its
outputs T (A) are colored with cyan, circles indicate 3σ levels of θA, θB and θAT respectively. This experiment
shows that even a severely under-parameterized LRMF does a good job at aligning distributions (second row).
As in the Example 2.1, the optimal affine LRMF w.r.t. Gaussian family matches first two moments of given
datasets. Rightmost column shows LRMF convergence.

(a)

(b)

loss
(c)

(d)

(e)

(f)

(i) blobs

(d)

(e)

(f)

(a)

(b)

loss
(c)

(ii) moons

Figure 9: The dynamics of training a Real NVP log-likelihood ratio minimizing flow (LRMF) on the blob
and moons datasets. This experiment shows that even a severely overparameterized LRMF does a good job at
aligning distributions: RealNVP clearly overfits to the blob dataset but learns a good alignment nevertheless.
(a, b) The Real NVP density estimators fitted to datasets A (blue) and B (red). (c) The LRMF objective (Eq
2) decreases over time and reaches zero when two datasets are aligned. The red line indicates the zero loss
level. (d) The evolution A (blue), A′ = T (A, φ) (cyan) and B (red). (e) The probability density function of the
shared model PM (x, θS) fitted to A′ and B. When LRMF objective converges, PM (x, θS) matches PM (x, θB).
(f) The visualization of the trained normalizing flow T , at each point x we draw a vector pointing along the
direction v = x− T (x, φ) with color intensity and length proportional to v.

17

Figure 10: The dynamics of training a FFJORD log-likelihood ratio minimizing flow (LRMF) on the
moons dataset. Notations are similar to Figures 5 and 6. The left bottom plot shows changes in accuracy over
time.

A0

T(A0, t)

A1

T(A1)

A2

T(A2)

B0

(b) the value of the LRMF objective

(a) evolution of T(A) over time across batches

Figure 11: The dynamics of RealNVP LRMF semantically aligning USPS and MNIST digits in the latent
space. (a) Different rows in T (A0, t) represent transformations of the batch A0 different time steps. Other rows
represent the final learned transformation applied to other batches A1, A2. (b) The LRMF objective converged
to zero in average.

18

