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A Auxiliary Theorems

Theorem A.1 (Gaussian Concentration Vershynin [2018]). Consider a random vector z ∼ N (0, Id)
and a ρ-Lipschitz function f : Rd → R (with respect to the Euclidean metric). Then f(z) is
ρ-sub-Gaussian and it holds for all t ≥ 0:

P{f(z)− E[f(z)] ≥ t} ≤ e
−t2

2ρ2

Theorem A.2 (Hoeffding’s inequality Vershynin [2018]). Let X1, . . . , Xn be independent, mean
zero random variables. Assume that Xi ∈ [mi,Mi] for every i. Then, for every t > 0, we have

P{
n∑
i=1

Xi ≥ t} ≤ e
− 2t2∑n

i=1
(mi−Mi)2

Theorem A.3 (Theorem 1 of Beygelzimer et al. [2011]). Let X1, . . . , XT be a sequence of real-
valued random variables. Let Et[Y ] := E[Y |X1, . . . , Xt−1]. Assume, for all t, that Xt ≤ R and that
Et[Xt] = 0. Define the random variable St :=

∑t
k=1Xt, and Vt :=

∑t
k=1 Ek[X2

k ]. Then for any
δ > 0, with probability at least 1− δ, we have the following guarantee:

St ≤ R ln

(
1

δ

)
+ (e− 2)

Vt
R

B Proofs

The following Lemma bounds |Rt|, where Rt := {r ∈ [m]| I{w>r,txt > 0} 6= I{w>r,1xt > 0}} is the
set of hidden nodes at time t whose activation on sample xt is different from the initialization.
Lemma B.1. Assume that ‖wr,1 − wr,t‖ ≤ D holds for all r ∈ [m], where D is a positive constant.
Then, with probability at least 1− δ

3 , we have that

|Rt| ≤ mD +

√
m ln (3T/δ)

2
, for all t ∈ [T ].

Proof of Lemma B.1. Assume that r ∈ Rt. Then it holds that

|w>r,1xt| ≤ |w>r,1xt|+ |w>r,txt|
= |(wr,1 − wr,t)

>xt| (r ∈ Rt)
≤ ‖wr,1 − wr,t‖‖xt‖ (Cauchy-Schwarz)
= ‖wr,1 − wr,t‖ ≤ D (‖xt‖ = 1)

Since w>r,1xt is a standard Gaussian random variable, by anti-concentration property of the Gaussian
distribution, E[I{

∣∣w>r,1xt
∣∣ ≤ D}] = Pr{

∣∣w>r,1xt
∣∣ ≤ D} ≤ 2D√

2π
. On the other hand, we have that

|Rt| =
∣∣{r| I{w>r,txt > 0} 6= I{w>r,1xt > 0}}

∣∣ ≤ |{r| ∣∣w>r,1xt
∣∣ ≤ D}| = m∑

r=1

I{
∣∣w>r,1xt

∣∣ ≤ D}
By Hoeffding’s inequality, we have the following with probability at least 1− δ

3T :

1

m

m∑
r=1

I{
∣∣w>r,1xt

∣∣ ≤ D} ≤ Pr{
∣∣w>r,1xt

∣∣ ≤ D}+

√
ln (3T/δ)

2m
≤ 2D√

2π
+

√
ln (3T/δ)

2m
.

Multiplying both sides by m and applying union bound on t ∈ [T ] completes the proof.
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Lemma B.2. For any t ∈ [T ], let Bt := {B1, . . . ,Bt} denote the set of Bernoulli masks up to time t.
Then it holds almost surely that:

T∑
t=1

`(ytft(qWt)) ≤ EBT [

T∑
t=1

Lt(Wt)]. (3)

Proof of Lemma B.2. For any a, b ∈ R, the function `(z) = log(1 + exp(az + b)) is convex in z.
We have the following inequalities:

EBT [

T∑
t=1

Lt(Wt)] =

T∑
t=1

EBt [`(yt ·
1√
m

a>Btσ(Wtxt))]

=

T∑
t=1

EBt−1
[EBt`(yt ·

1√
m

m∑
r=1

arbr,tσ(w>r,txt))|Bt−1] (smoothing property)

≥
T∑
t=1

EBt−1 [`(yt ·
1√
m

m∑
r=1

arEBt [br,t]σ(w>r,txt))|Bt−1] (Jensen’s inequality)

=

T∑
t=1

`(yt ·
1√
m

m∑
r=1

arσ(qw>r,txt)) (E[br,t] = q, homogeneity of ReLU)

=

T∑
t=1

`(ytft(qWt))

which completes the proof.

Proof of Lemma 5.1. Using the dropout update rule in Algorithm 1, we start by analyzing the distance
of consecutive iterates from the reference point U, assuming that Πc(U) = U:

‖Wt+1 −U‖2F = ‖Πc(Wt+ 1
2
)−U‖2F

≤ ‖Wt+ 1
2
−U‖2F (U ∈ Wc)

= ‖Wt − η∇Lt(Wt)−U‖2F
= ‖Wt −U‖2F − 2η〈∇Lt(Wt),Wt −U〉+ η2‖∇Lt(Wt)‖2F

The last term on the right hand side above is bounded as follows:

η2‖∇Lt(Wt)‖2F = η2‖`′(ytgt(Wt))yt∇gt(Wt)‖2F
= η2 (−`′(ytgt(Wt))‖∇gt(Wt)‖F )

2

= η2Qt(Wt)
2
m∑
r=1

‖∂gt(Wt)

∂wr,t
‖2

≤ η2Qt(Wt)
2 (‖∂gt(Wt)

∂wr,r
‖ ≤ 1√

m
)

≤ η2

ln (2)
Qt(Wt) (Qt(·) ≤ 1/ ln (2))

≤ ηQt(Wt) (assumption η ≤ ln (2))
≤ ηLt(Wt) (Qt(·) ≤ Lt(·))

The second term can be bounded as follows:

〈∇Lt(Wt),Wt −U〉 = `′(ytgt(Wt))〈yt∇gt(Wt),Wt −U〉

= `′(ytgt(Wt))(ytgt(Wt)− ytg(t)
t (U)) (Homogeneity, definition of g(t)

t )

≥ (`(ytgt(Wt))− `(ytg(t)
t (U))) (convexity of `(·))

= Lt(Wt)− L(t)
t (U)

13



Plugging back the above inequalities we get

‖Wt+1 −U‖2F ≤ ‖Wt+ 1
2
−U‖2F ≤ ‖Wt −U‖2F − 2η(Lt(Wt)− L(t)

t (U)) + ηLt(Wt)

= ‖Wt −U‖2F − ηLt(Wt) + 2ηL
(t)
t (U) (4)

Rearranging, dividing both sides by η, and averaging over iterates we arrive at

1

T

T∑
t=1

Lt(Wt) ≤
T∑
t=1

‖Wt −U‖2F − ‖Wt+1 −U‖2F
ηT

+
2

T

T∑
t=1

L
(t)
t (U)

≤ ‖W1 −U‖2F
ηT

+
2

T

T∑
t=1

L
(t)
t (U) (Telescopic sum)

Lemma B.3. With probability at least 1− δ/3 it holds uniformly over all t ∈ [T ] that |gt(W1)| ≤√
2 ln (6T/δ), provided that m ≥ 25 ln (6T/δ).

Proof of Lemma B.3. The proof is similar to the proof of Lemma A.1 in Ji and Telgarsky [2019],
except for that we have to take into account the randomness due to dropout as well. In particular, there
are four different sources of randomness in gt(W1) = g(W1; xt,Bt): 1) the randomly initialized
hidden layer weights W1, 2) the randomly initialized top layer weights a, 3) the input vector
xt, t ∈ [T ], and 4) the Bernoulli masks Bt, t ∈ [T ]. Given input xt and the dropout mask Bt, let
ht(W) = 1√

m
Btσ(Wxt) ∈ Rm denote the (scaled) output of the dropout layer with hidden weights

W. It is easy to see that the function g : W 7→ ‖ht(W)‖ is 1-Lipschitz:

|g(W)− g(W′)| = |‖ht(W)‖ − ‖ht(W′)‖|
≤ ‖ht(W)− ht(W

′)‖ (Reverse Triangle Inequality)

=

√√√√ m∑
r=1

(
1√
m
b
(t)
i σ(〈wr,1, xt〉)−

1√
m
b
(t)
i σ(〈w′r,1, xt〉))2

=

√∑m
r=1(〈wr,1, xt〉 − 〈w′r,1, xt〉)2

√
m

(1-Lipschitzness of ReLU)

≤

√∑m
r=1 ‖wr,1 − w′r,1‖2‖xt‖2

√
m

(Cauchy-Schwarz)

=
‖W −W′‖F√

m

Using Gaussian concentration (Lemma A.1), we get that ‖ht(W1)‖−EW1
[‖ht(W1)‖] ≤

√
2 ln( 6T

δ )
m

with probability at least 1− δ
6T . It also holds that:

EW1
[‖ht(W1)‖] ≤

√
EW1

[‖ht(W1)‖2]

=

√√√√ m∑
r=1

Ewr,1(
1√
m
br,tσ(w>r,1xt))2

≤

√∑m
r=1 Ewr,1 [σ(w>r,1xt)2]

m

=
√
Ez∼N (0,1)[σ(z)2] =

1√
2

As a result, we have with probability at least 1− δ
6T that ‖ht(W1)‖ ≤

√
2 ln(6T/δ)

m +
√

2
2 ≤ 1 whenever

m ≥ 25 ln (6T/δ). Now, taking a union bound over all t ∈ [T ], we get that ‖ht(W1)‖ ≤ 1 holds
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simultaneously for all iterates. Conditioned on this event, the random variable gt(W1) = 〈a,ht(W1)〉
is zero mean and 1-sub-Gaussian, so that by the general Hoeffding’s inequality, for any t, with
probability at least 1 − δ

6T , it holds that |gt(W1)| ≤
√

2 ln (6T/δ). Taking union bound over all
t ∈ [T ], with probability 1 − δ/6 it holds that |gt(W1)| ≤

√
2 ln (6T/δ) simultaneously for all

t ∈ [T ]. Finally, the probability that both of these events hold is no less than (1− δ/6)2 ≥ 1− δ/3,
which completes the proof.

Lemma B.4. Under Assumption 1, for any δ ∈ (0, 1), with probability at least 1 − δ/3 it holds
uniformly for all t ∈ [T ] that:

ytg
(1)
t (V) = yt〈∇gt(W1),V〉 ≥ γ −

√
2 ln (3T/δ)

m

Proof of Lemma B.4. By Assumption 1, it holds that Ez,b[y〈ψ(z), bxI{z>x > 0}〉] ≥ γ for all (x, y)

in the domain of D. We observe that ytg
(1)
t (V) is an empirical estimate of this quantity:

ytg
(1)
t (V) = yt〈∇gt(W1),V〉

= yt

m∑
r=1

〈 1√
m
arbr,tI{x>t wr,1 > 0}xt,

1√
m
arψ(wr,1)〉

=
1

m

m∑
r=1

yt〈ψ(wr,1), br,txtI{w>r,1xt > 0}〉

For t, r ∈ [T ] × [m], let γt,r := yt〈ψ(wr,1), br,txtI{w>r,1xt > 0}〉. Note that EW1,Bt [γt,r] =

Ez,b[yt〈ψ(z),bxtI{z>xt > 0}〉]. Also, for any t, the random variable γt,r is bounded almost surely
as follows:

|γt,r| ≤ |yt| ‖ψ(wr,1)‖ |br,t| ‖xt‖
∣∣I{w>r,1xt > 0}

∣∣ ≤ 1.

Therefore by Hoeffding’s inequality (Theorem A.2), with probability at least 1− δ
3T , it holds that:

ytg
(1)
t (V)− γ ≥ ytg(1)

t (V)− E[ytg
(1)
t (V)] ≥ −

√
2 ln (3T/δ)

m

Applying a union bound over t finishes the proof.

Proof of Lemma 5.2. We adopt the proof of Theorem 2.2 in Ji and Telgarsky [2019] for dropout
training. Assume that ‖wr,t − wr,1‖ ≤ 7λ

2γ
√
m

holds for the first T iterates of Algorithm 1. Then

with probability at least 1 − ( δ3 + δ
3 + δ

3 ) = 1 − δ, Lemma B.1, Lemma B.3, and Lemma B.4
hold simultaneously. We first prove that L(t)

t (U) ≤ λ2

2ηT for all t ∈ [T ]. Using the inequality
log(1 + z) ≤ z, we get that

L
(t)
t (U) = log(1 + e−yt〈∇gt(Wt),U〉) ≤ e−yt〈∇gt(Wt),U〉

To upper-bound the right hand side, we lower-bound yt〈∇gt(Wt),U〉. By definition of U, we have

yt〈∇gt(Wt),U〉 = yt〈∇gt(Wt),W1〉+ λyt〈∇gt(Wt),V〉 (5)

We bound each of the terms separately. The first term can be decomposed as follows:

yt〈∇gt(Wt),W1〉 = yt〈∇gt(W1),W1〉+ yt〈∇gt(Wt)−∇gt(W1),W1〉
≥ − |ytgt(W1)| − |yt〈∇gt(Wt)−∇gt(W1),W1〉| (6)
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By Lemma B.3, the first term on right hand side is lower-bounded by − |gt(W1)| ≥ −
√

2 ln (6T/δ).
We bound the second term as follows:

|yt〈∇gt(Wt)−∇gt(W1),W1〉| =

∣∣∣∣∣ yt√m
m∑
r=1

arbr,t(I{w>r,txt > 0} − I{w>r,1xt > 0})w>r,1xt

∣∣∣∣∣
≤ 1√

m

∑
r∈Rt

|arbr,t〈wr,1, xt〉| (Triangle inequality)

≤ 1√
m

∑
r∈Rt

|〈wr,t − wr,1, xt〉| (r ∈ Rt)

≤ |Rt| ‖wr,t − wr,1‖√
m

≤ 49λ2

4γ2
√
m

+

√
49λ2 ln (3T/δ)

8γ2m
(Lemma B.1)

≤ λγ

2
(7)

where the last inequality holds when m ≥ max{98γ−4 ln (3T/δ) , 2401γ−6λ2} = 2401γ−6λ2. The
second term in Equation 5 is bounded as follows:

yt〈∇gt(Wt),V〉 = yt〈∇gt(W1),V〉+ yt〈∇gt(Wt)−∇gt(W1),V〉
≥ yt〈∇gt(W1),V〉 − |yt〈∇gt(Wt)−∇gt(W1),V〉|

= ytg
(1)
t (V)−

∣∣∣∣∣ yt√m
m∑
r=1

arbr,t(I{w>r,txt > 0} − I{w>r,1xt > 0})〈 1√
m
arψ(wr,1), xt〉

∣∣∣∣∣
≥ γ −

√
2 ln (3T/δ)

m
− 1

m

∑
r∈Rt

|arbr,t〈ψ(wr,1), xt〉| (Lemma B.4)

≥ γ −
√

2 ln (3T/δ)

m
− |Rt|

m

≥ γ −
√

2 ln (3T/δ)

m
− 7λ

2γ
√
m
−
√

ln (3T/δ)

2m
(Lemma B.1)

≥ γ − γ2

7
− γ2

14
− γ2

14
= γ − 2γ2

7
≥ 5γ

7
(8)

where the penultimate inequality holds when m ≥ max{98γ−4 ln (3T/δ) , 2401γ−6λ2} =
2401γ−6λ2. Plugging Equations (7) and (8) in Equation 5, we get that

yt〈∇gt(Wt),U〉 ≥ −
√

2 ln (6T/δ) +
3λγ

14
≥ ln

(
2ηT

λ2

)
, (9)

where the inequality hold true for λ := 5γ−1 ln (2ηT ) +
√

44γ−2 ln (6T/δ). Thus, we have that

L
(t)
t (U) = log(1 + e−yt〈∇gt(Wt),U〉) ≤ λ2

2ηT
.

We now prove by induction that ‖wr,t − wr,1‖ ≤ 7λ
2γ
√
m

holds throughout dropout training. First, we
show that the claim holds for t = 2:

‖wr,2 − wr,1‖ = ‖Πc(η
∂Lt(B1W1)

∂wr,1
)‖ ≤ ‖η ∂Lt(B1W1)

∂wr,1
‖

≤ ‖η`′(ytft(B1W1))yi
∂ft(B1W1)

∂wr,1
‖

≤ η

ln (2)
√
m
≤ 7λ

2γ
√
m
, (η ≤ ln (2))
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which proves the basic step. Now by induction hypothesis, we assume that the claim holds for all
k ∈ [t], i.e., it holds that ‖wr,k−wr,1‖ ≤ 7λ

2γ
√
m

. Therefore, it holds that ‖wr,k‖ ≤ ‖wr,1‖+‖wr,k−
wr,1‖ ≤ c− 1 + 1 ≤ c, where we used the triangle inequality, the fact that ‖wr,1‖ ≤ c− 1, and that
m ≥ 2401γ−6λ2. This, in particular, means that all iterates 1 < k ≤ t remain inWc:

Wk = Πc(Wk− 1
2
) = Wk− 1

2
for all 1 < k ≤ t. (10)

For the t+1-th iterate, we first upper-bound the distance from initialization in terms of theQ function:

‖wr,t+1 − wr,1‖ = ‖Πc(wr,t − η
∂Lt(Wt)

∂wr,t
)− wr,1‖

≤ ‖wr,t − η
∂Lt(Wt)

∂wr,t
− wr,1‖

≤ ‖η ∂Lt(Wt)

∂wr,t
‖+ ‖wr,t − wr,1‖

≤
t∑

k=1

‖η ∂Lk(Wk)

∂wr,k
‖

≤ η
t∑

k=1

−`′(ykgk(Wk))‖yk
∂gk(Wk)

∂wr,k
‖

≤ η√
m

t∑
k=1

−`′(ykgk(Wk))

The idea is to turn the right hand side above into a telescopic sum using the identity Wk+1 −Wk =
Wk+ 1

2
−Wk = η`′(ykgk(Wk))yk∇gk(Wk), k ∈ [t− 1]. By induction hypothesis, for all k ∈ [t],

Equation (8) guarantees yk〈∇gk(Wk),V〉 ≥ 5γ
7 . Thus, multiplying the right hand side of (11) by

7
5γ yk〈∇gk(Wk),V〉, we get that:

‖wr,t+1 − wr,1‖ ≤
7η

5γ
√
m

t∑
k=1

−`′(ykgk(Wk))yk〈∇gk(Wk),V〉

=
7

5γ
√
m

t∑
k=1

〈η∇Lk(Wk),V〉

=
7

5γ
√
m
〈Wt+ 1

2
−W1,V〉 (Equation (10))

=
7〈Wt+ 1

2
−U,V〉+ 7〈U−W1,V〉

5γ
√
m

≤
7‖Wt+ 1

2
−U‖F ‖V‖F + 7〈λV,V〉

5γ
√
m

(Cauchy-Schwarz)

≤
7‖Wt+ 1

2
−U‖F + 7λ

5γ
√
m

(11)
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Again by induction hypothesis, Equation (4) and Equation (9) hold for all k ∈ [t], which are used to
bound ‖Wt+ 1

2
−U‖F as follows:

‖Wt+ 1
2
−U‖2F ≤ ‖Wt −U‖2F − 2η(Lt(Wt)− L(t)

t (U)) + ηLt(Wt) (Equation (4))

≤ ‖Wt −U‖2F + 2ηL
(t)
t (U))

≤ ‖W1 −U‖2F + 2η

t∑
k=1

L
(k)
k (U)

≤ ‖λV‖2F + 2ηt
λ2

2ηT
(Equation 9)

≤ λ2 +
λ2t

T
(‖V‖F ≤ 1)

≤ 2λ2

=⇒ ‖Wt+ 1
2
−U‖F ≤

√
2λ (12)

Plugging Equation (12) back in Equation (11), we arrive at:

‖wr,t+1 − wr,1‖ ≤
7
√

2λ+ 7λ

5γ
√
m

≤ 7λ

2γ
√
m

Which completes the induction step and the proof.

A crucial step in giving generalization bounds in expectation via upper-bounding the logistic

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0
1

2

3

4

5

6
log(1+exp(-z))
1 - z/ln(2)

loss is to control the maximum value the loss can take
on any iterate of the algorithm. In particular, we need
to upper-bound the instantaneous loss of g(t)

t (U), which
appears in the right hand side of Lemma 5.1. To that end,
we note that the logistic loss only grows linearly for z < 0.
More formally, it holds for all z < 0 that:

log(1 + e−z) ≤ −z
ln (2)

+ 1 (13)

as depicted in Figure B.
Lemma B.5. Under Algorithm 1, it holds with probability
one for all iterates that L(t)

t (U) ≤ c
√
m

ln(2) + 1.

Proof of Lemma B.5. Recall that L(t)
t (U) = `(ytg

(t)
t (U)). First we bound the argument inside the

loss function: ∣∣∣ytg(t)
t (Wt)

∣∣∣ = |yt〈∇gt(Wt),U〉|

≤
m∑
r=1

∣∣∣∣〈∂gt(Wt)

∂wr,t
,ur〉

∣∣∣∣ (triangle inequality)

≤
m∑
r=1

‖∂gt(Wt)

∂wr,t
‖‖wr,1 + λvr‖ (Cauchy-Schwarz)

≤
m∑
r=1

c− 1 + λ/
√
m√

m
(‖wr,1‖ ≤ c− 1, ‖vr‖ ≤ 1/

√
m)

≤ c
√
m (λ ≤

√
m)

Now using Equation (13), we get that

L
(t)
t (U) = log(1 + e−yt〈∇gt(Wt),U〉) ≤ log(1 + exp(c

√
m)) ≤ c

√
m

ln (2)
+ 1.
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Proof of Theorem 4.1. Note that Wt is conditionally independent from xt given x1, . . . , xt−1. Thus,

EST [Lt(Wt)] = ESt−1
[E(xt,yt)`(ytft(Wt))|St−1] = ESt−1

[L(Wt)]

Using the fact that logistic loss upper-bounds the zero-one loss, taking expectation over initialization,
taking average over iterates, and using Lemma B.2, we get that:

EW1,a,ST [
1

T

T∑
t=1

R(qWt)] ≤ EW1,a,ST [
1

T

T∑
t=1

`(ytft(qWt))] (I{z < 0} ≤ `(z))

≤ EW1,a,ST ,BT [
1

T

T∑
t=1

Lt(Wt)] (Lemma B.2)

≤ EW1
[‖W1 −U‖2F ]

2ηT
+

2

T

T∑
t=1

EW1,a,ST ,BT [L
(t)
t (U)] (Lemma 5.1)

The first term is upper-bounded by λ2

2ηT since ‖W1−U‖2F = ‖W1−W1− λV‖2F = λ2‖V‖2F ≤ λ2.
Bounding the second term is based on the following two facts:

1. By Lemma 5.2, with probability at least 1− δ, it holds that L(t)
t (U) ≤ λ2

2ηT =: u1.

2. By Lemma B.5, it holds with probability one that L(t)
t (U) ≤ c

√
m

ln(2) + 1 ≤ 2c
√
m =: u2.

Therefore, the expected value of L(t)
t (U) can be upper-bounded as:

E[L
(t)
t (U)] ≤ (1− δ)u1 + δu2 ≤

λ2

2ηT
+ 2δc

√
m

Choosing δ := 1
4ηc
√
mT

guarantees that

E[L
(t)
t (U)] ≤ λ2

2ηT
+

1

2ηT
≤ λ2

ηT
,

where λ := 5γ−1 ln (2ηT ) +
√

44γ−2 ln (24ηc
√
mT 2).

Proof of Theorem 4.2. First, recall the following property of the logistic loss:

I{z < 0} ≤ −2 ln (2) `′(z) ≤ 2 ln (2) `(z)

which implies that R(Wt; Bt) ≤ 2 ln (2)Q(Wt; Bt), where Q(W; B) := ED[−`′(yg(W; x,B)] is
the expected value of the negative derivative of the logistic loss. On the other hand, taking the
empirical average over the training data, and using Lemma 5.1 and Lemma 5.2, we conclude that the
following holds with probability at least 1− δ:

1

T

T∑
t=1

Qt(Wt) ≤
1

T

T∑
t=1

Lt(Wt)

≤ ‖W1 −U‖2F
ηT

+
2

T

T∑
t=1

L
(t)
t (U) (Lemma 5.1)

≤ λ2

ηT
+

2

T

T∑
t=1

λ2

2ηT
(Lemma 5.2)

≤ 2λ2

ηT
.

Given the dropout masks BT , since Q(Wt; Bt) = ED[Qt(Wt)], we know that
∑T
t=1Q(Wt; Bt)−∑T

t=1Qt(Wt) is a martingale difference with respect to the past observations, ST−1. We next show
that the average of Qt(Wt) on the right hand side above is close to the average of Q(Wt; Bt), using
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Theorem A.3, similar to Lemma 4.3. of Ji and Telgarsky [2019]. First, this martingale difference
sequence is bounded almost surely as R := 1/ ln (2) ≥ Q(Wt; Bt) − Qt(Wt), simply because
0 ≤ −`′(z) ≤ 1/ ln (2). The conditional variance can be bounded as:

Vt :=

T∑
t=1

E[(Q(Wt; Bt)−Qt(Wt))
2|St−1]

=

T∑
t=1

Q(Wt; Bt)
2 − 2Q(Wt; Bt)E[Qt(Wt)|St−1] + E[Qt(Wt)

2|St−1]

≤
T∑
t=1

E[Qt(Wt)
2|St−1] (E[Qt(Wt)|St−1] = Q(Wt; Bt))

≤ 1

ln (2)

T∑
t=1

E[Qt(Wt)|St−1] (0 ≤ Qt(Wt) ≤ 1/ ln (2))

=
1

ln (2)

T∑
t=1

Q(Wt; Bt)

Thus, using Theorem A.3 with R ≤ 1/ ln (2) and Vt ≤
∑T
t=1Q(Wt; Bt)/ ln (2), we conclude that

with probability at least 1− δ it holds that

T∑
t=1

Q(Wt; Bt)−
T∑
t=1

Qt(Wt) ≤ (e− 2)

T∑
t=1

Q(Wt; Bt) +
ln (1/δ)

ln (2)

=⇒ 1

T

T∑
t=1

Q(Wt; Bt) ≤
4

T

T∑
t=1

Qt(Wt) +
4 log(1/δ)

T

Plugging the above back inR(Wt; Bt) ≤ 2 ln (2)Q(Wt; Bt), and averaging over iterates we have:

1

T

T∑
t=1

R(Wt; Bt) ≤
16 ln (2)λ2

ηT
+

8 ln (2) ln (1/δ)

T

which completes the proof.
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