
We thank the reviewers for their thorough feedback. We address each of their concerns as follows.1

@R1, R3, R4 Numerical experiments: The main focus of this paper is to extend the "theory" of escaping from saddle2

points to the decentralized setting. However, following the reviewers’ suggestion, we’ll provide some experiments in3

the revised paper. Here, we briefly mention the setup and results and will include more details in the revised paper. Our4

goal is to show that PDGT is able to escape from saddle points quickly. We compare PDGT with D-GET which is a5

decentralized gradient tracking method that "doesn’t use the perturbation idea" [37]. We focus on a matrix factorization6

problem for the MovieLens dataset, where the goal is to find a rank r approximation of a matrix M ∈ Ml×n,7

representing the ratings from 943 users to 1682 movies. Each user has rated at least 20 movies for a total of 9990 known8

ratings. This problem can be written as: (U∗,V∗) := argmin
U∈Ml×r,V∈Mn×r

f(U,V) = argmin
U∈Ml×r,V∈Mn×r

‖M−UV>‖2F .9

We consider different values of target rank and number of nodes. Both methods are given the same randomly generated10

connected graph, mixing matrix, and step size. Further, they are initialized at the same point which lies in the11

neighborhood of a saddle point. Note that in this problem all saddles are escapable and each local min is a global min.12

Figure 1: Average loss (left) and squared norm of the average
gradient (right) vs. iteration (10 nodes and target rank 20).

In Fig. 1 the experiment is run for 10 nodes, and the target13

rank is 20. Initially both algorithms are stuck close to a14

saddle point and make very little progress. However, since15

the theoretical criterion for PDGT is satisfied in the very16

first rounds (small average gradient and consensus error) we17

have injection of noise. This nudge is sufficient to accelerate18

substantially the escape of PDGT. As we see in the plot, D-19

GET remains close to the saddle point at least until iteration20

1400 where we can see the gradient increasing somewhat21

faster. At the same time PDGT escapes the saddle point,22

decreases the loss and approaches a local minimum.23

Figure 2: Average loss (left) and squared norm of the average
gradient (right) vs. iteration (30 nodes and target rank 30).

In Fig. 2, the experiment is run for 30 nodes and the target24

rank is 30. Similarly, PDGT escapes from the saddle point25

much faster and decreases the loss substantially before it26

reaches the local minimum. We observe that D-GET also es-27

capes the saddle point eventually following a similar trace to28

PDGT after spending a lot longer at the saddle. Interestingly,29

for this experiment, we observed that some parameters such30

as the stepsize of the first and the second phase, the injected31

noise and the threshold before we inject noise can afford to32

be substantially greater than the theoretical propositions casting PDGT useful for a series of practical applications.33

@R1 Importance of the results considering [15]: On a high level the PGD method in [15] (designed for centralized34

optimization) is not applicable to decentralized settings as it requires coordination between all nodes at each iteration35

which has a prohibitive communication cost. Moreover, notice that PGD is a descent algorithm whose behavior is rather36

well understood, whereas our proposed PDGT method is a non-monotonically decreasing algorithm which requires the37

careful construction and analysis of a potential function in order to argue about its convergence. Specifically, when38

the PDG algorithm adds noise to the iterate, there exist a specific number of steps and function decrease threshold39

that characterize the space topology at the point that the noise was injected. When the same injection happens in a40

distributed algorithm as PDGT, the consensus error (which potentially increases exponentially fast) and more generally41

the fact that the algorithm is not strictly descent deems the escape from the saddle point non trivial and the existence42

of appropriate thresholds unclear. Diving into more technical details, one can observe that in comparison to Lemma43

17 in [15], our corresponding Lemma 15 utilizes a new potential function and controls the consensus error among the44

nodes deriving a novel and more complex analysis. Specifically, the last terms in (148) and (149) correspond to the45

consensus error of the escaping sequences. To control these term we need to prove an induction with two parts as shown46

in (151), (152) and invoke novel Lemma 14. It follows that equations (159)-(163) should hold, and an interesting47

connection is derived between the potential function parameter α, the second phase step size η2 and the dimension d.48

The aforementioned relation presents a trade-off between the first and second phase stepsizes, η1 and η2, through α49

and thus achieving the optimal overall convergence rate requires fine-tuning the stepsizes as well as coming up with50

the tightest bounds for quantities such as the target decrease of the potential function F , the bound on the norm of the51

iterates P and the radius of the noise ball R. All these values in our analysis are different from the ones in [15] and52

our main proofs are more complex and technical confronting new challenges presented in the distributed framework.53

Finally, the polynomial dependence on d appears to be crucial in controlling the consensus error after the injection of54

noise. To be more precise, notice that to prove the base of the induction in (151) we need to lower bound ζψ0 = ζRµ55

where µ ∈
[
δ2

2
√
d
, 1
]
, deriving the dependence on dimension. The importance of µ belonging in this interval becomes56

apparent in Lemma 16 and the corresponding Lemma 15 in [15], where the volume of the stuck region is bounded.57


