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Abstract

In this paper we study the problem of escaping from saddle points and achieving
second-order optimality in a decentralized setting where a group of agents collabo-
rate to minimize their aggregate objective function. We provide a non-asymptotic
(finite-time) analysis and show that by following the idea of perturbed gradient
descent, it is possible to converge to a second-order stationary point in a number of
iterations which depends linearly on dimension and polynomially on the accuracy
of second-order stationary point. Doing this in a communication-efficient manner
requires overcoming several challenges, from identifying (first order) stationary
points in a distributed manner, to adapting the perturbed gradient framework with-
out prohibitive communication complexity. Our proposed Perturbed Decentralized
Gradient Tracking (PDGT) method consists of two major stages: (i) a gradient-
based step to find a first-order stationary point and (ii) a perturbed gradient descent
step to escape from a first-order stationary point, if it is a saddle point with suffi-
cient curvature. As a side benefit of our result, in the case that all saddle points are
non-degenerate (strict), the proposed PDGT method finds a local minimum of the
considered decentralized optimization problem in a finite number of iterations.

1 Introduction

Recently, we have witnessed an unprecedented increase in the amount of data that is gathered in a
distributed fashion and stored over multiple agents (machines). Moreover, the advances in data-driven
systems such as Internet of Things, health-care, and multi-agent robotics demand for developing
machine learning frameworks that can be implemented in a distributed manner. Simultaneously,
convex formulations for training machine learning tasks have been replaced by nonconvex repre-
sentations such as neural networks. These rapid changes call for the development of a class of
communication-efficient algorithms to solve nonconvex decentralized learning problems.

In this paper, we focus on a nonconvex decentralized optimization problem where a group of m
agents collaborate to minimize their aggregate loss function, while they are allowed to exchange
information only with their neighbors. To be more precise, the agents (nodes) aim to solve

min
x∈Rd

f(x) =
1

m

m∑
i=1

fi(x), (1)

where fi : Rd → R is the objective function of node i which is possibly nonconvex. Finding the
global minimizer of this problem, even in the centralized setting where all the functions are available
at a single machine, is hard. Given this hardness result, we often settle for finding a stationary
point of Problem (1). There have been several lines of work on finding an approximate first-order
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stationary point of this distributed problem, i.e., finding a set of local solutions x̃1, . . . , x̃m where their
average x̃avg has a small gradient norm ‖∇f(x̃avg)‖ and a small consensus error

∑m
i=1 ‖x̃i− x̃avg‖.

Achieving first-order optimality, however, in nonconvex settings may not lead to a satisfactory solution
as it could be a poor saddle point. Therefore, finding a second-order stationary point could improve
the quality of the solution. In fact, when all saddle points are non-degenerate finding a second-order
stationary point implies convergence to a local-minimum, and in several problems including matrix
completion [1], phase retrieval [2], and dictionary learning [3] local minima are global minima.

While convergence to a second-order stationary point for the centralized setting has been extensively
studied in the recent literature, the non-asymptotic complexity analysis of finding such a point
for decentralized problems (under standard smoothness assumptions) has thus far evaded solution,
in part because of significant additional challenges presented by communication limitations. A
major difference between the centralized and the decentralized framework lies in the exchange of
information between the nodes. Exchanging Hessian information is, of course, prohibitively expensive.
Furthermore, turning to approximating schemes has the potential to create catastrophic problems for
the algorithm, as small errors in approximation across the nodes could lead to inconsistent updates
that could reverse progress made by prior steps. Moreover, escaping from first-order stationary points
requires identifying that the algorithm has reached such a point, and accomplishing even this basic
step in a communication-efficient manner presents challenges.

Contributions. In this paper we develop a novel gradient-based method for escaping from saddle
points in a decentralized setting and characterize its overall communication cost for achieving a
second-order stationary point. The proposed Perturbed Decentralized Gradient Tracking (PDGT)
algorithm consists of two major steps: (i) A local decentralized gradient tracking scheme to find
a first-order stationary point, while maintaining consensus by averaging over neighboring iterates;
(ii) A perturbed gradient tracking scheme to escape from saddle points that are non-degenerate. We
show that to achieve an (ε, γ, ρ)-second-order stationary point (see Definition 2) the proposed PDGT
algorithm requires at most Θ̃

(
max

{
f(x0)−f∗

(1−σ)2 min{ε2,ρ2}γ3 ,
d
γ6

})
rounds of communication, where

d is dimension, f(x0) is the initial objective function value, f∗ is the optimal function value, and
σ is the second largest eigenvalue of mixing matrix in terms of absolute norm which depends on
the connectivity of the underlying graph. To the best of our knowledge, this result provides the first
non-asymptotic guarantee for achieving second-order optimality in decentralized optimization under
standard smoothness assumptions.

1.1 Related Work

Centralized settings. Convergence to a first-order stationary point for centralized settings has been
extensively studied in the nonconvex literature [4–13]. A recent line of work focuses on improving
these guarantees and achieving second-order optimality in a finite number of iterations. These schemes
can be divided into three categories: (i) fully gradient-based methods which use the perturbation
idea for escaping from saddle points once iterates reach a point with small gradient norm [14–16];
(ii) methods which utilize the eigenvector corresponding to the smallest eigenvalue of the Hessian
to find an escape direction [5, 6, 17–21]; and (iii) trust-region [22, 23] and cubic regularization
algorithms [24–26] which require solving a quadratic or cubic subproblem, respectively, at each
iteration. These methods, however, cannot be applied to decentralized settings directly as they require
access to the gradient or Hessian of the global objective function.

First-order optimality in decentralized settings. Recently, several iterative methods have been
introduced and studied for achieving first-order optimality in decentralized settings. In particular, [27–
29] show convergence to a first-order stationary point by leveraging successive convex approximation
techniques and using dynamic consensus protocols. Also, a similar guarantee has been established for
several well-known decentralized algorithms including distributed gradient descent [30, 31], primal-
dual schemes [32–34], gradient tracking methods [35, 36], and decentralized alternating direction
method of multipliers (ADMM) [37].

Second-order optimality in decentralized settings. Finding a second-order stationary point in a
distributed setting has been studied by several works [38–41], but they all only provide asymptotic
guarantees. The most related work to our submission is [42] which studies non-asymptotic conver-
gence of stochastic gradient-based diffusion method for decentralized settings. However, the result
of this work is obtained under two relatively less common assumptions. First, it requires a bounded
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gradient disagreement condition which ensures that the local gradients∇fi are not far from the global
gradient∇f (Assumption 3 in [42]). Second, it assumes that the computed stochastic gradient near a
saddle point is such that there is gradient noise present along some descent direction, spanned by the
eigenvectors corresponding to the negative eigenvalues of the Hessian, i.e., stochastic gradient leads
to an escape direction (Assumption 7 in [42]). Both these assumptions, and, in particular, the second
one may not hold in general decentralized settings, and they both significantly simplify the analysis
of escaping from saddle points. Unlike [42], the theoretical results presented here do not require
assuming these restrictive conditions, and our paper provides the first non-asymptotic guarantee for
achieving second-order optimality in decentralized settings, under standard smoothness assumptions.
In fact, the conditions that we assume for proving our results are identical to the ones used in [15] for
the analysis of perturbed gradient method in the centralized setting.

2 Preliminaries

The problem in (1) is defined over a set of m connected agents (nodes) where each one has access to
a component of the objective function. We denote the underlying undirected connectivity graph by
G = {V,E}, where V = {1, . . . ,m} is the set of vertices (nodes) and E is the set of edges. As this
graph is undirected, if node i can send information to node j, then the reverse communication is also
possible. We call two nodes neighbors if there exists an edge between them. We further denote the
neighborhood of node i by Ni, which also includes node i itself.

Since the optimization variable x in (1) appears in each summand of the objective function, this
problem is not decomposable into subproblems that can be solved simultaneously over nodes of the
network. To make the objective function separable we introduce m local variables xi ∈ Rd, and
instead of minimizing 1

m

∑m
i=1 fi(x) in (1), we minimize the objective function 1

m

∑m
i=1 fi(xi). To

ensure that these two problems are equivalent, we enforce the local decision variables to be equal
to each other. Since the graph is connected, this condition can be replaced by consensus among
neighboring nodes, and therefore the resulting problem can be written as

min
x=[x1;x2;...;xm]∈Rmd

F (x) :=
1

m

m∑
i=1

fi(xi) s.t. xi = xj , ∀(i, j) ∈ E. (2)

Note that in (2) we have introduced the notation x ∈ Rmd to indicate the concatenation of all local
variables x := [x1;x2; ...;xm] and defined the function F : Rmd → R as F (x) := 1

m

∑m
i=1 fi(xi).

It can be verified that x∗ is an optimal solution of Problem (1) if and only if x∗ := [x∗; . . . ;x∗] is an
optimal solution of Problem (2). In the rest of the paper, therefore, we focus on solving Problem (2)
as its objective function is node-separable. We should mention that solving this problem is still
challenging as the constraints of this problem are coupled.

In this paper, we only assume standard smoothness conditions for the local objective functions fi to
establish our theoretical guarantees.
Assumption 1. The local functions fi have Lipschitz continuous gradient with constant L1, i.e., for
all i ∈ {1, . . . ,m} and any x ∈ Rd and x′ ∈ Rd we have ‖∇fi(x)−∇fi(x′)‖ ≤ L1 ‖x− x′‖.
Assumption 2. The local functions fi have Lipschitz continuous Hessian with constant L2, i.e., for
all i ∈ {1, . . . ,m} and any x ∈ Rd and x′ ∈ Rd we have

∥∥∇2fi(x)−∇2fi(x
′)
∥∥ ≤ L2 ‖x− x′‖.

The gradient Lipschitz continuity condition in Assumption 1 is customary for the analysis of gradient-
based methods. The condition in Assumption 2 is also required to ensure that the function is
well-behaved near its saddle stationary points.

Finding an optimal solution of (1) or (2) is hard since the local functions fi are nonconvex. Hence, we
settle for finding a stationary point. In the centralized unconstrained case, a first-order stationary point
of function f satisfies ‖∇f(x̂)‖ = 0, and an approximate ε-first-order stationary point is defined as
‖∇f(x̂)‖ ≤ ε. For the constrained decentralized problem in (2) the notion of first-order stationarity
should address both stationarity and feasibility as we state in the following definition.
Definition 1. A set of vectors {x̂i}mi=1 is an (ε, ρ)-first-order stationary point of Problem (2) if∥∥∥∥ 1

m

m∑
i=1

∇fi(x̂i)
∥∥∥∥ ≤ ε, 1

m

m∑
i=1

∥∥∥∥x̂i − 1

m

m∑
j=1

x̂j

∥∥∥∥ ≤ ρ. (3)
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Algorithm 1: PDGT algorithm

1: Input: x0,∇f(x0), ε, γ, ρ, δ1, δ2

2: Set xi = x0, yi = ∇f(x0), T1 = Θ̃
(

f(x0)−f∗
(1−σ)2 min{ε2,ρ2}

)
, T2 = Θ̃

(
d log(1/γδ2)

γ3

)
,

η1 = Θ̃
(
(1− σ)2

)
, η2 =Θ̃

(
γ2

d(1−σ)

)
, R = Θ̃

(
γ

3
2

)
, B = Θ̃

(
γ3
)
;

3: Call (x̃) = PDGT Phase I (x,y, η1, T1, δ1);
4: Call (x̂, ŷ, S) = PDGT Phase II (x̃, η2, T2,R, B);
5: if S = 1 then
6: Return x̂ as a second-order stationary point and stop;
7: else
8: Set x = x̂, y = ŷ and go to Step 3;
9: end if

The first condition in the above definition ensures that the gradient norm is sufficiently small, while
the second condition ensures that the iterates are close to their average. It can be shown that if
[x̂1, . . . , x̂m] is an (ε, ρ)-first-order stationary point of Problem (2), then their average x̂avg :=
1
m

∑m
i=1 x̂i is an (ε+L1ρ)-first-order stationary point of Problem (1), i.e., ‖ 1

m

∑m
i=1∇fi(x̂avg)‖ ≤

ε+ L1ρ. The proof of this claim is available in the supplementary material.

The same logic holds for second-order stationary points. In the centralized case, x is an (ε, γ)-second-
order stationary point if ‖∇f(x̂)‖ ≤ ε and ∇2f(x̂) � −γ I. Similarly, we define a second-order
stationary point of Problem (2) with an extra condition that enforces consensus approximately.
Definition 2. A set of vectors {x̂i}mi=1 is an (ε, γ, ρ)-second-order stationary point of Problem (2) if∥∥∥∥ 1

m

m∑
i=1

∇fi(x̂i)
∥∥∥∥ ≤ ε, 1

m

m∑
i=1

∇2fi(x̂i) � −γ I,
1

m

m∑
i=1

∥∥∥∥x̂i − 1

m

m∑
j=1

x̂j

∥∥∥∥ ≤ ρ. (4)

Note that under Assumptions 1 and 2, it can be shown that if the local solutions [x̂1, . . . , x̂m] form
an (ε, γ, ρ)-second-order stationary point of Problem (2), then their average x̂avg := 1

m

∑m
i=1 x̂i is

an (ε+ L1ρ, γ + L2ρ)-second-order stationary point of Problem (1), i.e., ‖ 1
m

∑m
i=1∇fi(x̂avg)‖ ≤

ε+ L1ρ and 1
m

∑m
i=1∇2fi(x̂avg) � −(γ + L2ρ) I. For proof check the supplementary material.

3 Perturbed Decentralized Gradient Tracking Algorithm

We now present our proposed Perturbed Decentralized Gradient Tracking (PDGT) algorithm. The
PDGT method presented in Algorithm 1 can be decomposed into two phases. Phase I of our method
uses the gradient tracking ideas proposed in [35,36] to show convergence to some first-order stationary
point. Using this scheme for our setup, however, requires overcoming the following hurdle: The
nodes do not have access to the global gradient and thus even the task of realizing that they lie close
to such a point is not trivial. Moreover, the consensus error is cumulative over the graph and tracking
this quantity for each node is an additional challenge. In prior work, it has been shown that there
exists an iterate that achieves first-order optimality without explicitly introducing a mechanism for
identifying such an iterate. In this paper, we address this issue by utilizing an average consensus
protocol as a subroutine of Phase I, which coordinates the nodes and finds with high probability and
negligible communication overhead the correct index achieving first-order optimality.

Phase II of PDGT utilizes ideas from centralized perturbed gradient descent developed in [15],
in order to escape saddle points. Adapting these ideas to the decentralized setting poses several
challenges. A naive use of an approximation scheme could produce further issues as the noise could
lead different nodes to take different escaping directions, potentially canceling each other out. Further,
in order to control the consensus error and the gradient tracking disagreement we adopt a significantly
smaller step size than the one used in the centralized case. Finally, using a common potential function
both for Phase I and Phase II derives an interesting tradeoff between the corresponding stepsizes.
Taking into account all these challenges we design PDGT to guarantee escaping from strict saddle
points. In particular, we show that at the end of the second phase, either a carefully chosen potential
function decreases - PDGT escapes from a saddle point - and we go back to Phase I, or an approximate
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Algorithm 2: PDGT algorithm: Phase I

1: Input: x,y, η1, T1, δ1
2: Initialization: x0 = x, y0 = y;
3: for r = 1, . . . , T1 do
4: Compute xri =

∑
j∈Ni wijx

r−1
j − η1y

r−1
i ; ∀i = 1, . . . ,m

5: Compute yri =
∑
j∈Ni wijy

r−1
j +∇fi(xri )−∇fi(x

r−1
i ); ∀i = 1, . . . ,m

6: Exchange xri and yri with neighboring nodes; ∀i = 1, . . . ,m
7: end for
8: for j = 1 : log( 1

δ1
) do

9: Choose index t̃j ∼ [0, T1] uniformly at random and run Consensus Protocol on t̃j to find first
order stationary point x̃ with small gradient tracking disagreement;

10: end for
Result: Returns first order stationary point x̃ with probability at least 1− δ1

second-order stationary point has been reached and the exact iterate is reported. Next, we present the
details of both phases of PDGT.

Phase I. Consider∇fi(xi), the local gradient of node i, and define yi ∈ Rd as the variable of node i
which is designed to track the global average gradient 1

m

∑m
i=1∇fi(xi). The algorithm proceeds to

update the iterates xi based on the directions of yi. More specifically, at each iteration r, each agent
i first updates its local decision variable by averaging its local iterate with the iterates of its neighbors
and descending along the negative direction of its gradient estimate yr−1

i , i.e.,

xri =
∑
j∈Ni

wijx
r−1
j − η1y

r−1
i , (5)

where η1 is the stepsize and wij is the weight that node i assigns to the information that it receives
from node j. We assume that wij > 0 only for the nodes j that are in the neighborhood of node i,
which also includes node i itself. Further, the sum of these weights is 1, i.e.,

∑
j∈Ni wij = 1.

Once the local xi’s are updated, each agent i computes its local gradient ∇fi(xri ) evaluated at its
current iterate xri . Then, the nodes use the gradient tracking variable yr−1

i received from their
neighbors in the previous round to update their gradient tracking vector according to the update

yri =
∑
j∈Ni

wijy
r−1
j +∇fi(xri )−∇fi(xr−1

i ), (6)

Note that the update in (6) shows that node i computes its new global gradient estimate by combining
its previous local estimate with the ones communicated by its neighbors as well as the difference of
its two consecutive local gradients. Once the local gradient tracking variables are updated, nodes
communicate their local models xri and local gradient tracking vectors yri with their neighbors.

After running the updates in (5) and (6) for T1 rounds, we can ensure that we have visited a set
of points [x1, . . . ,xm] that construct a first-order stationary point of Problem (2) (see Theorem 1);
however, nodes are oblivious to the time index of those iterates. To resolve this issue all nodes sample
a common time index r ∈ {1, . . . , T1} and run an average consensus protocol among themselves to
compute the expression

∥∥ 1
m

∑m
i=1∇fi(x̃i)

∥∥2
+ 1

m

∑m
i=1 ‖x̃i −

1
m

∑m
j=1 x̃j‖2 for that time index.

By repeating this process at most log( 1
δ1

) times, the output of the process leads to a set of points
satisfying first-order optimality with probability at least 1 − δ1 . The details of this procedure are
provided in the appendix. Note that the consensus procedure is standard and known to be linearly
convergent. Hence, the additional cost of running the consensus protocol log( 1

δ1
) times is negligible

compared to T1; see Theorem 1 for more details.

Phase II. In the second phase of PDGT we are given a set of variables denoted by x̃ = [x̃1, . . . , x̃m]
which is a first-order stationary point. The goal is to escape from it, if it is a strict saddle, i.e., the
smallest eigenvalue of the Hessian at this point is sufficiently negative. Initialized with a first-order
stationary point x̃ the algorithm injects the same noise ξ picked uniformly from a ball of radius
R = Õ(γ

3
2 ), to all the local iterates x̃i. Thus for all i we have x0

i = x̃i + ξ. After initialization
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Algorithm 3: PDGT algorithm: Phase II

1: Input: x̃, η2, T2,R, B
2: All nodes sample a vector ξ ∼ uniform ball of radiusR using the same seed;

3: Set x0
i = x̃i + ξ and run Average Consensus on ∇fi(x0

i ) to set y0
i = 1

m

m∑
i=1

∇fi(x0
i );

4: for r = 1, . . . , T2 do
5: Compute xri =

∑
j∈Ni wijx

r−1
j − η2y

r−1
i ; ∀i = 1, . . . ,m

6: Compute yri =
∑
j∈Ni wijy

r−1
j +∇fi(xri )−∇fi(x

r−1
i ); ∀i = 1, . . . ,m

7: Exchange xri and yri with neighboring nodes; ∀i = 1, . . . ,m
8: end for
9: Run Average Consensus Protocol for iterates xT2 and x̃;

10: if H(xT2 ,yT2)−H(x̃, ỹ) > −B then
11: Return approximate second-order stationary point x̃ = [x̃1, . . . , x̃m] and set S = 1;
12: else
13: Return xT2 = [xT2

1 , . . . ,xT2
m ], yT2 = [yT2

1 , . . . ,yT2
m ] and set S = 0;

14: end if

all nodes follow the updates in (5) and (6) with stepsize η2, for T2 rounds. If the initial point was
a strict saddle then at the end of this process the iterates escape from it; as a result our properly
chosen potential function H (formally defined in (9) in Section 4) decreases substantially and then
we revisit Phase I. If the potential function H does not decrease sufficiently, then we conclude that
x̃ = [x̃1, . . . , x̃m] is a second-order stationary point of Problem (2). More precisely, choosing a
proper stepsize η2 and running PDGT for T2 = Õ(dγ−3) iterations decreases the potential function
H by at least B = Õ(γ3), with probability 1− δ2, where T2 has only a polylogarithmic dependence
on δ2. If the potential function is not substantially decreased then we confidently report x̃ as an
approximate second-order stationary point. Note that S is our indicator, tracking whether we have
encountered some approximate second-order stationary point or not. Further, the average consensus
protocol is utilized in the second phase both to initialize the gradient tracking variables and to evaluate
the potential function H at the iterates xT2 and x̃. Since the communication cost of the average
consensus protocol is logarithmic in γ−1, it is negligible compared to T2. Hence, the number of
communication rounds for Phase II is Õ(dγ−3). Check Theorem 2 for more details.

4 Theoretical Results

In this section, we study convergence properties of our proposed PDGT method. First, we characterize
the number of rounds T1 required in Phase I of PDGT to find a set of first-order stationary points
with high probability. Then, we establish an upper bound for T2, the number of communication
rounds required in the second phase. We further show that each time the algorithm finishes Phase
II, a potential function decreases at least by Θ̃(γ3). Finally, using these results, we characterize the
overall communication rounds between nodes to find a second-order stationary point.

Before stating our result, we first discuss some conditions required for the averaging weights used
in (5) and (6). Consider the mixing matrix W ∈ Rm×m where the element of its i-th row and j-th
column is wij . We assume W satisfies the following conditions.

Assumption 3. The mixing matrix W ∈ Rm×m satisfies the following:

W = W>, W1 = 1, σ := max{|λ2(W)|, |λm(W)|} < 1, (7)

where λi(W) denotes the i-th largest eigenvalue of W.

The first condition in Assumption 3 implies that the weight node i assigns to node j equals the weight
node j assigns to node i. The second condition means W is row stochastic, and by symmetry, column
stochastic. This condition ensures that the weights that each node i assigns to its neighbors and itself
sum up to 1. Further note that the eigenvalues of W are real and in the interval [−1, 1]; in fact they
can be sorted in a non-increasing order as 1 = λ1(W) ≥ λ2(W) ≥ · · · ≥ λm(W) ≥ −1. The
last condition in Assumption 3 ensures that the maximum absolute value of all eigenvalues of W
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excluding λ1(W) is strictly smaller than 1. This is required since σ := max{|λ2(W)|, |λm(W)|}
indicates the rate of information propagation. For highly connected graphs σ is close to zero, while
for less connected graphs it is close to 1. A mixing matrix W satisfying Assumption 3 can be chosen
based on local degrees in a variety of ways (e.g., [36]).
Remark 1. In the appendix we report explicit expressions. To simplify the presentation in the main
body, we turn to asymptotic notation and consider sufficiently small η and α, thus hiding constants
but preserving the scaling with respect to quantities that capture important elements of our analysis.

Next, we present our first result, which formally characterizes the choice of parameters for PDGT to
find an (ε, ρ)-first-order stationary point, as defined in (1), with probability 1− δ1.
Theorem 1. Consider Phase I of PDGT presented in Algorithm 2. If Assumptions 1 and 3 hold,
and we set η1 = Θ((1 − σ)

√
α) where α = Θ((1 − σ)2), and the number of iterations satisfies

T1 ≥ T = Θ
(
f(x0)−f∗
η1ε2

)
= Θ

(
f(x0)−f∗√
α(1−σ)ε2

)
, then w.p. at least 1 − δ1, the iterates x̃1, . . . , x̃m

corresponding to one of the randomly selected time indices t̃1, .., t̃log( 1
δ1

) from [0 : T1], satisfy∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x̃i)

∥∥∥∥∥
2

+
1

m

m∑
i=1

∥∥∥∥x̃i − 1

m

m∑
j=1

x̃j

∥∥∥∥2

≤ ε2. (8)

Theorem 1 shows that after Θ
(
f(x0)−f∗√
α(1−σ)ε2

+ 1
1−σ log( 1

δ1
) log( 1

ε )
)

rounds of exchanging information
with neighboring nodes the goal of Phase I is achieved and we obtain a set of first-order stationary
points with small gradient tracking disagreement. Note that the second term 1

1−σ log( 1
δ1

) log(1
ε )

corresponds to the cost of running the average consensus protocol to choose the appropriate iterate
among time steps t̃1, t̃2, ..., t̃log( 1

δ1
). This term is negligible compared to the first term.

Next we present our result for Phase II of PDGT. In particular, we show that if the input of Phase II,
which satisfies (8), is a strict saddle meaning it has sufficient negative curvature, then PDGT will
escape from it and as a result the following Lyapunov function decreases:

H(x,y) :=
1

m

m∑
i=1

fi(xavg) +
1

m

m∑
i=1

‖xi − xavg‖2 +
α

m

m∑
i=1

‖yi − yavg‖2, (9)

where x := [x1; . . . ;xm], y := [y1; . . . ;ym], xavg = 1
m

∑m
j=1 xj and yavg = 1

m

∑m
j=1 yj .

Theorem 2. Consider Phase II of PDGT presented in Algorithm 3, and suppose Assumptions 1-3
hold. Further, suppose we set η2 = Θ̃

(
γ2

d(1−σ)

)
and α = Θ̃

(
(1− σ)2

)
, and the local perturbed

iterates are computed according to x0
i = x̃i + ξ, where ξ is drawn from the uniform distribution over

the ball of radius R = Θ̃(γ1.5). If the input of the second phase denoted by x̃1, . . . , x̃m satisfies

λmin(∇2f(x̃avg)) ≤ −γ,

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x̃i)

∥∥∥∥∥
2

≤ ε21,
1

m

m∑
i=1

∥∥∥∥x̃i − 1

m

m∑
j=1

x̃j

∥∥∥∥2

≤ ε22,

where ε21 = Õ(γ3) and ε22 = Õ(γ
5

d ), then after T2 ≥ T = Θ̃
(
d log(1/γδ2)

γ3

)
iterations with

probability at least 1− δ2 we have H(xT2 ,yT2)−H(x̃, ỹ) = −Ω̃(γ3).

The result in Theorem 2 shows that if the input of Phase II of PDGT is a first-order stationary
point with sufficient negative curvature, then by following the update of PDGT for Θ̃(d log(1/γδ2)

γ3 )

iterations with probability at least 1 − δ2 the Lyapunov function H decreases by Ω̃(γ3). Further
in order for the nodes to verify whether enough progress has been made we include two calls
on the average consensus protocol on iterates x̃ and xT2 with overall communication complexity
O( 2

1−σ log( 1
min{ε1,ε2} )), which is negligible compared to Θ̃(d log(1/γδ2)

γ3 ) iterations.

Combining the results of Theorems 1 and 2, and using the fact that the Lyapunov function H is
non-increasing in the first phase (proof is available in section 9) we obtain that if the outcome of the
first phase has sufficient negative curvature (i.e, is a strict saddle), then the Lyapunov function H
after Phase I and Phase II decreases at least by Θ̃(γ3). Hence, after at most Θ̃(γ−3) calls to the first
and second phase of PDGT, we will find a second-order stationary point of Problem (2).
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Theorem 3. Consider the PDGT method in Algorithm 1, and suppose Assumptions 1-3 hold. If
we set the stepsizes as η1 = Θ̃

(
(1− σ)2

)
, η2 = Θ̃

(
γ2

d(1−σ)

)
and the number of iterations as

T1 = Θ̃
(

f(x0)−f∗
(1−σ)2 min{ε2,ρ2}

)
and T2 = Θ̃

(
d
γ3

)
, respectively, and we have ε2 = Õ

(
γ3
)

and

ρ2 = Õ
(
γ5/d

)
, then after at most Θ̃

(
max

{
f(x0)−f∗

(1−σ)2 min{ε2,ρ2}γ3 ,
d
γ6

})
communication rounds

PDGT finds an (ε, γ, ρ)-second-order stationary point of Problem (2), with high probability.

A major difference between the analysis of PDGT and its centralized counterpart in [15] is that as the
iterates move away from a first-order stationary point, the consensus error and the gradient tracking
disagreement potentially increase exponentially fast blurring the escaping direction. Addressing
this issue requires careful selection of the algorithm’s parameters and setting appropriate stepsizes
finetuning the tradeoff on the number of iterations between the first and the second phase. The
aforementioned hurdles and the lack of knowledge regarding when the algorithm iterates lie close to a
stationary point lead to an overall slower convergence rate than the one shown in the centralized case.

Recall that if the local solutions [x̂1, . . . , x̂m] form an (ε, γ, ρ)-second-order stationary point of
Problem (2), then their average x̂avg := 1

m

∑m
i=1 x̂i is an (ε+L1ρ, γ+L2ρ)-second-order stationary

point of Problem (1). Moreover, as discussed earlier, second order stationary points are of paramount
importance because when all saddle points are strict, any second-order stationary point is a local
minima. We formally state this condition in the following assumption and later show that under this
assumption PDGT finds a local minima of Problem (1).
Assumption 4. Function f(·) is (θ, ζ, ν)- strict saddle, when for any point x, if its gradient norm is
smaller than θ, then its Hessian satisfies the condition λmin(∇2f(x)) ≤ −ζ, unless x is ν−close to
the set of local minima.

The strict saddle condition defined in Assumption 4 states that if a function is (θ, ζ, ν)- strict saddle
then each point in Rd belongs to one of these regions: 1) a region where the gradient is large and
it is not close to any stationary point; 2) a region where the gradient is small but the Hessian has a
significant negative eigenvalue; and 3) the region close to some local minimum. Indeed, under the
extra assumption of strict saddle property on function f , PDGT is able to find a local minima in a
finite number of iterations as we state in the following corollary.
Corollary 1. Consider the PDGT method presented in Algorithm 3 and suppose the conditions in
Theorem 3 are satisfied. If in addition Assumption 4 holds and the objective function f is (θ, ζ, ν)-
strict saddle point, by setting ε+ L1ρ ≤ θ and γ + L2ρ ≤ ζ, the PDGT will output a point ν−close
to the set of local minima after Θ̃

(
max

{
f(x0)−f∗

(1−σ)2 min{ε2,ρ2}γ3 ,
d
γ6

})
communication rounds.

5 Numerical Experiments

In this section, we compare PDGT with a simple version of D-GET where each node has full
knowledge of its local gradient. D-GET is a decentralized gradient tracking method that "does not use
the perturbation idea" [36]. Our goal is to show that PDGT escapes quickly from saddle points. We
focus on a matrix factorization problem for the MovieLens dataset, where the goal is to find a rank
r approximation of a matrix M ∈ Ml×n, representing the ratings from 943 users to 1682 movies.
Each user has rated at least 20 movies for a total of 9990 known ratings. This problem is given by:

(U∗,V∗) := argmin
U∈Ml×r,V∈Mn×r

f(U,V) = argmin
U∈Ml×r,V∈Mn×r

‖M−UV>‖2F . (10)

We consider different values of target rank and number of nodes. Both methods are given the same
randomly generated connected graph, mixing matrix, and step size. The graph is created using the
G(n, p) model with p = log2(n)

n−1 enforcing the path 1−2− ...− (n−1)−n to ensure the connectivity
of the graph. Further we utilize the Maximum Degree Weight mixing matrix as is presented in (10)
of [36]. The stepsize for D-GET and both phases of PDGT is 3. Finally both methods are initialized
at the same point which lies in a carefully chosen neighborhood of a saddle point. Note that in this
problem all saddles are escapable and each local min is a global min. Regarding the parameters of
PDGT we set the number of rounds during phase I and II to be 1500 and 100, respectively. Further,
we set the threshold before we add noise during phase I as presented in (8) to be 10−6 and the radius
of the noise injected to be 4.
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Figure 1: Average loss (left), squared norm of the average gradient (middle), consensus error (right)
vs. iteration (10 nodes and target rank 20).

Figure 2: Average loss (left), squared norm of the average gradient (middle), consensus error (right)
vs. iteration (30 nodes and target rank 30).

In Fig. 1 the experiment is run for 10 nodes, and the target rank is 20. Initially both algorithms are
stuck close to a saddle point and make very little progress. However, since the theoretical criterion
for PDGT is satisfied in the very first rounds (small average gradient and consensus error) we have
injection of noise. This nudge is sufficient to accelerate substantially the escape of PDGT. As we see
in the plot, D-GET remains close to the saddle point at least until iteration 1400 where we can see the
gradient increasing somewhat faster. At the same time PDGT escapes the saddle point, decreases the
loss and approaches a local minimum. In Fig. 2, the experiment is run for 30 nodes and the target rank
is 30. Similarly, PDGT escapes from the saddle point much faster and decreases the loss substantially
before it reaches the local minimum. We observe that D-GET also escapes the saddle point eventually
following a similar trace to PDGT after spending a lot longer at the saddle. Interestingly, for this
experiment, we observed that some parameters such as the stepsize of the first and the second phase,
the injected noise and the threshold before we inject noise can afford to be substantially greater than
the theoretical propositions casting PDGT useful for a series of practical applications.

6 Conclusion and Future Work

We proposed the Perturbed Decentralized Gradient Tracking (PDGT) algorithm that achieves second-
order stationarity in a finite number of iterations, under the assumptions that the objective function
gradient and Hessian are Lipschitz. We showed that PDGT finds an (ε, γ, ρ)-second-order stationary
point, where ε and γ indicate the accuracy for first- and second-order optimality, respectively, and ρ
shows the consensus error, after Θ̃

(
max

{
f(x0)−f∗

(1−σ)2 min{ε2,ρ2}γ3 ,
d
γ6

})
communication rounds, where

d is dimension, f(x0)− f∗ is the initial error, and 1− σ is related to graph connectivity.

This paper is the first step towards achieving second-order optimality in decentralized settings under
standard smoothness assumptions, and several research problems are still unanswered in this area.
First, our complexity scales linearly with dimension d, deviating from the poly-logarithmic depen-
dence achieved for centralized perturbed gradient descent [15]. Closing this gap and developing
an algorithm that obtains second-order optimality with communication rounds that scale sublin-
early or even poly-logarithmically on the dimension is a promising research direction that requires
further investigation. Second, in the centralized setting, it has been shown that by using gradient
acceleration [16] it is possible to find a second-order stationary point faster than perturbed gradient
descent. It would be interesting to see if the same conclusion also holds for decentralized settings.
Last, extending the theory developed in this paper to the case that nodes only have access to a noisy
estimate of their local gradients is another avenue of research that requires further study.
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7 Broader Impact

Over the last couple of years we have witnessed an unprecedented increase in the amount of data
collected and processed in order to tackle real life problems. Advances in numerous data-driven
system such as the Internet of Things, health-care, multi-agent robotics wherein data are scattered
across the agents (e.g., sensors, clouds, robots), and the sheer volume and spatial/temporal disparity
of data render centralized processing and storage infeasible or inefficient. Compared to the typical
parameter-server type distributed system with a fusion center, decentralized optimization has its
unique advantages in preserving data privacy, enhancing network robustness, and improving the
computation efficiency. Furthermore, in many emerging applications such as collaborative filtering,
federated learning, distributed beamforming and dictionary learning, the data is naturally collected
in a decentralized setting, and it is not possible to transfer the distributed data to a central location.
Therefore, decentralized computation has sparked considerable interest in both academia and industry.
At the same time convex formulations for training machine learning tasks have been replaced by
nonconvex representations such as neural networks and a line of significant non convex problems
are on the spotlight. Our paper contributes to this line of work and broadens the set of problems
that can be successfully solved without the presence of a central coordinating authority in the
aforementioned framework. The implications on the privacy of the agents are apparent while rendering
the presence of an authority unnecessary has political and economical extensions. Furthermore,
numerous applications are going to benefit from our result impacting society in many different ways.
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Supplementary Material
The first two lemmas introduce a connection between first order and second order station-
ary points in the centralized and the decentralized regime.

Lemma 1. Assume [x̂1, . . . , x̂m] is an (ε, ρ)-first-order stationary point in the decentralized regime,
that is ∥∥∥∥ 1

m

m∑
i=1

∇fi(x̂i)
∥∥∥∥ ≤ ε, 1

m

m∑
i=1

∥∥∥∥x̂i − 1

m

m∑
j=1

x̂j

∥∥∥∥ ≤ ρ. (11)

Then their average x̂avg := 1
m

∑m
i=1 x̂i is an (ε+L1ρ)-first-order stationary point in the centralized

regime i.e., ‖ 1
m

∑m
i=1∇fi(x̂avg)‖ ≤ ε+ L1ρ.

Proof.∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x̂avg)

∥∥∥∥∥ ≤
∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x̂avg)−
1

m

m∑
i=1

∇fi(x̂i)

∥∥∥∥∥+

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x̂i)

∥∥∥∥∥ (12)

≤ L1

m

m∑
i=1

‖x̂avg − x̂i‖+ ε (13)

≤ L1ρ+ ε (14)

where in the first inequality we add and subtract the same term and in the second one we use
smoothness of f .

Lemma 2. Assume [x̂1, . . . , x̂m] is an (ε, γ, ρ)-second-order stationary point in the decentralized
regime, that is∥∥∥∥ 1

m

m∑
i=1

∇fi(x̂i)
∥∥∥∥ ≤ ε, 1

m

m∑
i=1

∇2fi(x̂i) � −γ I,
1

m

m∑
i=1

∥∥∥∥x̂i − 1

m

m∑
j=1

x̂j

∥∥∥∥ ≤ ρ. (15)

Then their average x̂avg := 1
m

∑m
i=1 x̂i is an (ε + L1ρ, γ + L2ρ)-second-order stationary point

in the centralized regime i.e., i.e., ‖ 1
m

∑m
i=1∇fi(x̂avg)‖ ≤ ε + L1ρ and 1

m

∑m
i=1∇2fi(x̂avg) �

−(γ + L2ρ) I.

Proof. The first part is identical to Lemma 1. for the second part we work in a similar fashion.∥∥∥∥∥ 1

m

m∑
i=1

∇2fi(x̂avg)

∥∥∥∥∥ ≤
∥∥∥∥∥ 1

m

m∑
i=1

∇2fi(x̂avg)−
1

m

m∑
i=1

∇2fi(x̂i)

∥∥∥∥∥+

∥∥∥∥∥ 1

m

m∑
i=1

∇2fi(x̂i)

∥∥∥∥∥ (16)

≤ L2

m

m∑
i=1

‖x̂avg − x̂i‖+ γ (17)

≤ L2ρ+ γ (18)

where in the first inequality we add and subtract the same term and in the second one we use the
Lipschitz continuous Hessian of f . The result follows.

9 Convergence to First Order Stationary Point with Consensus

Initialization of Phase I

x0 = xinput

y0 = y
input

, with y
input

such that
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1
m

m∑
i=1

y0
i = 1

m

m∑
i=1

fi(x
0
i )

Recall that the first time we initialize the algorithm the following also hold

x0
i = x0

j , ∀i, j

y0
i = 1

m

m∑
i=1

∇fi(x0
i )

Update rule of Gradient Tracking

xri =
∑
k∈Ni

Wikx
r−1
k − ηyr−1

i

yri =
∑
k∈Ni

Wiky
r−1
k +∇fi(xri )−∇fi(x

r−1
i )

The Update rule of the average iterate

x̂r = 1
m

∑
i

xri

ŷr = 1
m

∑
i

yri

x̂r = x̂r−1 − ηŷr−1

ŷr = ŷr−1 + 1
m

∑
i

∇fi(xri )− 1
m

∑
i

∇fi(xr−1
i )

ŷr = 1
m

∑
i

∇fi(xri )

In order to see why the last equality holds notice that ŷ0 = 1
m

∑
i

∇fi(x0
i ) and an induc-

tion derives the result.

Also recall that σ := max{|λ2(W)|, |λm(W)|} < 1.

First we are going to provide bounds on the iterates proving contraction between consecu-
tive rounds. Consequently, we are going to derive a similar bound on function Pα(xr) and combining
the above we will show that the potential function H(xr,yr) is decreasing between consecutive
rounds.

Lemma 3 (Bound on consecutive iterates). Assume the iterates xi follow the Gradient Tracking
Update with stepsize η then we have

‖xr − xr−1‖2≤ 8‖xr−1 − x̂r−1‖2 + 4η2‖yr−1 − ŷr−1‖2 + 4η2‖ŷr−1‖2 (19)

Proof.

‖xr − xr−1‖2 = ‖Wxr−1 − ηyr−1 − xr−1‖2

≤ 2‖Wxr−1 − xr−1‖2+2η2‖yr−1‖2

≤ 2‖Wxr−1 − xr−1 + Wx̂r−1 − x̂r−1‖2 + 2η2‖yr−1‖2

≤ 2‖(W − I)(xr−1 − x̂r−1)‖2 + 2η2‖yr−1 − ŷr−1 + ŷr−1‖2

≤ 2(‖W‖+ ‖I‖)2‖xr−1 − x̂r−1‖2 + 4η2‖yr−1 − ŷr−1‖2 + 4η2‖ŷr−1‖2

≤ 8‖xr−1 − x̂r−1‖2 + 4η2‖yr−1 − ŷr−1‖2 + 4η2‖ŷr−1‖2
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Lemma 4 (Iterate Contraction). Assume the iterates xi follow the Gradient Tracking Update with
stepsize η and let vri = ∇fi(xri ); then we have

‖xr+1 − x̂r+1‖2 ≤ (1 + β1)σ2‖xr − x̂r‖2 + (1 +
1

β1
)η2‖yr − ŷr‖2 (20)

‖yr+1 − ŷr+1‖2 ≤ 8L2
1(1 +

1

β2
)‖xr − x̂r‖2 + ((1 + β2)σ2 + η24L2

1(1 +
1

β2
))‖yr − ŷr‖2

+ η24L2
1(1 +

1

β2
)‖ŷr‖2 (21)

Proof.
‖Wxr − x̂r‖ = ‖W(xr − x̂r)‖ ≤ σ‖xr − x̂r‖ (22)

To see why the inequality is true notice that 1T (xr − x̂r) = 0, i.e. xr − x̂r is orthogonal to 1T ,
which is the eigenvector corresponding to λmax(W). Similarly,

‖Wyr − ŷr‖ ≤ σ‖yr − ŷr‖ (23)

‖xr+1 − x̂r+1‖2 = ‖Wxr − ηyr − (x̂r − ηŷr)‖2

≤ (1 + β1)‖Wxr − x̂r‖2 + (1 +
1

β1
)η2‖yr − ŷr‖2

≤ (1 + β1)σ2‖xr − x̂r‖2 + (1 +
1

β1
)η2‖yr − ŷr‖2

the last inequality comes from (22). Also

‖yr+1 − ŷr+1‖2

= ‖Wyr + vr+1 − vr − (ŷr + v̂r+1 − v̂r)‖2

≤ (1 + β2)‖Wyr − ŷr‖2 + (1 +
1

β2
)‖vr+1 − vr − v̂r+1 + v̂r‖2

≤ (1 + β2)σ2‖yr − ŷr‖2 + (1 +
1

β2
)‖(I− 11T

m
)(vr+1 − vr)‖2

≤ (1 + β2)σ2‖yr − ŷr‖2 + (1 +
1

β2
)

m∑
i=1

‖vr+1
i − vri ‖2

= (1 + β2)σ2‖yr − ŷr‖2 + (1 +
1

β2
)

m∑
i=1

‖∇fi(xr+1
i )−∇fi(xri )‖2

≤ (1 + β2)σ2‖yr − ŷr‖2 + L2
1(1 +

1

β2
)

m∑
i=1

‖xr+1
i − xri ‖2

= (1 + β2)σ2‖yr − ŷr‖2 + L2
1(1 +

1

β2
)‖xr+1 − xr‖2

≤ (1 + β2)σ2‖yr − ŷr‖2 + L2
1(1 +

1

β2
)(8‖xr − x̂r‖2 + 4η2‖yr − ŷr‖2 + 4η2‖ŷr‖2)

= 8L2
1(1 +

1

β2
)‖xr − x̂r‖2 + ((1 + β2)σ2 + η24L2

1(1 +
1

β2
))‖yr − ŷr‖2 + η24L2

1(1 +
1

β2
)‖ŷr‖2

Where the second inequality is from (23) and for the third we use the fact that ‖I− 11T

m ‖ ≤ 1. The
last inequality is due to Lemma 3.
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In the following lemma an upper bound on function Pα(xr) is derived which we are going to combine
with the iterate contraction lemma to show that a propery constructed potential function decreases
between consecutive rounds.

Lemma 5 (Intermediate function). Assume the iterates xi follow the Gradient Tracking Update with
stepsize η and let α > 0. Also let Pα(xr) := 1

m (‖xr − x̂r‖2 + α‖yr − ŷr‖2). It follows that

Pα(xr+1)− Pα(xr) ≤
(

(1 + β1)σ2 − 1 + 8αL2
1(1 +

1

β2
)

)
1

m
‖xr − x̂r‖2

+

(
α((1 + β2)σ2 − 1) + η2(1 +

1

β1
) + 4αη2L2

1(1 +
1

β2
)

)
1

m
‖yr − ŷr‖2

+ 4αη2L2
1(1 +

1

β2
)‖ŷr‖2 (24)

Proof.

Pα(xr+1)− Pα(xr)

≤ 1

m

[
‖xr+1 − x̂r+1‖2 + α‖yr+1 − ŷr+1‖2 − ‖xr − x̂r‖2 − α‖yr − ŷr‖2

]
≤ ((1 + β1)σ2 − 1 + α8L2

1(1 +
1

β2
))

1

m
‖xr − x̂r‖2

+ (α((1 + β2)σ2 − 1) + η2(1 +
1

β1
) + αη24L2

1(1 +
1

β2
))

1

m
‖yr − ŷr‖2

+ αη24L2
1(1 +

1

β2
)

1

m
‖ŷr‖2

=

(
(1 + β1)σ2 − 1 + 8αL2

1(1 +
1

β2
)

)
1

m
‖xr − x̂r‖2

+

(
α
(
(1 + β2)σ2 − 1

)
+ η2(1 +

1

β1
) + 4αη2L2

1(1 +
1

β2
)

)
1

m
‖yr − ŷr‖2

+ 4αη2L2
1(1 +

1

β2
)‖ŷr‖2

where the second inequality comes from Lemma 4.

Below we derive a bound on the function value of consecutive iterates. Notice that it is not strictly
decreasing on every round and thus later we are going to focus on a suitable potential function.

Lemma 6 (Function decrease). Assume the iterates xi follow the Gradient Tracking Update with
stepsize η; we can show the following two bounds hold.

〈∇f(x̂r), x̂r+1 − x̂r〉+
L1

2
‖x̂r+1 − x̂r‖2 ≤ η L

2
1

2m
‖xr − x̂r‖2 − (η

1

2
− η2L

2
1

2
)‖ŷr‖2 (25)

f(x̂r+1)− f(x̂r) ≤ η L
2
1

2m
‖xr − x̂r‖2 − η

(
1

2
− ηL

2
1

2

)
‖ŷr‖2 (26)
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Proof. For the first one we work as follows

〈∇f(x̂r), x̂r+1 − x̂r〉+
L1

2
‖x̂r+1 − x̂r‖2 ≤ −η〈∇f(x̂r), ŷr〉+ η2L1

2
‖ŷr‖2

≤ −η〈∇f(x̂r)− ŷr, ŷr〉 − η‖ŷr‖2 + η2L1

2
‖ŷr‖2

≤ η

2
‖∇f(x̂r)− ŷr‖2 +

η

2
‖ŷr‖2 − η‖ŷr‖2 + η2L1

2
‖ŷr‖2

=
η

2
‖ 1

m

m∑
i=1

∇fi(x̂r)−
1

m

m∑
i=1

∇fi(xri )‖2 − (
η

2
− η2L1

2
)‖ŷr‖2

≤ η

2

1

m

m∑
i=1

‖∇fi(x̂r)−∇fi(xri )‖2 − (
η

2
− η2L1

2
)‖ŷr‖2

≤ η L
2
1

2m

m∑
i=1

‖xri − x̂r‖2 − (
η

2
− η2L1

2
)‖ŷr‖2

= η
L2

1

2m
‖xr − x̂r‖2 − (

η

2
− η2L1

2
)‖ŷr‖2

and thus for the second one we have

f(x̂r+1) ≤ f(x̂r) + 〈∇f(x̂r), x̂r+1 − x̂r〉+
L1

2
‖x̂r+1 − x̂r‖2

f(x̂r+1)− f(x̂r) ≤ 〈∇f(x̂r), x̂r+1 − x̂r〉+
L1

2
‖x̂r+1 − x̂r‖2

≤ η L
2
1

2m
‖xr − x̂r‖2 + (η

1

2
− η2L

2
1

2
)‖ŷr‖2

Lemma 7. Assume the iterates xi follow the Gradient Tracking Update with stepsize η. Let us

define the potential function H(xr,yr) := 1
m

m∑
i=1

fi(x̂
r) + 1

m‖x
r − x̂r‖2 + α

m‖y
r − ŷr‖2. Then for

suitably chosen η, α the potential function is non-increasing over timesteps and specifically there
exist positive constants C1, C2, C3 such that

H(xr+1,yr+1)−H(xr,yr) ≤ −C1‖ŷr‖2 − C2
1

m
‖xr − x̂r‖2 − C3

1

m
‖yr − ŷr‖2 (27)

Proof.

H(xr+1,yr+1)−H(xr,yr) (28)

=
1

m

m∑
i=1

fi(x̂
r+1)− 1

m

m∑
i=1

fi(x̂
r) +

1

m
(‖xr+1 − x̂r+1‖2 − ‖xr − x̂r‖2) (29)

+
α

m
(‖yr+1 − ŷr+1‖2 − ‖yr − ŷr‖2) (30)

= (
1

m

m∑
i=1

fi(x̂
r+1)− 1

m

m∑
i=1

fi(x̂
r)) + Pα(xr+1)− Pα(xr) (31)

≤
(

(1 + β1)σ2 − 1 + α

(
8L2

1(1 +
1

β2
)

)
+ η

L2
1

2

)
1

m
‖xr − x̂r‖2 (32)

+

(
α((1 + β2)σ2 − 1) + η2(1 +

1

β1
) + αη2(4L2

1(1 +
1

β2
))

)
1

m
‖yr − ŷr‖2 (33)

+

(
−η

2
+ η2L

2
1

2
+ αη2

(
4L2

1(1 +
1

β2
)

))
‖ŷr‖2 (34)
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The inequality follows from the results of Lemmas 5 and 6. By choosing η and α sufficiently small
we can ensure that the Lyapunov function H is decreasing. In particular, we need to ensure that

(1 + β1)σ2 + α

(
8L2

1(1 +
1

β2
)

)
+ η

L2
1

2
< 1 (35)

α(1 + β2)σ2 + η2

(
1 +

1

β1

)
+ 4αη2L2

1

(
1 +

1

β2

)
< α (36)

ηL2
1 + 8αηL2

1

(
1 +

1

β2

)
< 1 (37)

To simplify these conditions we set β1 = β2 = 1−σ
σ > 0 which leads to the following conditions:

σ +
α8L2

1

1− σ
+ η

L2
1

2
< 1 (38)

ασ +
η2

1− σ
+

4αη2L2
1

1− σ
< α (39)

ηL2
1 +

8αηL2
1

1− σ
< 1 (40)

Indeed, if α and η are sufficiently small these conditions are satisfied. But, to obtain an explicit rate
we assume that α satisfies the following inequality

α ≤ (1− σ)2

16L2
1

, (41)

and η as a result satisfies the following conditions

η ≤ (1− σ)

2L2
1

(42)

η2 ≤ α(1− σ)2

2 + 8αL2
1

(43)

η ≤ 1− σ
2L2

1(1− σ + 8α)
(44)

If we assume these four conditions hold and β1 = β2 = 1−σ
σ , then we can obtain

H(xr+1,yr+1)−H(xr,yr) ≤ −1− σ
4m
‖xr − x̂r‖2 − α(1− σ)

2m
‖yr − ŷr‖2 − η

4
‖ŷr‖2 (45)

Hence, C1 = η
4 , C2 = 1−σ

4 , and C3 = α 1−σ
2

Corollary 2. . Assume the conditions for Lemma 7 hold, then we immediately get

H(x0,y0)−H(xr+1,yr+1) ≥ C1

r∑
t=0

‖ŷt‖2 +C2
1

m

r∑
t=0

‖xt− x̂t‖2 +C3
1

m

r∑
t=0

‖yt− ŷt‖2 (46)

Theorem 4. Assume the iterates xi follow the Gradient Tracking Update with stepsize η1 such that
η1, α satisfy conditions (41) - (44). Also assume t̃ is sampled from the uniform distribution over
[0, T −1]. Then we can bound the expectation of the sum of the square of the global gradient estimate
and the square of the consensus error as follows:

Et̃

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(xt̃i)

∥∥∥∥∥
2

+
1

m

∥∥∥xt̃ − x̂t̃
∥∥∥2

 ≤ 4

min{η, 1− σ}
f(x0)− f∗

T
(47)
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Proof.

Et̃

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(xt̃i)

∥∥∥∥∥
2

+
1

m

∥∥∥xt̃ − x̂t̃
∥∥∥2


≤ 1

T

T−1∑
t=0

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(xti)

∥∥∥∥∥
2

+

T−1∑
t=0

1

m

∥∥xt − x̂t
∥∥2

+

T−1∑
t=0

α

m

∥∥yt − ŷt
∥∥2


≤ 1

TC0

(
η1

4

T−1∑
t=0

∥∥ŷt∥∥2
+

1− σ
4

T−1∑
t=0

1

m

∥∥xt − x̂t
∥∥2

+
1− σ

2

T−1∑
t=0

α

m

∥∥yt − ŷt
∥∥2

)

≤ 1

C0

H(x0,y0)−H(xT ,yT )

T

≤ 1

C0

f(x0)− f∗

T

=
1

min{η14 ,
1−σ

4 }
f(x0)− f∗

T

where C0 := min{η14 ,
1−σ

4 }. The last inequality holds because

H(x0,y0) := f(x̂0) +
1

m

∥∥x0 − x̂0
∥∥2

+
α

m

∥∥y0 − ŷ0
∥∥2

= f(x̂0) (48)

H(xr,yr) := f(x̂r) +
1

m
‖xr − x̂r‖2 +

α

m

∥∥yr − ŷr
∥∥2 ≥ f(x̂r) ≥ f∗ (49)

Thus we immediately have:

Corollary 3. To achieve the following ε-stationary solution for the separable version of our problem,

Et̃

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(xt̃i)

∥∥∥∥∥
2

+
1

m

∥∥∥xt̃ − x̂t̃
∥∥∥2

 ≤ ε2 (50)

using the Gradient Tracking Algorithm satisfying the conditions of Theorem 4 we require T ≥
4(f(x0)−f∗)

min{η1,1−σ}ε2 + 1 communication steps.

Let us call timestep t̃ a good choice if
∥∥∥∥ 1
m

m∑
i=1

∇fi(xt̃i)
∥∥∥∥2

+ 1
m

∥∥∥xt̃ − x̂t̃
∥∥∥2

≤ ε2

4 and a bad choice

otherwise.

Lemma 8. Assume the iterates xi follow the Gradient Tracking Update with stepsize η1 such that
η1, α satisfy conditions (41) - (44). Let T ≥ 4e 4(f(x0)−f∗)

min{η1,1−σ}ε2 + 1 Also assume t̃ is sampled from the
uniform distribution over [0, T − 1]. Then

P

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(xt̃i)

∥∥∥∥∥
2

+
1

m

∥∥∥xt̃ − x̂t̃
∥∥∥2

 ≥ ε2

4

 ≤ 1

e
(51)

Proof. From Corollary 3 we have

Et̃

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(xt̃i)

∥∥∥∥∥
2

+
1

m

∥∥∥xt̃ − x̂t̃
∥∥∥2

 ≤ ε2

4e
(52)
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Then we apply Markov’s inequality and derive

P

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(xt̃i)

∥∥∥∥∥
2

+
1

m

∥∥∥xt̃ − x̂t̃
∥∥∥2

 ≥ ε2

4

 ≤ ε2

4e
ε2

4

=
1

e
(53)

Theorem 5. Assume the iterates xi follow the Gradient Tracking Update with stepsize η1 such
that η1, α satisfy conditions (41) - (44). Let T ≥ 4e 4(f(x0)−f∗)

min{η1,1−σ}ε2 + 1 and assume we pick i.i.d.
random variables t̃1, t̃2, ..., t̃log( 1

δ1
) sampled from the uniform distribution over [0, T − 1]. Then the

probability that at least one of them is a good choice is at least 1− δ1.

Proof. From Lemma 8 we know that the probability of picking a bad choice it at most 1
e . Thus the

probability all log(δ1) of them are bad choices is at most 1

e
log( 1

δ1
)

= δ1. It follows that the probability

that we pick at least one good choice is at least 1− δ1.

Remark 2. In order to check each of these log
(

1
δ1

)
iterates we invoke the average consensus

protocol with communication complexity at most 4

(
c log( 1

ε )+log( 1
α )+log(4m2(f(x0)−f∗+2F))

log( 1
σ )

+ 1

)
as reported in Corollary 9, with F defined in (60). Thus the overall number of rounds is log

(
1
δ1

)
·

4

(
c log( 1

ε )+log( 1
α )+log(4m2(f(x0)−f∗+2F))

log( 1
σ )

+ 1

)
which is negligible compared to the number of

rounds of phase I, which is 4e 4(f(x0)−f∗)
min{η1,1−σ}ε2 + 1.

10 Escaping a first order stationary point with negative curvature

Let us denote with x−1 the iterate that is returned by the first phase. From here on assume that we
have the following bounds: ∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x−1
i )

∥∥∥∥∥
2

≤ ε21 (54)

1

m

∥∥x−1 − x̂−1
∥∥2 ≤ ε22 (55)

For the first phase to return w.p. 1 − δ1 a point that satisfies the condition in (54) we need

4e 4(f(x0)−f∗)
min{η1,1−σ}ε21

+ 1 + log( 1
δ1

) · 4
(
c log( 1

ε )+log( 1
α )+log(4m2(f(x0)−f∗+2F))

log( 1
σ )

+ 1

)
iterations.

For the first phase to return w.p. 1 − δ1 a point that satisfies the condition in (55) we need

4e 4(f(x0)−f∗)
min{η1,1−σ}ε22

+ 1 + log( 1
δ1

) · 4
(
c log( 1

ε )+log( 1
α )+log(4m2(f(x0)−f∗+2F))

log( 1
σ )

+ 1

)
iterations.

Hence
Corollary 4. Assume the first phase runs Gradient Tracking with η1, α such that they satisfy con-
ditions (41) - (44). For the first phase to return a point that satisfies conditions (54) and (55) with
probability 1− δ1 we need to run at most

T1 = 4e
4(f(x0)− f∗)

min{η1, 1− σ}min{ε21, ε22}
+ 1

+ 4 log(
1

δ1
) ·

(
c log( 1

ε ) + log( 1
α ) + log

(
4m2(f(x0)− f∗ + 2F)

)
log( 1

σ )
+ 1

)
(56)

iterations . Thus

T1 = Õ
(

1

η1 min {ε21, ε22}

)
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Notice that if x−1 satisfies conditions (54) and (55) then x̂ is either an (ε1 + L1ε2, γ)-second
order stationary point or it has sufficient negative curvature i.e. λmin

(
∇2f(x̂−1)

)
≤ −γ. In the

former case it suffices to report the iterate; we will now focus on the more involved latter case and
specifically we are going to show that after injecting noise to the iterates xi’s and restarting the
gradient tracking algorithm the potential function decreases substantially after a small number of
iterations.

We start the second phase of our algorithm by injecting the same noise ξ, uniformly from
the ball of radius R, to all local iterates.

x0
i = x−1

i + ξ (57)

Then we run the average consensus protocol on∇fi(x0
i )’s for sufficiently large number of iterations

in order to get y0
i ’s such that

ŷ0 =
1

m

m∑
i=1

∇fi(x0
i ) and

1

m

∥∥y0 − ŷ0
∥∥2 ≤ L2

1

2(1− σ)
η2F , (58)

η2 is the stepsize of phase II and F is defined below. As presented in Lemma 20, the required number

of iterations is
⌊

log(
√
η2F)−log(‖y0−ŷ0‖)+log(

√
mL1)−log

(√
2(1−σ)

log(σ)

⌋
and is negligible compared to

the number of iterations of phase I.

Consequently, the process follows the gradient tracking update for Tcap iterations with stepsize η2

such that η2, α satisfy conditions (41) - (44). We also have the following useful quantities:

H := ∇2f(x̂−1) (59)

F :=
|λmin(H)|3

log3(dκ/δ2)

(
√

2− 1)2

(24
√

2L2ĉ2)2
(60)

P :=
|λmin(H)|
log(dκ/δ2)

√
2− 1

(24
√

2L2ĉ2)
(61)

J :=
log(dκ/δ2)

η2|λmin(H)|
(62)

Tcap := ĉJ (63)

R :=

√
F
L1

(64)

κ :=
L1

γ
(65)

δ2 ∈
(

0,
dκ

e

]
(66)

Where F is the target decrease of the potential function, P the bound on the norm of the iterates,
Tcap the number of iterations in the second phase, R the radius of the ball, κ the condition number, d
the dimension and δ2 the probability of failure; ĉ is a positive constant to be defined later.

We proceed in the following lemma to show that if the norm of the global gradient and the
consensus errors are small then the norm of the gradient of the average iterate returned by phase 1 is
also small.

Lemma 9. Suppose that conditions (54), (55) hold and ε21 ≤ F L1

2+2L2
1

and ε22 ≤ F L1

2+2L2
1

. Then we
can show that ∥∥∇f(x̂−1)

∥∥ ≤√L1F . (67)

.
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Proof. Adding and subtracting the same term derives:∥∥∇f(x̂−1)
∥∥2 ≤ 2

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x−1
i )− 1

m

m∑
i=1

∇fi(x̂−1)

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x−1
i )

∥∥∥∥∥
2

(68)

≤ 2
L2

1

m

m∑
i=1

∥∥x−1
i − x̂−1

∥∥2
+ 2ε21 (69)

≤ 2L2
1ε

2
2 + 2ε21 (70)

≤ L1F (71)

Thus ∥∥∇f(x̂−1)
∥∥ ≤√L1F (72)

Where the second inequality comes from (54) and the third from (55).

Utilizing the previous result we are going to show that by adding perturbation in the worst case we
increase the function value at most by 3

2F .

Lemma 10. Suppose that conditions (54), (55) hold and let ε21 ≤ F L1

2+2L2
1

and ε22 ≤ F L1

2+2L2
1

and for

all i let x0
i = x−1

i + ξ where ξ comes from the uniform distribution over the ball of radius R =
√
F
L1

.
Then

f(x̂0)− f(x̂−1) ≤ 3

2
F (73)

Proof. First notice that by Lemma 9 we have
∥∥∇f(x̂−1)

∥∥ ≤ √L1F and thus utilizing smoothness
we obtain the bound

f(x̂0)− f(x̂−1) ≤ 〈∇f(x̂−1), ξ〉+
L1

2
‖ξ‖2 ≤

√
L1F

√
F√
L1

+
F
2
≤ 3

2
F (74)

Below we show that the potential function increases at most by 7
4F after the injection of noise.

Lemma 11. Suppose that conditions (54), (55) and (58) hold and ε21 ≤ F L1

2+2L2
1
, ε22 ≤ F L1

2+2L2
1

.

Further let αη2 ≤ (1−σ)
2L2

1
and for all i let x0

i = x−1
i + ξ where ξ comes from the uniform distribution

over the ball of radius R =
√
F
L1

. Then we have the following

H(x0,y0)−H(x−1,y−1) ≤ 7

4
F (75)

Proof. Recall that

H(xr,yr) :=
1

m

m∑
i=1

fi(x̂
r) +

1

m
‖xr − x̂r‖2 +

α

m
‖yr − ŷr‖2 (76)

By the definition of the potential function we get

H(x0,y0)−H(x−1,y−1)

= f(x̂0)− f(x̂−1) +
1

m
‖x0 − x̂0‖2 − 1

m
‖x−1 − x̂−1‖2 +

α

m
‖y0 − ŷ0‖2 − α

m
‖y−1 − ŷ−1‖2

≤ f(x̂0)− f(x̂−1) +
α

m
‖y0 − ŷ0‖2

≤ 3

2
F + αη2

L2
1

2(1− σ)
F (77)

≤ 3

2
F +

1

4
F (78)

≤ 7

4
F , (79)
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where the first inequality comes from the fact that the same noise is injected to all local iterates and
thus

1

m
‖x0 − x̂0‖2 − 1

m
‖x−1 − x̂−1‖2 = 0 (80)

for the second inequality we use that f(x̂0)− f(x̂−1) ≤ 3
2F due to Lemma 10 and the bound from

(58).

Having established the fact that the potential function is not increasing more than 7
4F after the

injection of noise, we can proceed to show that after we perturbed the iterates and apply Gradient
Tracking Update for Tcap iterations, the potential function will decrease substantially. Specifically,
we will show that H(xTcap ,yTcap) − H(x−1,y−1) ≤ −F . Towards proving this statement we
consider two complementary cases.

In the first, more simple case we assume that at least one of the following sums is sufficiently large

Tcap−1∑
t=0

‖ŷt‖2 ≥ 12F
η2

,

Tcap−1∑
t=0

‖xt − x̂t‖2 ≥ 12m

(1− σ)
F (81)

and proceed to prove the potential function decrease.

Lemma 12. Suppose that conditions (54), (55) and (58) hold and ε21 ≤ F L1

2+2L2
1
, ε22 ≤ F L1

2+2L2
1

.

Further let αη2 ≤ (1−σ)
4L2

1
and for all i let x0

i = x−1
i + ξ where ξ comes from the uniform distribution

over the ball of radius R =
√
F
L1

. Assume the iterates xi follow the Gradient Tracking Update with
stepsize η2 such that η2, α satisfy conditions (41) - (44). Finally, let at least one of the following sums
be large enough

Tcap−1∑
t=0

‖ŷt‖2 ≥ 12F
η2

,

Tcap−1∑
t=0

‖xt − x̂t‖2 ≥ 12m

1− σ
F (82)

Then we can show that
H(xTcap ,yTcap)−H(x−1,y−1) ≤ −F

Proof. From (46) we get

H(xTcap ,yTcap)−H(x0,y0) ≤ −η2

4

Tcap−1∑
t=0

‖ŷt‖2 − 1− σ
4m

Tcap−1∑
t=0

‖xt − x̂t‖2

− α1− σ
2m

Tcap−1∑
t=0

‖yt − ŷ‖2 (83)

≤ −η2

4

Tcap−1∑
t=0

‖ŷt‖2 − 1− σ
4m

Tcap−1∑
t=0

‖xt − x̂t‖2

≤ −3F (84)

Thus immediately we get

H(xTcap ,yTcap)−H(x−1,y−1) = H(xTcap ,yTcap)−H(x0,y0) +H(x0,y0)−H(x−1,y−1) ≤ −3F +
7

4
F ≤ −F

(85)

Where in the first inequality we use Lemma 11.

We are left to deal with the complementary case where both sums are sufficiently small:

Tcap−1∑
t=0

‖ŷt‖2 < 12F
η2

and
Tcap−1∑
t=0

‖xt − x̂t‖2 < 12m

1− σ
F (86)
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The high level idea of the next lemma is the following. For the first Tcap iteration either the x̂t iterates
are going to decrease the function value by at least 3F or the iterates are going to remain in a ball of
radius 2ĉP around x̂−1.

Lemma 13. Assume that (86) holds and that we are given x−1,x−0 such that ‖x̂−1 − x̂0‖ ≤ 2R.
Assume that xt follows the Gradient Tracking Update with stepsize η2 ≤ min{1, 1

L1
} and let ĉ ≥ 36.

Further, consider the definition of the stopping time Tx̂

Tx̂ = min{inf
t
{t|f(x̂t)− f(x̂0) ≤ −3F}, ĉJ }

Then for all time indices t < Tx̂ we have ‖x̂t − x̂0‖ ≤ ĉP and as a result ‖x̂t − x̂−1‖ ≤ 2ĉP .

Proof. For all steps t ≥ 0 we have

f(x̂t+1)− f(x̂t) (87)

≤ ∇f(x̂t)T (x̂t+1 − x̂t) +
L1

2
‖x̂t+1 − x̂t‖2 (88)

≤ (∇f(x̂t)− ŷt)T (x̂t+1 − x̂t) + (ŷt)T (x̂t+1 − x̂t) +
L1

2
‖x̂t+1 − x̂t‖2 (89)

≤ (
1

m

m∑
i=1

∇fi(x̂t)−
1

m

m∑
i=1

∇fi(xti))T (x̂t+1 − x̂t)− 1

η2
‖x̂t+1 − x̂t‖2 +

L1

2
‖x̂t+1 − x̂t‖2

(90)

≤ η2L
2
1

m
‖xt − x̂t‖2 +

1

4η2
‖x̂t+1 − x̂t‖2 − 1

2η2
‖x̂t+1 − x̂t‖2 (91)

≤ η2L
2
1

m
‖xt − x̂t‖2 − 1

4η2
‖x̂t+1 − x̂t‖2 (92)

In the second inequality we add and subtrack the same term and in the third inequality we utilize the
update rule of gradient tracking. In the forth we utilize smoothness and the fact that η2 ≤ min{1, 1

L1
}.

Summing up to any k < Tx̂ we obtain

f(x̂k)− f(x̂0) ≤ η2L
2
1

m

k−1∑
t=0

‖xt − x̂t‖2 − 1

4η2

k−1∑
t=0

‖x̂t+1 − x̂t‖2 (93)

≤ η2L
2
1

m

12m

1− σ
F − 1

4η2

k−1∑
t=0

‖x̂t+1 − x̂t‖2 (94)

(95)

the last inequality holds because Tx̂ ≤ Tcap and also due to the second condition in (86).

Utilizing the fact that f(x̂k)− f(x̂0) > −3F we derive

12η2F +
48L2

1

1− σ
η2

2F ≥
k−1∑
t=0

‖x̂t+1 − x̂t‖2 (96)

12η2F
(

1 +
4L2

1η2

1− σ

)
≥
k−1∑
t=0

‖x̂t+1 − x̂t‖2 (97)

(98)
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By using the Cauchy-Schwartz inequality we can show that
k−1∑
t=0
‖x̂t+1 − x̂t‖ is bounded above by

k−1∑
t=0

‖x̂t+1 − x̂t‖ ≤

√√√√ĉJ
k−1∑
t=0

‖x̂t+1 − x̂t‖2 (99)

≤

√
ĉ

log(dκ/δ2)

η2|λmin(H)|
12η2F

(
1 +

4η2L2
1

1− σ

)
(100)

=

√
12ĉ

(
1 +

4η2L2
1

1− σ

)√
log(dκ/δ2)F
|λmin(H)|

(101)

=

√
12ĉ

(
1 +

4η2L2
1

1− σ

)
P (102)

≤
√

36ĉP (103)
≤ ĉP (104)

where the second to last inequality follows from condition (42) and the last from the fact that ĉ ≥ 36.

Next we bound the different between x̂t and x̂0 for all t ≤ k. In this case we have∥∥x̂t − x̂0
∥∥ ≤ t∑

i=1

∥∥x̂i − x̂i−1
∥∥ ≤ ĉP (105)

Hence, so far we have shown that for all t ≤ k we have
∥∥x̂t − x̂0

∥∥ ≤ ĉP .

Next, we proceed to characterize their distance to x̂−1. To do so, first note that ∀t ≤ k − 1 we can
derive the following upper bound∥∥x̂t − x̂−1

∥∥ ≤ t∑
i=1

∥∥x̂i − x̂i−1
∥∥+

∥∥x̂0 − x̂−1
∥∥ ≤ ĉP + 2R ≤ ĉP + 2P ≤ 3

2
ĉP (106)

where the third inequality holds given that L1 ≥ |λmin(H)| ≥ |λmin(H)|
log(dκ/δ2) . Notice that since

δ2 ∈
(
0, dκe

]
we have log(dκ/δ2) ≥ 1. The above implies

P :=

√
log(dκ/δ2)F
|λmin(H)|

≥
√
F
L1

= R (107)

and the last inequality of (106) holds since ĉ ≥ 4.
Hence, for all t < Tx̂ we have

∥∥x̂t − x̂−1
∥∥ ≤ 2ĉP .

The next lemma is going to be used in Lemma 15. Here we show that since the consensus error was
small before the injection of noise it remains relative small with respect to the sequence xt and wt

for the first Tcap iterations.
Lemma 14. Assume the major condition (86) and conditions (55) and (58) hold. Let
ε22 ≤

L2
1

2(1−σ)αη2F and further ∀i let x0
i = x−1

i + ξ where ξ comes from the uniform distri-

bution over the ball of radius R =
√
F
L1

. Consider that the iterates xi follow the Gradient Tracking
Update with stepsize η2 such that η2, α satisfy conditions (41) - (44). Define the sequence of wi’s
similarly to xi’s except ∀i w0

i = x0
i + µRe1 with e1 a unit eigenvector corresponding to the

minimum eigenvalue of ∇2f(x̂−1) and µ ∈ [δ2/2
√
d, 1]. Finally, consider a sufficiently large

positive constant cnew ≥ 14L1

√
L1.

Then for any t ≤ Tcap it holds that

η2
L1

m

m∑
i=1

(
∥∥ŵt −wt

i

∥∥+
∥∥x̂t − xti

∥∥) ≤ cnew
√

αη2

1− σ
η2R

25



Proof. We will derive a bound with respect to xt since the proof for wt is identical.
From the proof of Lemma 5 we know that

1

m

∥∥xt − x̂t
∥∥2 − 1

m

∥∥xt−1 − x̂t−1
∥∥2

+
α

m

∥∥∥yt − ŷ
t
∥∥∥2

− α

m

∥∥yt−1 − ŷt−1
∥∥2

(108)

≤
(

(1 + β1)σ2 − 1 + 8αL2
1(1 +

1

β2
)

)
1

m
‖xt−1 − x̂t−1‖2

+

(
α
(
(1 + β2)σ2 − 1

)
+ η2

2(1 +
1

β1
) + 4αη2

2L
2
1(1 +

1

β2
)

)
1

m
‖yt−1 − ŷt−1‖2

+ 4αη2
2L

2
1(1 +

1

β2
)
∥∥ŷt−1

∥∥2
(109)

(110)

For β2 = 1−σ
σ and choosing η2, α to satisfy conditions (41) - (44) we guarantee that the coefficients

of ‖xt−1 − x̂t−1‖2 and ‖yt−1 − ŷt−1‖2 are non-positive.

Thus, we obtain

1

m

∥∥xt − x̂t
∥∥2 − 1

m

∥∥xt−1 − x̂t−1
∥∥2

+
α

m

∥∥∥yt − ŷ
t
∥∥∥2

− α

m

∥∥yt−1 − ŷt−1
∥∥2

(111)

≤ 4αη2
2L

2
1

1

1− σ
∥∥ŷt−1

∥∥2
(112)

Summing up from 1 to t we get

1

m

∥∥xt − x̂t
∥∥2 − 1

m

∥∥x0 − x̂0
∥∥2

+
α

m

∥∥∥yt − ŷ
t
∥∥∥2

− α

m

∥∥y0 − ŷ0
∥∥2

(113)

≤ 4αη2
2L

2
1

1

1− σ

t−1∑
i=0

∥∥ŷi∥∥2
(114)

≤ 4αη2
2L

2
1

1

1− σ

(
12
F
η2

)
(115)

= 48L2
1

1

1− σ
αη2F (116)

Where the second inequality holds due to (86). The above implies a useful bound for 1
m

∥∥xt − x̂t
∥∥2

:

1

m

∥∥xt − x̂t
∥∥2 ≤ 1

m

∥∥x0 − x̂0
∥∥2 − α

m

∥∥∥yt − ŷ
t
∥∥∥2

+
α

m

∥∥y0 − ŷ0
∥∥2

+ 48L2
1

1

1− σ
αη2F (117)

≤ 1

m

∥∥x0 − x̂0
∥∥2

+
α

m

∥∥y0 − ŷ0
∥∥2

+ 48L2
1

1

1− σ
αη2F (118)

≤ ε22 +
L2

1

2(1− σ)
αη2F + 48L2

1

1

1− σ
αη2F (119)

≤ 49L2
1

1

1− σ
αη2F (120)

where the third inequality comes from (55) and (58) and the forth due to the assumption ε22 ≤
L2

1

2(1−σ)αη2F . As immediate corollary we get

1√
m

∥∥xt − x̂t
∥∥ ≤ 7L1

1√
1− σ

√
αη2F = 7

√
L1

1√
1− σ

√
αη2R (121)
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Finally, notice that

η2
L1

m

m∑
i=1

∥∥x̂t − xti
∥∥ ≤ η2

L1

m

√√√√m

m∑
i=1

‖x̂t − xti‖
2 (122)

≤ η2
L1√
m

∥∥xt − x̂t
∥∥ (123)

≤ η2L17
√
L1

1√
1− σ

√
αη2R (124)

= 7L1

√
L1

1√
1− σ

η2
√
αη2R (125)

≤ cnew
2

1√
1− σ

η2
√
αη2R (126)

and the last inequality holds for appropriate constant cnew ≥ 14L1

√
L1. Since w is a sequence

which develops also with the same parameters of Gradient Tracking the same bounds hold for

η2
L1

m

m∑
i=1

‖ŵt −wt
i‖ as well. The result follows.

The next lemma shows that if a sequence xt does not a escape from the saddle point after Tcap
iterations of Gradient Tracking then any other sequence wt with the same starting point as xt will
escape if given a little bit of a nudge towards the direction of negative curvature.

Lemma 15. Assume the major condition (86) and conditions (55) and (58) hold; Let ε22 ≤
L2

1

2(1−σ)αη2F and assume x−1 such that λmin(∇2f(x̂−1)) ≤ −γ and further ∀i let x0
i = x−1

i + ξ

where ξ comes from the uniform distribution over the ball of radius R =
√
F
L1

. Consider that the
iterates xi follow the Gradient Tracking Update with stepsize η2 such that η2, α satisfy conditions

(41) - (44) and further η2 ≤ min{1, 1−σ
L1
} and αη2 ≤

((
δ2(
√

2−1)
8
√

2ĉ·cnew

)2
(1−σ)|λmin(H)|2

d log2
(
dL1
γδ2

)
)

. Define

the sequence of wi’s similarly to xi’s except ∀i w0
i = x0

i + µRe1 with e1 a unit eigenvector
corresponding to the minimum eigenvalue of ∇2f(x̂−1) and µ ∈ [δ2/2

√
d, 1]. Let ut = ŵt − x̂t

and consider positive constants ĉ, cnew such that ĉ ≥ 36 and cnew ≥ 14L1

√
L1. Further, consider

the definition of the stopping time Tŵ

Tŵ = min{inf
t
{t|f(ŵt)− f(ŵ0) ≤ −3F}, ĉJ }

If
∥∥x̂t − x̂−1

∥∥ ≤ 2ĉP for all t < Tŵ, then it can be shown that Tŵ < ĉJ .

Proof. From the update rule of the iterates we have

x̂t+1 + ut+1 = ŵt+1 (127)

= ŵt − η2
1

m

m∑
i=1

∇fi(wt
i) (128)

= x̂t + ut − η2
1

m

m∑
i=1

∇fi(x̂t + ut) +
η2

m

m∑
i=1

(∇fi(ŵt)−∇fi(wt
i)) (129)

= x̂t + ut − η2

m

m∑
i=1

∇fi(x̂t)− η2

(∫ 1

0

∇2f(x̂t + θut)dθ

)
ut +

η2

m

m∑
i=1

(∇fi(ŵt)−∇fi(wt
i))

(130)
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where ∆t =
∫ 1

0
1
m

m∑
i=1

∇f(x̂t + θut)dθ −H and H = ∇2f(x̂−1). Hence, we obtain that

ut+1 = ut − η2(H + ∆t)ut +
η2

m

m∑
i=1

(∇fi(ŵt)−∇fi(wt
i))−

η2

m

m∑
i=1

(∇fi(x̂t)−∇fi(xti))

(131)
which can be simplified as

ut+1 = (I− η2H)ut − η2∆tut +
η2

m

m∑
i=1

(∇fi(ŵt)−∇fi(wt
i))−

η2

m

m∑
i=1

(∇fi(x̂t)−∇fi(xti))

(132)
Consider the decomposition ut = utpar + utper where utpar is parallel with e1 and utper is perpendic-
ular to e1. Then, we can show that
eT1 (ut+1

par + ut+1
per ) = eT1 (I− η2H) (utpar + utper)

+ eT1

(
−η2∆tut +

η2

m

m∑
i=1

(∇fi(ŵt)−∇fi(wt
i))−

η2

m

m∑
i=1

(∇fi(x̂t)−∇fi(xti))

)
(133)

which can be simplified as
eT1 u

t+1
par = eT1 (utpar + utper)− η2(eT1 H)(utpar + utper)

+ eT1

(
−η2∆tut +

η2

m

m∑
i=1

(∇fi(ŵt)−∇fi(wt
i))−

η2

m

m∑
i=1

(∇fi(x̂t)−∇fi(xti))

)
= eT1 u

t
par − η2(λmin(H)eT1 )(utpar + utper)

+ eT1

(
−η2∆tut +

η2

m

m∑
i=1

(∇fi(ŵt)−∇fi(wt
i))−

η2

m

m∑
i=1

(∇fi(x̂t)−∇fi(xti))

)
= (1− η2λmin(H))eT1 u

t
par

+ eT1

(
−η2∆tut +

η2

m

m∑
i=1

(∇fi(ŵt)−∇fi(wt
i))−

η2

m

m∑
i=1

(∇fi(x̂t)−∇fi(xti))

)
(134)

If we define ψt as the norm of the projection of ut onto e1 and define φt as the norm of the projection
on the complementary subspace. Considering the above expression for the sequence ut, we can show
that

ψt+1 ≥ (1 + η2|λmin(H)|)ψt − η2

∥∥∆t
∥∥ ∥∥ut∥∥− η2

L1

m

m∑
i=1

(
∥∥ŵt −wt

i

∥∥+
∥∥x̂t − xti

∥∥) (135)

Next, consider e2, . . . , ed as the remaining eigenvectors of H which create the complementary space
of e1. The projection of any vector v to this subspace is given by

∑d
j=2(vTej)ej . Therefore, norm

of the projection of vector ut+1 onto this subspace is given by

‖
d∑
j=2

(eTj u
t+1)ej‖ = ‖

d∑
j=2

(eTj (ut+1
par + ut+1

per ))ej‖ = ‖
d∑
j=2

(eTj u
t+1
per )ej‖ = ‖ut+1

per ‖

as expected by the definition. Using the same argument we can show that ‖
∑d
j=2(eTj u

t)ej‖ =

‖utper‖. In addition, we can show that

‖
d∑
j=2

(eTj (I − η2H)ut)ej‖ = ‖
d∑
j=2

((1− η2λj(H))eTj u
t)ej‖

≤ (1− η2λmin(H))‖
d∑
j=2

(eTj u
t)ej‖

= (1− η2λmin(H))‖utper‖ (136)
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Then, according to (132) we can write

‖ut+1
per ‖ (137)

= ‖
d∑
j=2

(eTj u
t+1)ej‖ (138)

=
∥∥ d∑
j=2

(eTj (I− η2H)ut)ej (139)

+

d∑
j=2

(eTj

(
−η2∆tut +

η2

m

m∑
i=1

(∇fi(ŵt)−∇fi(wt
i))−

η2

m

m∑
i=1

(∇fi(x̂t)−∇fi(xti))

)
)ej
∥∥

(140)

≤

∥∥∥∥∥∥
d∑
j=2

(eTj (I− η2H)ut)ej

∥∥∥∥∥∥ (141)

+

∥∥∥∥∥−η2∆tut +
η2

m

m∑
i=1

(∇fi(ŵt)−∇fi(wt
i))−

η2

m

m∑
i=1

(∇fi(x̂t)−∇fi(xti))

∥∥∥∥∥ (142)

≤ (1− η2λmin(H))‖utper‖

+

∥∥∥∥∥−η2∆tut +
η2

m

m∑
i=1

(∇fi(ŵt)−∇fi(wt
i))−

η2

m

m∑
i=1

(∇fi(x̂t)−∇fi(xti))

∥∥∥∥∥ (143)

Note that φt is the norm of the projection onto the complementary subspace which is equal to ‖utper‖.
Further, since λmin(H) ≤ −γ then we have |λmin(H)| = −λmin(H). Considering these points we
can write

φt+1 ≤ (1 + η2|λmin(H)|)φt + η2

∥∥∆t
∥∥∥∥ut∥∥+ η2

L1

m

m∑
i=1

(
∥∥ŵt −wt

i

∥∥+
∥∥x̂t − xti

∥∥) (144)

To bound the norm of ∆t first note that for any t < Tŵ∥∥x̂t − x̂−1
∥∥ ≤ 2ĉP (145)

and further since ŵ0 satisfy the condition of Lemma 13 we have∥∥ŵ0 − x̂−1
∥∥ =

∥∥x̂0 − x̂−1
∥∥+

∥∥u0
∥∥ ≤ R+ µR ≤ 2R ⇒

∥∥ŵt − x̂−1
∥∥ ≤ 2ĉP (146)

It follows that for any t < Tŵ∥∥ut∥∥ =
∥∥x̂t − ŵt

∥∥ ≤ ∥∥x̂t − x̂−1
∥∥+

∥∥ŵt − x̂−1
∥∥ ≤ 4ĉP. (147)

Now we can show that∥∥∆t
∥∥ ≤ ∥∥∇2f(x̂t + ut)−∇2f(x̂−1)

∥∥ ≤ L2(
∥∥x̂t − x̂−1

∥∥+
∥∥ut∥∥) ≤ 6L2ĉP (148)

Using this upper bound we can show that

ψt+1 ≥ (1 + η2|λmin(H)|)ψt − ζ
√
ψ2
t + φ2

t − η2
L1

m

m∑
i=1

(
∥∥ŵt −wt

i

∥∥+
∥∥x̂t − xti

∥∥) (149)

and

φt+1 ≤ (1 + η2|λmin(H)|)φt + ζ
√
ψ2
t + φ2

t + η2
L1

m

m∑
i=1

(
∥∥ŵt −wt

i

∥∥+
∥∥x̂t − xti

∥∥) (150)

where

ζ = η2L26ĉP = η2L26ĉ

√
F log(dκ/δ2)

|λmin(H)|
. (151)
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Using induction we are going to prove the following two statements ∀t < Tcap.

η2
L1

m

m∑
i=1

(
∥∥ŵt −wt

i

∥∥+
∥∥x̂t − xti

∥∥) ≤ ζψt (152)

φt ≤ 4tζψt (153)

Recall the values of the following variables

F =
|λmin(H)|3

log3(dκ/δ2)

(
√

2− 1)2

(24
√

2L2ĉ2)2
(154)

P =
|λmin(H)|
log(dκ/δ2)

√
2− 1

(24
√

2L2ĉ2)
(155)

For the base of the induction, note that since u0 = µRe1 then we can conclude that ψ0 = µR and
φ0 = 0. Then, we have

ζψ0 = η2L26ĉ

√
log(dκ/δ2)F
|λmin(H)|

ψ0 (156)

= η2L26ĉ

√
log(dκ/δ2)F
|λmin(H)|

Rµ (157)

≥ η2L26ĉ

√
log(dκ/δ2)F
|λmin(H)|

R δ2

2
√
d

(158)

= 3ĉL2
δ2√
d
η2

√
log(dκ/δ2)F
|λmin(H)|

R (159)

where the inequality follows from the fact that µ ≥ δ2
2
√
d

. Using this inequality and the result of
Lemma 14 we can show that

ζψ0 − η2
L1

m

m∑
i=1

(
∥∥ŵt −wt

i

∥∥+
∥∥x̂t − xti

∥∥)

≥ 3ĉL2
δ2√
d
η2

√
log(dκ/δ2)F
|λmin(H)|

R − cnew
√

αη2

1− σ
η2R (160)

= η2R

(
3ĉL2

δ2√
d

√
F log(dκ/δ2)

|λmin(H)|
− cnew

√
αη2

1− σ

)
(161)

= η2R

(
3ĉL2

δ2
(√

2− 1
)

24
√

2L2ĉ2
|λmin(H)|√
d log(dκ/δ2)

− cnew
√

αη2

1− σ

)
(162)

= η2R

(
δ2
(√

2− 1
)

8
√

2ĉ

|λmin(H)|√
d log(dκ/δ2)

− cnew
√

αη2

1− σ

)
(163)

≥ 0 (164)

where the last inequality holds for αη2 ≤

((
δ2(
√

2−1)
8
√

2ĉ·cnew

)2
(1−σ)|λmin(H)|2

d log2
(
dL1
γδ2

)
)

. Hence, there are α, η2

properly chosen such that aη2 = Õ
(

(1−σ)γ2

d

)
that the base of induction for (152) holds. Further,

since φ0 = 0 the second condition (153) is also satisfied for t = 0 and the base of the induction is
complete.

30



Now let’s assume that the conditions in (152) and (153) hold for time t. Our goal is to show that
these conditions also hold for time t+ 1.

From the inductive hypothesis we have φt ≤ 4tζψt and also ζ
√
ψ2
t + φ2

t ≥ ζψt ≥

η2
L1

m

m∑
i=1

(‖ŵt −wt
i‖+ ‖x̂t − xti‖). Thus

ψt+1 ≥ (1 + η2|λmin(H)|)ψt − ζ
√
ψ2
t + φ2

t − η2
L1

m

m∑
i=1

(
∥∥ŵt −wt

i

∥∥+
∥∥x̂t − xti

∥∥)

≥ (1 + η2|λmin(H)|)ψt − 2ζ
√
ψ2
t + φ2

t (165)

And similarly we can show that

φt+1 ≤ (1 + η2|λmin(H)|)φt + 2ζ
√
ψ2
t + φ2

t (166)

By multiplying both sides of (165) by 4(t+ 1)ζ we obtain that

4(t+ 1)ζψt+1 ≥ 4(t+ 1)ζ

(
(1 + η2|λmin(H)|)ψt − 2ζ

√
ψ2
t + φ2

t

)
(167)

And if we replace φt in the right hand side (166) by its upper bound 4tζψt (given by the induction
hypothesis), then we obtain

φt+1 ≤ (1 + η2|λmin(H)|)4tζψt + 2ζ
√
ψ2
t + φ2

t (168)

Considering the inequalities in (167) and (168), to prove that 4(t + 1)ζψt+1 ≥ φt+1 it suffices to
show

4(t+ 1)ζ

(
(1 + η2|λmin(H)|)ψt − 2ζ

√
ψ2
t + φ2

t

)
≥ 4tζ(1 + η2|λmin(H)|)ψt + 2ζ

√
ψ2
t + φ2

t

(169)

which is equivalent to

4(t+ 1)

(
(1 + η2|λmin(H)|)ψt − 2ζ

√
ψ2
t + φ2

t

)
≥ 4t(1 + η2|λmin(H)|)ψt + 2

√
ψ2
t + φ2

t

(170)

Expanding the left hand side leads to

4t(1 + η2|λmin(H)|)ψt + 4(1 + η2|λmin(H)|)ψt − 8tζ
√
ψ2
t + φ2

t − 8ζ
√
ψ2
t + φ2

t

≥ 4t(1 + η2|λmin(H)|)ψt + 2
√
ψ2
t + φ2

t (171)

Hence, the conditions in (169), (170), and (171) are equivalent. By regrouping the terms in (171) and
dividing both sides by 2 we obtain the following condition

2(1 + η2|λmin(H)|)ψt ≥ (1 + 4(t+ 1)ζ)
√
ψ2
t + φ2

t (172)

Indeed, the condition in (172) holds if and only if (171) holds.

Finally to prove the last inequality in (172) notice that

4(t+ 1)ζ ≤ 4ζTcap
≤ 4η26L2ĉP ĉJ
≤ 24η2L2ĉ

2PJ

≤ 24η2L2ĉ
2 |λmin(H)|

log(dκ/δ2)

√
2− 1

(24
√

2L2ĉ2)

log(dκ/δ2)

η2|λmin(H)|

≤
√

2− 1 (173)
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Thus, we can show that

(1 + 4(t+ 1)ζ)
√
ψ2
t + φ2

t ≤
√

2
√
ψ2
t + ψ2

t ≤
√

2
√

2ψ2
t ≤ 2(1 + η2|λmin(H)|)ψt (174)

Hence, the condition in (172) holds, and as a result the condition in (169) holds. As we mentioned,
(169) together with (167) and (168) implies that

φt+1 ≤ 4tζψt+1. (175)

Hence, the induction step for (152) is complete.

Next we show that if (153) holds for t it also holds for t+ 1. To do so, note that by considering the
fact that 4tζ ≤

√
2− 1, from (173) and the result in (175), we can show that

φt+1 ≤ ψt+1 (176)

Using the result in (176) as well as the inequality in (165) we can show that

ψt+1 ≥ (1 + η2|λmin(H)|)ψt − 2
√

2ζψt

≥ ψt + η2|λmin(H)|ψt − 12
√

2η2L2ĉ

√
F log(dκ/δ2)

|λmin(H)|
ψt

≥ ψt + η2|λmin(H)|ψt − 12
√

2η2L2ĉ
|λmin(H)|
log(dκ/δ2)

·
√

2− 1

24
√

2L2ĉ2
ψt

≥ ψt(1 +
η2|λmin(H)|

2
) (177)

Since we showed that ψt+1 ≥ ψt and thus ζψt+1 ≥ ζψt it is straight forward to prove the second

condition of the inductive step (153) simply by using the same bound for η2
L1

m

m∑
i=1

(‖ŵt −wt
i‖ +∥∥x̂t+1 − xt+1

i

∥∥) from Lemma 14. To be more precise, based on the result of Lemma 14 we know
that for any t ≤ Tcap

η2
L1

m

m∑
i=1

(
∥∥ŵt −wt

i

∥∥+
∥∥x̂t − xti

∥∥) ≤ 3ĉL2
δ2√
d
η2

√
log(dκ/δ2)F
|λmin(H)|

R ≤ ζψ0 (178)

Using this result and the fact that ψt is increasing we can show that

η2
L1

m

m∑
i=1

(
∥∥ŵt+1 −wt+1

i

∥∥+
∥∥x̂t+1 − xt+1

i

∥∥) ≤ 3ĉL2
δ2√
d
η2

√
log(dκ/δ2)F
|λmin(H)|

R ≤ ζψt+1 (179)

and the induction is complete.
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Next, using the result of induction in (152) and (153) we show that Tŵ < ĉJ . To do so, note that for
all t < Tŵ we have

4ĉP ≥
∥∥ut∥∥

≥ ψt

≥ (1 +
η2|λmin(H)|

2
)tψ0

= (1 +
η2|λmin(H)|

2
)tµR

≥ (1 +
η2|λmin(H)|

2
)t

δ2

2
√
d

√
F
L1

(180)

≥ (1 +
η2|λmin(H)|

2
)t
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√
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|λmin|
log(dκ/δ2)

√
2− 1

24
√
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√
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L1 log(dκ/δ2)
(181)

≥ (1 +
η2|λmin(H)|

2
)t
δ2P
2
√
d

√
|λmin|

L1 log(dκ/δ2)
(182)

≥ (1 +
η2|λmin(H)|

2
)t
δ2P
2
√
d

|λmin|
L1 log(dκ/δ2)

(183)

≥ (1 + η2|λmin(H)|/2)t
δ2P

2
√
dκ log(dκ/δ2)

(184)

where the first inequality follows from (147), the second inequality holds since ψt is the norm of
projection of ut onto a subspace, the third inequality holds because of the result in (177), and the
second to last inequality holds since log(dκ/δ2) ≥ 1 and |λmin|

L1
≤ 1. Hence, we have for t < Tŵ

8ĉ
√
dκ log(dκ/δ2)

δ2
≥ (1 + η2|λmin(H)|/2)t (185)

Therefore, this condition should also hold for t = Tŵ − 1 and therefore we have

Tŵ − 1 ≤
log(8κ

√
d

δ2
ĉ log(dκ/δ2))

log(1 + |λmin(H)|η2
2 )

(186)

⇒ Tŵ <
log(8κ

√
d

δ2
ĉ log(dκ/δ2))

log(1 + |λmin(H)|η2
2 )

+1 ≤ 5

2

log(8κ
√
d

δ2
ĉ log(dκ/δ2))

1 + |λmin(H)|η2
2

+1 ≤ 5

2
(2+log(8ĉ))J+1 < ĉJ

(187)
where the last inequality uses the facts that δ2 ∈ (0, dκe ] and log(dκ/δ2) ≥ 1 and ĉ such that
5
2 (2 + log(8ĉ)) ≤ ĉ.

Now we are going to use Lemma 15 to show substantial function decrease in a small number of
iterations after the noise injection with high probability. Specifically, we are going to show that
f(x̂T )− f(x̂−1) ≤ −F for some T < ĉJ which will be used subsequently consequently to show
H(xĉJ ,yĉJ )−H(x−1,y−1) ≤ −F .
Lemma 16. Assume the major condition (86) and conditions (54), (55) and (58) hold; let ε21 ≤
F L1

2+2L2
1

and ε22 ≤ min{ L2
1

2(1−σ)αη2F ,F L2
1

2+2L2
1
}. Assume x−1 such that λmin(∇2f(x̂−1)) ≤ −γ

and further ∀i let x0
i = x−1

i + ξ where ξ comes from the uniform distribution over the ball

of radius R =
√
F
L1

. Consider that the iterates xi follow the Gradient Tracking Update with

stepsize η2 such that η2, α satisfy conditions (41) - (44) and further η2 ≤ min{1, 1−σ
L1
} and

αη2 ≤

((
δ2(
√

2−1)
8
√
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)2
(1−σ)|λmin(H)|2

d log2
(
dL1
γδ2

)
)

. Then with probability at least 1−δ2 we have the following

for some T < ĉJ
f(x̂T )− f(x̂0) ≤ −3F (188)
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which implies

f(x̂T )− f(x̂−1) ≤ −F (189)

Proof. In Lemma 10 by adding perturbation we proved that the function value increases at most by
3
2F . Thus we have

f(x̂0)− f(x̂−1) ≤ 3

2
F (190)

We know that x̂0 comes from the uniform distribution over Bx̂−1(R). Let us denote with Xstuck ⊂
Bx̂−1(R) the set of bad starting points so that if x̂0 ∈ Xstuck, then the iterates are not going to make
substantial progress after at most ĉJ steps i.e. f(x̂T )− f(x̂0) > −3F , ∀T < ĉJ . On the contrary
when x̂0 ∈ (Bx̂−1(R)−Xstuck) there exists a T such that f(x̂T )− f(x̂0) < −3F .
By the Lemma 15 we know that when x̂0 ∈ Xstuck it is guaranteed that (x̂0 ± µRe1) /∈ Xstuck where
µ ∈

[
δ2

2
√
d
, 1
]
. Denote with IXstuck(·) the indicator function of being inside set Xstuck and vector

v =
(
v(1),v(−1)

)
, where v1 is the component along the direction of e1 and v(−1) the remaining

vector. We are going to derive an upper bound on the volume of Xstuck.

Vol(Xstuck) =

∫
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dx · IXstuck(x) (191)

≤
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dx(−1) · 2 δ2

2
√
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R (192)

= Vol(Bd−1
x̂−1 (R))× δ2R√

d
(193)

Then we immediately have the ratio:

Vol(Xstuck)
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(
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) ≤ δ2R√
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√
d

2
+
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2
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The second to last inequality is by the property of Gamma function that Γ(x+1)

Γ(x+ 1
2 )
<
√
x+ 1

2 as long

as x ≥ 0. Therefore, with at least probability 1− δ2, x̂0 /∈ Xstuck i.e.

f(x̂T )− f(x̂0) ≤ −3F (195)

In this case we have:

f(x̂T )− f(x̂−1) = f(x̂T )− f(x̂0) + f(x̂0)− f(x̂−1) (196)

≤ −3F +
3

2
F (197)

≤ −F (198)

Lemma 17. Assume the major condition (86) and conditions (54), (55) and (58) hold; let ε21 ≤
F L1

2+2L2
1

and ε22 ≤ min{ L2
1

2(1−σ)αη2F ,F L2
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2+2L2
1
}. Assume x−1 such that λmin(∇2f(x̂−1)) ≤ −γ

and further ∀i let x0
i = x−1

i + ξ where ξ comes from the uniform distribution over the ball

of radius R =
√
F
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. Consider that the iterates xi follow the Gradient Tracking Update with

stepsize η2 such that η2, α satisfy conditions (41) - (44) and further η2 ≤ min{1, 1−σ
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} and
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}
. Then with probability at least 1 − δ2 we

have the following

H(xTcap ,yTcap)−H(x−1,y−1) ≤ −F (199)
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Proof. Recall that

H(xr,yr) :=
1

m

m∑
i=1

fi(x̂
r) +

1

m
‖xr − x̂r‖2 +

α

m
‖yr − ŷr‖2 (200)

H(x0,y0)−H(x−1,y−1)

= f(x̂0)− f(x̂−1) +
1

m
‖x0 − x̂0‖2 − 1

m
‖x−1 − x̂−1‖2 +

α

m
‖y0 − ŷ0‖2 − α

m
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≤ f(x̂0)− f(x̂−1) +
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≤ 3

2
F + αη2

L2
1

2(1− σ)
F (201)

≤ 3

2
F +

1

4
F (202)

≤ 7

4
F , (203)

where the first inequality comes from the fact that the same noise is injected to all local iterates and
thus

1

m
‖x0 − x̂0‖2 − 1

m
‖x−1 − x̂−1‖2 = 0 (204)

for the second inequality we use that f(x̂0)− f(x̂−1) ≤ 3
2F due to Lemma 10 and the bound from

(58).

Further, we have for the same T < ĉJ from Lemma 16
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fi(x̂
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m
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fi(x̂
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1
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= f(x̂T )− f(x̂0) + P (xT )− P (x0)

≤ f(x̂T )− f(x̂0) + αη2
24L2

1(1 +
1

β2
)

T∑
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‖ŷt‖2

≤ f(x̂T )− f(x̂0) + αη2
24L2
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= f(x̂T )− f(x̂0) +
1

1− σ
48L2

1αη2F

≤ −3F +
1

1− σ
48L2

1αη2F

≤ −11

4
F (205)

where the first inequality comes from Lemma 5, the second by condition (86) and the third by Lemma
16. Finally we get

H(xT ,yT )−H(x−1,y−1) = H(xT ,yT )−H(x0,y0) +H(x0,y0)−H(x−1,y−1) ≤ 7

4
F − 11

4
F ≤ −F

(206)

Since the potential function is non increasing H(xTcap ,yTcap) ≤ H(xT ,yT ) and the result follows.

Combining Lemma 12 and Lemma 17 we derive the following corollary stating that during the second
phase, the Gradient Tracking sequence is going to escape with high probability from an initial point
of sufficient negative curvature.
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Corollary 5. Assume conditions (54), (55) and (58) hold; let ε21 ≤ F L1

2+2L2
1

and ε22 ≤

min{ L2
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2(1−σ)αη2F ,F L1

2+2L2
1
}. Assume x−1 such that λmin(∇2f(x̂−1)) ≤ −γ and further ∀i
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. Then with probability at least 1 − δ2 we have the

following

H(xTcap ,yTcap)−H(x−1,y−1) ≤ −F (207)

Finally notice that as shown is Theorem 7, we can track whether the second phase succeeded in
substantially decreasing the potential function by two runs of the average consensus protocol. One on
iterate x−1 and one on xTcap . If there is substantial decrease then xTcap and yTcap are provided as a
starting point for the first phase. If the decrease is not substantial then with probability 1− δ2 the
point x̂−1 is a (ε1 + L1ε2, γ)−approximate second order stationary point and we terminate.

10.1 Convergence Rates

Theorem 6. Let ε, ρ be the target gradient and consensus error accuracy. Assume condition 58 and

let ε̂ = min

{
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}
and assume that in the first phase the iterates

xi follow the Gradient Tracking Update with stepsize η1 such that η1, α satisfy conditions (41)
- (44). Let T1 = 4e 4(f(x0)−f∗)

min{η1,1−σ}ε̂2 + 1. Let x−1 the point the first phase outputs and assume

λmin(∇2f(x̂−1)) ≤ −γ. Further ∀i let x0
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i + ξ where ξ comes from the uniform distribution

over the ball of radius R =
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. Consider that the iterates xi follow the Gradient Tracking Update

with stepsize η2 such that η2, α satisfy conditions (41) - (44) and further η2 ≤ min{1, 1−σ
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. Then with probability at least (1−δ1)(1−δ2)

we have the

H(xTcap ,yTcap)−H(x0,y0) ≤ −F (208)

where x0 is the first iterate of the first phase and xTcap is the last iterate of the second phase.
Further let us denote the average consensus iterations for phase I and II with Tcon and the total
number of communication rounds throughout both phases with T1,2. Then it holds:

T1,2 = 4e
4(f(x0)− f∗)

min{η1, 1− σ}ε̂2
+ ĉ

log(dκ/δ)

η2|λmin(H)|
+ Tcon = Õ

(
min

{
1

η1ε̂2
,

1

η2γ

})
(209)

Proof. From Theorem 5 we have
∥∥∥∥ 1
m

m∑
i=1

∇fi(x−1
i )

∥∥∥∥2

+ 1
m

∥∥x−1 − x̂−1
∥∥2 ≤ ε̂2 with probability

1− δ1. Since the conditions of Corollary 5 hold we also have that with probability at least 1− δ2

H(xTcap ,yTcap)−H(x0,y0) ≤ H(xTcap ,yTcap)−H(x−1,y−1) +H(x−1,y−1)−H(x0,y0)

(210)

≤ −F +H(x−1,y−1)−H(x0,y0) (211)

≤ −F (212)

where the last inequality comes from the monotonicity of the potential function through the first
phase. The total number of communication rounds include the first phase iterations and consensus
rounds as well as the second phase iterations and consensus rounds.
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Lemma 18. Let ε, ρ be the target gradient and consensus error accuracy. Further let ε̂ =

min

{
ε, ρ, L1√

2(1−σ)

√
αη2F ,

√
F L1√

2+2L2
1

}
. There exist α = O

(
(1− σ)2

)
, η1 = O

(
(1− σ)2

)
and η2 = Õ

(
γ2

d(1−σ)

)
such that the conditions of Theorem 6 hold and the communication rounds

throughout the first and the second phases is

T1,2 = Õ
(

min

{
1

(1− σ)2ε̂2
,

(1− σ)d

γ3

})
(213)

Proof. From theorem 6 we have

T1,2 = Õ
(

min

{
1

η1ε̂2
,

1

η2γ

})
= Õ

(
min

{
1

(1− σ)2ε̂2
,
d

γ3

})
(214)

Recall that after each pass of phase II the potential function is decreased at least by Õ(γ3) and thus
the following corollary captures the overall communication complexity of our algorithm before it
reaches some approximate second order stationary point.

Corollary 6. Assume the conditions of Lemma 18 hold. Then the overall communication rounds
performed by our algorithm is at most

Ttotal = Õ
(

min

{
1

(1− σ)2γ3ε̂2
,
d

γ6

}
(215)

If we further assume that the strict saddle property holds then by setting ε̂ ≤ θ
1+L1

our algorithm
converges to local minima. This claim is an immediate corollary of the following lemma.

Lemma 19. Assume that conditions (54), (55) hold and further ε1 + L1ε2 < θ. Then either x̂−1 is
ν−close to some local minimum or λmin(∇2f(x̂−1)) ≤ −ζ.

Proof. We can bound
∥∥∇f(x̂−1)

∥∥ as follows :

∥∥∇f(x̂−1)
∥∥ ≤ ∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x−1
i )− 1

m

m∑
i=1

∇fi(x̂−1)

∥∥∥∥∥+

∥∥∥∥∥ 1

m

m∑
i=1

∇fi(x−1
i )

∥∥∥∥∥ (216)

≤ L1

m

m∑
i=1

∥∥x−1
i − x̂−1

∥∥+ ε1 (217)

≤ L1

m

√√√√m

m∑
i=1

∥∥x−1
i − x̂−1

∥∥2
+ ε1 (218)

≤ L1

√
1

m

∥∥x−1 − x̂−1
∥∥2

+ ε1 (219)

≤ L1ε2 + ε1 (220)
< θ (221)

Where the second inequality comes from (54) and the last in equality comes from (55). The result
follows from Assumption 4 .

11 Average Consensus Protocol

We will now present how to utilize the average consensus protocol to achieve the following objectives:

1. Initialize y0 at the beginning of phase II such that

ŷ0 = 1
m

∑m
i=1∇fi(x0

i ) and 1
m

∥∥y0 − ŷ0
∥∥2 ≤ L2

1

2(1−σ)η2F .
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2. Coordinate the nodes to pick a phase I iteration r such that∥∥∥∥ 1
m

m∑
i=1

∇fi(xri )
∥∥∥∥2

+ 1
m ‖x

r − x̂r‖2 ≤ ε2.

3. Track the potential function decrease before and at the end of phase II,
H(xTcap ,yTcap)−H(x−1,y−1).

Average Consensus Update Rule for some vector xr

xr,0 = xr (222)

xr,t+1 = Wxr,t (223)

11.1 Initializing the second phase

Towards proving the first of our objectives we present the following lemma where we show that
the consensus error diminishes exponentially fast in the number of iterations. Notice that since
η2F = Õ

(
γ5

d

)
the number of iterations of the average consensus protocol have a logarithmic

dependence on γ, d and the initial error
m∑
i=1

∥∥∥∥∥∇fi(x0
i )−

m∑
j=1

∇fj(x0
j )

∥∥∥∥∥
2

.

Lemma 20. Consider the iterates x0
i ’s at the beginning of phase II and let each node, i, set y0

i =

∇fi(x0
i ). Let y0,0 = y0, y0,t+1 = Wy0,t and ŷ0 = 1

m

m∑
i=1

y0
i = 1

m

m∑
i=1

∇fi(x0
i ) . After ty + 1

rounds of the average consensus protocol on y0
i ’s we have the following guarantee

1

m

∥∥y0,t+1 − ŷ0
∥∥2 ≤ L2

1

2(1− σ)
η2F (224)

for ty =

⌊
log(
√
η2F)−log(‖y0−ŷ0‖)+log(

√
mL1)−log

(√
2(1−σ)

log(σ)

⌋
.

Proof. From the consensus update rule we know∥∥y0,t+1 − ŷ0
∥∥ ≤ ∥∥W (

y0,t − ŷ0
)∥∥ ≤ σ ∥∥y0,t − ŷ0

∥∥ (225)
Thus we derive the following ∥∥y0,t+1 − ŷ0

∥∥ ≤ σt+1
∥∥y0 − ŷ0

∥∥ (226)

Solving for t that guarantees σt+1
∥∥y0 − ŷ0

∥∥ ≤ L1
√
m√

2(1−σ)

√
η2F we get

σt+1 ≤ L1
√
m∥∥y0 − ŷ0

∥∥√2(1− σ)

√
η2F (227)

(t+ 1) log(σ) ≤ log
(√
mL1

)
+ log

(√
η2F

)
− log

(∥∥y0 − ŷ0
∥∥)− log

(√
2(1− σ)

)
(228)

t ≥
log (
√
mL1) + log

(√
η2F

)
− log

(∥∥y0 − ŷ0
∥∥)− log

(√
2(1− σ)

log(σ)
− 1 (229)

Thus for t = b
log(
√
η2F)−log(‖y0−ŷ0‖)+log(

√
mL1)−log

(√
2(1−σ)

log(σ) c we have∥∥y0,t+1 − ŷ0
∥∥ ≤ L1

√
m√

2(1− σ)

√
η2F (230)

which implies
1

m

∥∥y0,t+1 − ŷ0
∥∥2 ≤ L2

1

2(1− σ)
η2F (231)

Initializing y0
i = y

0,ty+1

i we achieve our first objective.
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11.2 Choosing a good iterate

In order to achieve our second objective first we provide upper bounds for ‖xr − x̂r‖ and
∥∥yr − ŷr

∥∥
for any iteration r of our lagorithm.
Lemma 21. Consider any iterates xr,yr following Gradient Tracking Update with η1, α that satisfy
conditions (41) - (44). Also assume that the potential function decreases between consecutive first
phases. Then

‖xr − x̂r‖ ≤
√
m(f(x0)− f) + 2mF (232)∥∥yr − ŷr

∥∥ ≤√m

α
(f(x0)− f) +

2m

α
F (233)

Proof.

H(x0,y0)−H(xr,yr) = f(x̂0) + 0 + 0− f(x̂r)− 1

m
‖xr − x̂r‖2 − α

m

∥∥yr − ŷr
∥∥2 ≥ −2F

(234)

where the last inequality holds because the potential function is non-increasing throughout a single
phase and due to Lemma 11. Thus we get

1

m
‖xr − x̂r‖2 +

α

m

∥∥yr − ŷr
∥∥2 ≤ f(x̂0)− f(x̂r) + 2F ≤ f(x̂0)− f∗ + 2F (235)

which derives

‖xr − x̂r‖2 ≤ m(f(x̂0)− f∗) + 2mF (236)∥∥yr − ŷr
∥∥2 ≤ m

α
(f(x̂0)− f∗) +

2m

α
F (237)

The result follows after taking the square roots of both bounds.

In the following lemma we are going to show that the consensus error diminishes exponentially fast
in the number of iterations.
Lemma 22. Consider any iterates xr,yr following Gradient Tracking Update with η1, α that satisfy
conditions (41) - (44). Also assume that the potential function decreases between consecutive first

phases. Let yr,0 = yr, yr,t+1 = Wyr,t and ŷr = 1
m

m∑
i=1

yri . After ty + 1 rounds of the average

consensus protocol on yri ’s we have the following guarantee∥∥yr,ty+1 − ŷr
∥∥ ≤ εc (238)

for ty =

⌊
c log(ε)+log(

√
α)−log

(√
m(f(x0)−f∗)+2mF

)
log(σ)

⌋
and any positive constant c.

Similarly let xr,0 = xr, xr,t+1 = Wxr,t and x̂r = 1
m

m∑
i=1

xri . After tx + 1 rounds of the average

consensus protocol on on xri ’s we have the following guarantee∥∥xr,tx+1 − x̂r
∥∥ ≤ εc (239)

for tx =

⌊
c log(ε)−log

(√
m(f(x0)−f∗)+2mF

)
log(σ)

⌋
and any positive constant c.

Proof. From the consensus update rule we know∥∥yr,t+1 − ŷr
∥∥ ≤ ∥∥W (

yr,t − ŷr
)∥∥ ≤ σ ∥∥yr,t − ŷr

∥∥ (240)

Thus we derive the following∥∥yr,t+1 − ŷr
∥∥ ≤ σt+1

∥∥yr,0 − ŷr
∥∥ ≤ σt+1

√
m

α
(f(x0)− f∗) +

2m

α
F (241)
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where the second inequality comes from Lemma 21. Solving for t that guarantees

σt+1
√

m
α (f(x0)− f∗) + 2m

α F ≤ ε
c we get

σt+1 ≤
√
αεc√

m(f(x0)− f∗) + 2mF
(242)

(t+ 1) log(σ) ≤ log(
√
αεc)− log

(√
m(f(x0)− f∗) + 2mF

)
(243)

t ≥
c log(ε) + log(

√
α)− log

(√
m(f(x0)− f∗) + 2mF

)
log(σ)

− 1 (244)

Thus for t =

⌊
c log(ε)+log(

√
α)−log

(√
m(f(x0)−f∗)+2mF

)
log(σ)

⌋
we have∥∥yr,t+1 − ŷr

∥∥ ≤ εc (245)

Similarly from the consensus update rule we know∥∥xr,t+1 − x̂r
∥∥ ≤ ∥∥W (

xr,t − x̂r
)∥∥ ≤ σ ∥∥xr,t − x̂r

∥∥ (246)

Thus we derive the following∥∥xr,t+1 − x̂r
∥∥ ≤ σt+1

∥∥xr,0 − x̂r
∥∥ ≤ σt+1

√
m(f(x0)− f∗) + 2mF (247)

where the second inequality comes from Lemma 21. Solving for t that guarantees
σt+1

√
m(f(x0)− f∗) + 2mF ≤ εc we get

σt+1 ≤ εc√
m(f(x0)− f∗) + 2mF

(248)

(t+ 1) log(σ) ≤ c log(ε)− log
(√

m(f(x0)− f∗) + 2mF
)

(249)

t ≥
c log(ε)− log

(√
m(f(x0)− f∗) + 2mF

)
log(σ)

− 1 (250)

Thus for t =

⌊
c log(ε)−log

(√
m(f(x0)−f∗)+2mF

)
log(σ)

⌋
we have∥∥xr,t+1 − x̂r
∥∥ ≤ εc (251)

The following corollary suggest that after a logarithmic number of iterations with respect to ε, every
node is going to have an accurate estimate of the average vector of interest.

Corollary 7. After
⌊
c log(ε)+log(

√
α)−log

(√
m(f(x0)−f∗)+2mF

)
log(σ)

⌋
+1 rounds of the average consensus

protocol on yri ’s we have the following guarantee∥∥yr,ti − ŷr
∥∥ ≤ εc, ∀i ∈ [m] (252)

After
⌊
c log(ε)−log

(√
m(f(x0)−f∗)+2mF

)
log(σ)

⌋
+ 1 rounds of the average consensus protocol on xri ’s we

have the following guarantee ∥∥xr,ti − x̂r
∥∥ ≤ εc, ∀i ∈ [m] (253)

The next lemma provides bounds that we will use in order to argue about the number of iterations re-

quired when we run the average consensus protocol on
∥∥∥yr,ty+1

i − yri

∥∥∥2

’s and on
∥∥∥xr,tx+1

i − xri

∥∥∥2

’s.
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Lemma 23. Consider any iterates xr,yr following Gradient Tracking Update with η1, α that satisfy
conditions (41) - (44). Also assume that the potential function decreases between consecutive

first phases. Let yr,0 = yr and ŷr = 1
m

m∑
i=1

yri , xr,0 = xr and x̂r = 1
m

m∑
i=1

xri . Further let

ty =

⌊
c log(ε)+log(

√
α)−log

(√
m(f(x0)−f∗)+2mF

)
log(σ)

⌋
and tx =

⌊
c log(ε)−log

(√
m(f(x0)−f∗)+2mF

)
log(σ)

⌋
.

The following bounds hold for ε ≤ min{1,
√

m
α16 (f(x0)− f∗ + 2F)} and c ≥ 1

m∑
i=1

∥∥∥yr,ty+1
i − yri

∥∥∥2

− 1

m

m∑
j=1

∥∥∥yr,ty+1
j − yrj

∥∥∥2

2

≤ 16m3

α2
(f(x0)− f∗ + F)2 (254)

m∑
i=1

∥∥∥xr,tx+1
i − xri

∥∥∥2

− 1

m

m∑
j=1

∥∥∥xr,tx+1
j − xrj

∥∥∥2

2

≤ 16m3(f(x0)− f∗ + F)2 (255)

Proof. First notice that∥∥∥yr,ty+1
i − yri

∥∥∥2

≤
∥∥∥yr,ty+1

i − ŷr
∥∥∥2

+ ‖ŷr − yri ‖
2

+ 2〈
∥∥∥yr,ty+1

i − ŷr
∥∥∥ , ‖ŷr − yri ‖〉 (256)

≤ ε2c +
m

α
(f(x0)− f∗ + 2F) + 2εc

√
m

α
(f(x0)− f∗ + 2F) (257)

≤ 2m

α
(f(x0)− f∗ + 2F) (258)

In the second inequality we use the results from Lemma 21 and Corollary 7. The third inequality
holds for sufficiently small ε ≤ min{1,

√
m

16α (f(x0)− f∗ + 2F)}. Thus we have

m∑
i=1

∥∥∥yr,ty+1
i − yri

∥∥∥2

− 1

m

m∑
j=1

∥∥∥yr,ty+1
j − yrj

∥∥∥2

2

≤
m∑
i=1

∥∥∥yr,ty+1
i − yri

∥∥∥2

+
1

m

m∑
j=1

∥∥∥yr,ty+1
j − yrj

∥∥∥2

2

(259)

≤
m∑
i=1

2m

α
(f(x0)− f∗ + 2F) +

1

m

m∑
j=1

2m

α
(f(x0)− f∗ + 2F)2

 (260)

≤
m∑
i=1

16m2

α2
(f(x0)− f∗ + 2F)2 (261)

≤ 16m3

α2
(f(x0)− f∗ + 2F)2 (262)

Notice that∥∥∥xr,tx+1
i − xri

∥∥∥2

≤
∥∥∥xr,tx+1

i − x̂r
∥∥∥2

+ ‖x̂r − xri ‖
2

+ 2〈
∥∥∥xr,tx+1

i − x̂r
∥∥∥ , ‖x̂r − xri ‖〉 (263)

≤ ε2c +m(f(x0)− f∗ + 2F) + 2εc
√
m(f(x0)− f∗ + 2F) (264)

≤ 2m(f(x0)− f∗ + 2F) (265)
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In the second inequality we use the results from Lemma 21 and Corollary 7. The third inequality
holds for sufficiently small ε ≤ min{1,

√
m
16 (f(x0)− f)}. Thus we have

m∑
i=1

∥∥∥xr,tx+1
i − xri

∥∥∥2

− 1

m

m∑
j=1

∥∥∥xr,tx+1
j − xrj

∥∥∥2

2

(266)

≤
m∑
i=1

∥∥∥xr,tx+1
i − xri

∥∥∥2

+
1

m

m∑
j=1

∥∥∥xr,tx+1
j − xrj

∥∥∥2

2

(267)

≤
m∑
i=1

2m(f(x0)− f∗ + 2F) +
1

m

m∑
j=1

2m(f(x0)− f∗ + 2F)

2

(268)

≤
m∑
i=1

16m2(f(x0)− f∗ + 2F)2 (269)

≤ 16m3(f(x0)− f∗ + 2F)2 (270)

The next lemma provides an upper bound on the number of iterations required when we run the

average consensus protocol on
∥∥∥yr,ty+1

i − yri

∥∥∥2

’s and on
∥∥∥xr,tx+1

i − xri

∥∥∥2

’s in order to achieve
accuracy εc.

Lemma 24. Consider any iterates xr,yr following Gradient Tracking Update with η1, α

that satisfy conditions (41) - (44) and ε ≤ min{1,
√

m
16α (f(x0)− f∗ + 2F)}, c ≥ 1.

Also assume that the potential function decreases between consecutive first phases. Let

yr,0 = yr and ŷr = 1
m

m∑
i=1

yri , xr,0 = xr and x̂r = 1
m

m∑
i=1

xri . Further let ty =⌊
c log(ε)+log(

√
α)−log

(√
m(f(x0)−f∗)+2mF

)
log(σ)

⌋
and tx =

⌊
c log(ε)−log

(√
m(f(x0)−f∗)+2mF

)
log(σ)

⌋
.

Define zr,0i :=
∥∥∥yr,ty+1

i − yri

∥∥∥2

, ẑr := 1
m

m∑
i=1

∥∥∥yr,ty+1
i − yri

∥∥∥2

and tz =

⌊
c log(ε)+logα−log(4m2(f(x0)−f∗+2F))

log(σ)

⌋
.

After tz + 1 rounds of the average consensus protocol on
∥∥∥yr,ty+1

i − yri

∥∥∥2

’s we have the following
guarantee ∥∥zr,tz+1 − ẑr

∥∥ ≤ εc (271)

Define wr,0
i :=

∥∥∥xr,tx+1
i − xri

∥∥∥2

, ŵr := 1
m

m∑
i=1

∥∥∥xr,tx+1
i − xri

∥∥∥2

and tw =

⌊
c log(ε)−log(4m2(f(x0)−f∗+2F))

log(σ)

⌋
.

After tw + 1 rounds of the average consensus protocol on
∥∥∥xr,tx+1

i − xri

∥∥∥2

’s we have the following
guarantee ∥∥wr,tw+1 − ŵr

∥∥ ≤ εc (272)

Proof. From the consensus update rule we know∥∥zr,t+1 − ẑr
∥∥ ≤ ∥∥W (

zr,t − ẑr
)∥∥ ≤ σ ∥∥zr,t − ẑr

∥∥ (273)
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Thus we derive the following∥∥zr,t+1 − ẑr
∥∥ ≤ σt+1

∥∥zr,0 − ẑr
∥∥ (274)

≤ σt+1

√√√√√ m∑
i=1

∥∥∥yr,ty+1
i − yri

∥∥∥2

− 1

m

m∑
j=1

∥∥∥yr,ty+1
j − yrj

∥∥∥2

2

(275)

≤ σt+1

√
16m3

α2
(f(x0)− f∗ + 2F)2 (276)

≤ σt+1 4m2

α
(f(x0)− f∗ + 2F) (277)

where the third inequality comes from Lemma 23. Solving for t that guarantees σt+1 4m2

α (f(x0)−
f∗ + 2F) ≤ εc we get

σt+1 ≤ αεc

4m2(f(x0)− f∗ + 2F)
(278)

(t+ 1) log(σ) ≤ c log(ε) + logα− log
(
4m2(f(x0)− f∗ + 2F)

)
(279)

t ≥
c log(ε) + logα− log

(
4m2(f(x0)− f∗ + 2F)

)
log(σ)

− 1 (280)

Thus for t = b c log(ε)+logα−log(4m2(f(x0)−f∗+2F))
log(σ) c we have∥∥zr,t+1 − ẑr

∥∥ ≤ εc (281)

Similarly from the consensus update rule we know∥∥wr,t+1 − ŵr
∥∥ ≤ ∥∥W (

wr,t − ŵr
)∥∥ ≤ σ ∥∥wr,t − ŵr

∥∥ (282)

Thus we derive the following∥∥wr,t+1 − ŵr
∥∥ ≤ σt+1

∥∥wr,0 − ŵr
∥∥ (283)

≤ σt+1

√√√√√ m∑
i=1

∥∥∥xr,tx+1
i − xri

∥∥∥2

− 1

m

m∑
j=1

∥∥∥xr,tx+1
j − xrj

∥∥∥2

2

(284)

≤ σt+1
√

16m3(f(x0)− f∗ + 2F)2 (285)

≤ σt+14m2(f(x0)− f∗ + 2F) (286)

where the third inequality comes from Lemma 23. Solving for t that guarantees σt+14m2(f(x0)−
f∗ + 2F) ≤ εc we get

σt+1 ≤ εc

4m2(f(x0)− f∗ + 2F)
(287)

(t+ 1) log(σ) ≤ c log(ε)− log
(
4m2(f(x0)− f∗ + 2F)

)
(288)

t ≥
c log(ε)− log

(
4m2(f(x0)− f∗ + 2F)

)
log(σ)

− 1 (289)

Thus for t =

⌊
c log(ε)−log(4m2(f(x0)−f∗+2F))

log(σ)

⌋
we have∥∥zr,t+1 − ẑr

∥∥ ≤ εc (290)
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Corollary 8. Let ε ≤ min{1,
√

m
16α (f(x0)− f∗ + 2F)}, c ≥ 1. The total number of average

consensus iterations to achieve sufficient accuracy captured in the following four bounds∥∥yr,ty − ŷr
∥∥ ≤ εc (291)∥∥xr,tx − x̂r
∥∥ ≤ εc (292)∥∥zr,tz − ẑr
∥∥ ≤ εc (293)∥∥wr,tw − ŵr
∥∥ ≤ εc (294)

is at most

4

(
c log( 1

ε ) + log( 1
α ) + log

(
4m2(f(x0)− f∗ + 2F)

)
log( 1

σ )
+ 1

)
(295)

Proof. The total number of iterations is at most

ty + tx + tz + tw + 4 ≤ 4tz + 4 (296)

≤ 4

(
c log(ε) + logα− log

(
4m2(f(x0)− f∗ + 2F)

)
log(σ)

+ 1

)
(297)

≤ 4

(
c log( 1

ε ) + log( 1
α ) + log

(
4m2(f(x0)− f∗ + 2F)

)
log( 1

σ )
+ 1

)
(298)

The next lemma shows how far off is the square of the estimated difference
∥∥yr,ty+1 − yr

∥∥2
(and

respectively
∥∥xr,tx+1 − xr

∥∥2
) from the square of the true difference

∥∥ŷr − yr
∥∥2

(and respectively
‖x̂r − xr‖2). Similar result for the square of the average gradient estimate is also provided.
Lemma 25. Consider any iterates xr,yr following Gradient Tracking Update with η1, α that satisfy
conditions (41) - (44). Also assume that the potential function decreases between consecutive first
phases. Let yr,ty+1 and xr,tx+1 as defined in Lemma 22. The following bounds hold:

1

m

∥∥ŷr − yr
∥∥2

+
1

m
ε2c +

2

m
εc
∥∥ŷr − yr

∥∥ ≥ 1

m

∥∥yr,ty+1 − yr
∥∥2 ≥ 1

m

∥∥ŷr − yr
∥∥2 − 2

m
εc
∥∥ŷr − yr

∥∥
(299)

1

m
‖x̂r − xr‖2 +

1

m
ε2c +

2

m
εc ‖x̂r − xr‖ ≥ 1

m

∥∥xr,tx+1 − xr
∥∥2 ≥ 1

m
‖x̂r − xr‖2 − 2

m
εc ‖x̂r − xr‖

(300)

∀i ‖ŷr‖2 + ε2c + 2εc ‖ŷr‖ ≥
∥∥∥yr,ty+1

i

∥∥∥2

≥ ‖ŷr‖2 − 2εc ‖ŷr‖ (301)

Proof.

1

m

∥∥yr,ty+1 − yr
∥∥2

=
1

m

∥∥yr,ty+1 − ŷr + ŷr − yr
∥∥2

(302)

=
1

m

(∥∥yr,ty+1 − ŷr
∥∥2

+
∥∥ŷr − yr

∥∥2
+ 2〈yr,ty+1 − ŷr, ŷr − yr〉

)
(303)

and from here we can derive both the upper and the lower bound

1

m

∥∥yr,ty+1 − yr
∥∥2 ≥ 1

m

∥∥ŷr − yr
∥∥2 − 2

m

∥∥yr,ty+1 − ŷr
∥∥∥∥ŷr − yr

∥∥ (304)

≥ 1

m

∥∥ŷr − yr
∥∥2 − 2

m
εc
∥∥ŷr − yr

∥∥ (305)
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where the last inequality is due to Lemma 22. Also
1

m

∥∥yr,ty+1 − yr
∥∥2 ≤ 1

m

(∥∥yr,ty+1 − ŷr
∥∥2

+
∥∥ŷr − yr

∥∥2
+ 2

∥∥yr,ty+1 − ŷr
∥∥ ∥∥ŷr − yr

∥∥)
(306)

≤ 1

m

∥∥ŷr − yr
∥∥2

+
1

m
ε2c +

2

m
εc
∥∥ŷr − yr

∥∥ (307)

where again the second inequality comes from Lemma 22.
The proof deriving the bounds for 1

m

∥∥xr,tx+1 − x̂r
∥∥2

is identical. For the third bound we work as
follows

∥∥∥yr,t+1
i

∥∥∥2

=
∥∥∥yr,t+1

i − ŷr + ŷr
∥∥∥2

=
∥∥∥yr,t+1

i − ŷr
∥∥∥2

+ ‖ŷr‖2 + 2〈yr,t+1
i − ŷr, ŷr〉 (308)

and thus we derive the bounds∥∥∥yr,t+1
i

∥∥∥2

≥ ‖ŷr‖2 − 2
∥∥∥yr,t+1

i − ŷr
∥∥∥ ‖ŷr‖ (309)

≥ ‖ŷr‖2 − 2εc ‖ŷr‖ (310)
(311)

the last inequality follows from Corollary 7. Also∥∥∥yr,t+1
i

∥∥∥2

≤ ‖ŷr‖2 +
∥∥∥yr,t+1

i − ŷr
∥∥∥2

+ 2
∥∥∥yr,t+1

i − ŷr
∥∥∥ ‖ŷr‖ (312)

≤ ‖ŷr‖2 + ε2c + 2εc ‖ŷr‖ (313)

The result derived in the following lemma is utilized as an intermediate step to towards proving
second objective.
Lemma 26. Consider any iterates xr,yr following Gradient Tracking Update with η1, α that
satisfy conditions (41) - (44). Also assume that the potential function decreases between
consecutive first phases. Let yr,ty+1 and xr,tx+1 as defined in Lemma 22. Also let ε ≤
min{ 1

8 ,
√

m
16α (f(x0)− f∗ + 2F)} and c ≥ 2. Assume that

‖ŷr‖2 +
1

m
‖x̂r − xr‖2 ≤ ε2

4
(314)

then ∥∥∥yr,ty+1
i

∥∥∥2

+
1

m

∥∥xr,tx+1 − xr
∥∥2 ≤ ε2

3
(315)

Further assume that

‖ŷr‖2 +
1

m
‖x̂r − xr‖2 > ε2 (316)

then ∥∥∥yr,ty+1
i

∥∥∥2

+
1

m

∥∥xr,tx+1 − xr
∥∥2
>

7

8
ε2 (317)

Proof. For the first part of the proof we utilize the upper bounds from Lemma 25:∥∥∥yr,ty+1
i

∥∥∥2

+
1

m

∥∥xr,tx+1 − xr
∥∥2

(318)

≤ ‖ŷr‖2 +
1

m
‖x̂r − xr‖2 +

(
1 +

1

m

)
ε2c + 2εc

(
‖ŷr‖2 +

1

m
‖x̂r − xr‖2

)
(319)

≤ ε2

4
+

(
1 +

2

m

)
ε2c + 2εc

ε2

4
(320)

≤ ε2
(

1

4
+

(
1 +

2

m

)
ε2c−2 +

1

2
εc
)

(321)

≤ ε2

3
(322)
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where the last inequality holds for ε ≤ 1
6 and c ≥ 2.

For the second part of the proof we utilize the lower bounds from Lemma 25:∥∥∥yr,ty+1
i

∥∥∥2

+
1

m

∥∥xr,tx+1 − xr
∥∥2

(323)

≥ ‖ŷr‖2 +
1

m
‖x̂r − xr‖2 − 2εc

(
‖ŷr‖2 +

1

m
‖x̂r − xr‖2

)
(324)

> ε2 − 2εc+2 (325)

≥ 7

8
ε2 (326)

where the last inequality holds for ε ≤ 1
6 and c ≥ 2.

The following lemma states that if r is a good iteration then for each node the estimation after running
the consensus protocol is at most ε

2

2 . On the other hand if r is an iterate with ‖ŷr‖2 + 1
m ‖x̂

r − xr‖2 +
1
m

∥∥ŷr − yr
∥∥2
> ε2 then each node has an estimation of value at least 3

4ε
2.

Lemma 27. Consider any iterates xr,yr following Gradient Tracking Update with η1, α that satisfy
conditions (41) - (44). Also assume that the potential function decreases between consecutive first
phases. Let yr,ty+1 and xr,tx+1 , zr,tz+1 and wr,tw+1 as defined in Lemma 22 and Lemma 24.
Also let ε ≤ min{ 1

8 ,
√

m
16α (f(x0)− f∗ + 2F)} and c ≥ 3. If it holds that

‖ŷr‖2 +
1

m
‖x̂r − xr‖2 ≤ ε2

4
(327)

then ∥∥∥yr,ty+1
i

∥∥∥2

+ wr,tw+1
i ≤ ε2

2
∀i (328)

Further if it holds that

‖ŷr‖2 +
1

m
‖x̂r − xr‖2 > ε2 (329)

then ∥∥∥yr,ty+1
i

∥∥∥2

+ wr,tw+1
i >

3

4
ε2 (330)

Proof. From Lemma 24 we know the following ∥∥wr,tw+1 − ŵr
∥∥ ≤ εc (331)

|wr,tw+1
i − ŵr| ≤ εc (332)

|wr,tw+1
i − 1

m

m∑
i=1

∥∥∥xr,tx+1
i − xri

∥∥∥2

| ≤ εc (333)

|wr,tw+1
i − 1

m

∥∥xr,tx+1 − xr
∥∥2 | ≤ εc (334)

(335)
And thus we have

1

m

∥∥xr,tx+1 − xr
∥∥2 − εc ≤ wr,tw+1

i ≤ 1

m

∥∥xr,tx+1 − xr
∥∥2

+ εc (336)

Utilizing the above bounds and Lemma 26 we can show the first claim∥∥∥yr,ty+1
i

∥∥∥2

+ wr,tw+1
i ≤

∥∥∥yr,ty+1
i

∥∥∥2

+
1

m

∥∥xr,tx+1 − xr
∥∥2

+ εc (337)

≤ ε2

3
+ εc (338)

≤ ε2

2
(339)
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where the last inequality holds for ε ≤ 1
6 and c ≥ 3. The second claim is derived along the same

lines: ∥∥∥yr,ty+1
i

∥∥∥2

+ wr,tw+1
i ≥

∥∥∥yr,ty+1
i

∥∥∥2

+
1

m

∥∥xr,tx+1 − xr
∥∥2 − εc (340)

>
7

8
ε2 − εc (341)

≥ 3

4
ε2 (342)

where the last inequality holds for ε ≤ 1
8 and c ≥ 3.

The next lemma shows that after a small number of iterations all the nodes can coordinate to either
approve or disapprove iteration r.
Lemma 28. Consider any first phase iterates xr,yr following Gradient Tracking Update with
η1, α that satisfy conditions (41) - (44). Also assume that the potential function decreases between
consecutive first phases. Let yr,ty+1, xr,tx+1 and wr,tw+1 as defined in Lemma 22 and Lemma 24.
Let ε ≤ min{ 1

8 ,
√

m
16α (f(x0)− f∗ + 2F)} and c ≥ 3.

Define indr,0i := 1{∥∥∥yr,ty+1

i

∥∥∥2+wr,tw+1
i ≤ ε22

} and also ˆind
r

:= 1
m

m∑
i=1

indr,0i

Also define tind :=
⌊

log(2m
3
2 )

log( 1
σ )

⌋
If we run the average consensus protocol on indr,0i ’s for tind iterations we are going to achieve the
following bound ∥∥∥indr,tind+1 − ˆind

r
∥∥∥ ≤ 1

2m
(343)

Proof. From the update of the average consensus protocol we have∥∥∥indr,t+1 − ˆind
r
∥∥∥ ≤ ∥∥∥W (

indr,t − ˆind
r
)∥∥∥ ≤ σ ∥∥∥indr,t − ˆind

r
∥∥∥ (344)

(345)
Thus we have ∥∥∥indr,t+1 − ˆind

r
∥∥∥ ≤ σt+1

∥∥∥indr,0 − ˆind
r
∥∥∥ (346)

Choosing t such that σt+1
∥∥∥indr,0 − ˆind

r
∥∥∥ ≤ 1

2m and since
∥∥∥indr,0 − ˆind

r
∥∥∥ ≤ √m we get

σt+1 ≤ 1

2m
3
2

(347)

(t+ 1) log(σ) ≤ − log(2m
3
2 ) (348)

t ≤ log(2m
3
2 )

log( 1
σ )
− 1 (349)

Thus choosing tind =
⌊

log(2m
3
2 )

log( 1
σ )

⌋
we derive the result.

Corollary 9. After running the average consensus protocol on yri ’s, xri ’s,
∥∥∥xr,tx+1

i − xri

∥∥∥2

’s and

indri ’s each node approves iteration r if 1− 1
2m ≤ ind

r,tind+1
i . The total number of iterations are at

most ttot = 4

(
c log( 1

ε )+log( 1
α )+log(4m2(f(x0)−f∗+2F))

log( 1
σ )

+ 1

)
. Further if

‖ŷr‖2 +
1

m
‖x̂r − xr‖2 ≤ ε2

4
(350)

then all nodes will approve whereas if

‖ŷr‖2 +
1

m
‖x̂r − xr‖2 ≥ ε2 (351)

then all nodes will disapprove.
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Proof. The second part of the corollary is immediate from Lemma 28. For the number of iterations
we have the following:

ttot ≤ ty + tx + tw + 3 + tind + 1 (352)
≤ 3tz + 3 + tind + 1 (353)

≤ 3

(
c log( 1

ε ) + log( 1
α ) + log

(
4m2(f(x0)− f∗ + 2F)

)
log( 1

σ )
+ 1

)
+

log(2m
3
2 )

log( 1
σ )

+ 1 (354)

≤ 4

(
c log( 1

ε ) + log( 1
α ) + log

(
4m2(f(x0)− f∗ + 2F)

)
log( 1

σ )
+ 1

)
(355)

11.3 Tracking the Potential Function

Finally, working towards our third objective recall that H(x,y) = f(x̂) + 1
m ‖x

r − x̂r‖2 +
α
m

∥∥yr − ŷr
∥∥2

. We start by utilizing Corollary 8 and thus for sufficiently small ε̃ after

4

(
c log( 1

ε̃ )+log( 1
α )+log(4m2(f(x0)−f∗+2F))

log( 1
σ )

+ 1

)
communication rounds we achieve the following

accuracy bounds for some iteration r: ∥∥yr,ty − ŷr
∥∥ ≤ ε̃c (356)

∥∥xr,tx − x̂r
∥∥ ≤ ε̃c (357)

∥∥zr,tz − ẑr
∥∥ ≤ ε̃c (358)

∥∥wr,tw − ŵr
∥∥ ≤ ε̃c (359)

Further choosing a sufficiently large c̃ and running the consensus protocol for xri ’s for(
c̃ log( 1

ε̃ )+log( 1
α )+log(4m2(f(x0)−f∗+2F))

log( 1
σ )

+ 1

)
rounds guarantees sufficient accuracy on the function

value of the average iterate 1
m

m∑
i=1

fi(x̂).

Lemma 29. Consider any iterates xr,yr following Gradient Tracking Update with η1, α that satisfy
conditions (41) - (44). Also assume that the potential function decreases between consecutive first
phases. Consider a sufficiently large c̃ that guarantees maxi

∥∥∥fi(xr,tx+1
i )− fi(x̂r)

∥∥∥ ≤ ε̃c

2m after run-

ning the consensus protocol on xri ’s for tx =

(
c̃ log( 1

ε̃ )+log( 1
α )+log(4m2(f(x0)−f∗+2F))

log( 1
σ )

+ 1

)
rounds.

Define gr,0i := fi(x
r,tx+1
i ) and ĝr := 1

m

m∑
i=1

fi(x
r,tx+1
i ), let tg =

⌊
c log(ε̃)−log(2‖gr,0−ĝr‖)

log σ

⌋
and

denote the true target function value by ĝrtr := 1
m

m∑
i=1

fi(x̂
r).

Then the following bound holds
∥∥∥gr,tg+1 − ĝr

tr

∥∥∥ ≤ ε̃c
Proof. From the update of the consensus protocol we have

∥∥gr,t+1 − ĝr
∥∥ ≤ σt+1

∥∥gr,0 − ĝr
∥∥.

Thus we solve for t such that

σt+1
∥∥gr,0 − ĝr

∥∥ ≤ ε̃c

2
(360)

t ≥
c log(ε̃)− log

(
2
∥∥gr,0 − ĝr

∥∥)
log σ

− 1 (361)
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Thus for tg =

⌊
c log(ε̃)−log(2‖gr,0−ĝr‖)

log σ

⌋
we have

∥∥gr,tg+1 − ĝr
∥∥ ≤ ε̃c

2 .

Using the assumptions of the lemma we can also show that the estimation of the nodes is not far from
the true function value.

max
i

∥∥∥fi(xr,tx+1
i )− fi(x̂r)

∥∥∥ ≤ ε̃c

2m
(362)

1

m

m∑
i=1

∥∥∥fi(xr,tx+1
i )− fi(x̂r)

∥∥∥ ≤ ε̃c

2m
(363)∥∥∥∥∥ 1

m

m∑
i=1

fi(x
r,tx+1
i )− 1

m

m∑
i=1

fi(x̂
r)

∥∥∥∥∥ ≤ ε̃c

2m
(364)

∥∥∥ĝr − ĝr
tr

∥∥∥ ≤ ε̃c

2
(365)

which implies that
∥∥∥gr,tg+1 − ĝr

tr

∥∥∥ ≤ ε̃c
Corollary 10. Consider the assumption of Lemma 29 hold. Then after

4
c̃ log( 1

ε̃ )+log( 1
α )+log(4m2(f(x0)−f∗+2F))

log( 1
σ )

+ 4 +
c log(ε̃)−log(2‖gr,0−ĝr‖)

log σ rounds of consensus
protocol we achieve the following accuracy:∥∥yr,ty − ŷr

∥∥ ≤ ε̃c (366)

∥∥xr,tx − x̂r
∥∥ ≤ ε̃c (367)

∥∥zr,tz − ẑr
∥∥ ≤ ε̃c (368)

∥∥wr,tw − ŵr
∥∥ ≤ ε̃c (369)

∥∥∥∥∥gr,tgi − 1

m

m∑
i=1

fi(x̂)

∥∥∥∥∥ ≤ ε̃c,∀i (370)

Similarly to section 11.2 utilizing Lemma 25 and equation (370) we get the following bounds :

Corollary 11. Consider the assumptions of Lemma 29 hold. Then the following bounds also hold

1

m

∥∥ŷr − yr
∥∥2

+
1

m
ε̃2c +

2

m
ε̃c
∥∥ŷr − yr

∥∥ ≥ 1

m

∥∥yr,ty+1 − yr
∥∥2 ≥ 1

m

∥∥ŷr − yr
∥∥2 − 2

m
ε̃c
∥∥ŷr − yr

∥∥
(371)

1

m
‖x̂r − xr‖2 +

1

m
ε̃2c +

2

m
ε̃c ‖x̂r − xr‖ ≥ 1

m

∥∥xr,tx+1 − xr
∥∥2 ≥ 1

m
‖x̂r − xr‖2 − 2

m
ε̃c ‖x̂r − xr‖

(372)

1

m

m∑
i=1

fi(x̂) + ε̃c ≥ gr,tgi ≥ 1

m

m∑
i=1

fi(x̂)− ε̃c (373)

The next lemma is used as an intermediate step in order to derive our final result.

Lemma 30. Consider the assumptions of Lemma 29 hold. Further let ε̃ ≤

min

{
1
8 ,
(

4
√
f(x̂0)− f∗ + 2F

) c
4

}
and c ≥ 4. Then we can prove the following bounds:

H(xr,yr) + ε̃
c
2 ≥ gr,tgi +

1

m

∥∥xr,tx+1 − xr
∥∥2

+
α

m

∥∥yr,ty+1 − yr
∥∥2 ≥ H(xr,yr)− ε̃ c2 (374)
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Proof. Towards proving the upper bound we utilize the results presented in Corollary 10.

g
r,tg
i +

1

m

∥∥xr,tx+1 − xr
∥∥2

+
α

m

∥∥yr,ty+1 − yr
∥∥2

≤ 1

m

m∑
i=1

fi(x̂) + ε̃c +
1

m
‖x̂r − xr‖2 +

1

m
ε̃2c +

2

m
ε̃c ‖x̂r − xr‖

+
α

m

∥∥ŷr − yr
∥∥2

+
α

m
ε̃2c +

2α

m
ε̃c
∥∥ŷr − yr

∥∥ (375)

≤ H(xr,yr) + ε̃c +

(
1 + α

m

)
ε̃2c +

4

m
ε̃2c
(
‖x̂r − xr‖+ α

∥∥ŷr − yr
∥∥) (376)

≤ H(xr,yr) + ε̃c +

(
2

m

)
ε̃2c + 4ε̃c

√
f(x̂0)− f∗ + 2F (377)

≤ H(xr,yr) + ε̃
c
2 (378)

where third inequality comes from Lemma 21 aND the last inequality is due to ε̃ ≤

min

{
1
8 ,
(

4
√
f(x̂0)− f∗ + 2F

) c
4

}
and c ≥ 4. Similarly for the lower bound we have

g
r,tg
i +

1

m

∥∥xr,tx+1 − xr
∥∥2

+
α

m

∥∥yr,ty+1 − yr
∥∥2

≥ H(xr,yr)− ε̃c − 4

m
ε̃2c
(
‖x̂r − xr‖+ α

∥∥ŷr − yr
∥∥) (379)

≥ H(xr,yr)− ε̃ c2 (380)

From the above lemma and inequalities (369) and (368) we can bound the error of the estimation of
the potential function by each node i.

Corollary 12. Assume the conditions of Lemma 30 and inequalities (369) and (368) hold. Then the
following bounds characterize the error on the estimation of the potential function after utilizing the av-

erage consensus protocol for 4
c̃ log( 1

ε̃ )+log( 1
α )+log(4m2(f(x0)−f∗+2F))

log( 1
σ )

+ 4 +
c log(ε̃)−log(2‖gr,0−ĝr‖)

log σ

rounds.

H(xr,yr) + ε̃
c
2 + ε̃c + αε̃c ≥ gr,tgi + wr,tw

i + αzr,tzi ≥ H(xr,yr)− ε̃ c2 − ε̃c − αε̃c (381)

And for ε̃ ≤ 1
8 and c ≥ 4 we also have

H(xr,yr) + 2ε̃
c
2 ≥ gr,tgi + wr,tw

i + αzr,tzi ≥ H(xr,yr)− 2ε̃
c
2 (382)

Further after 8
c̃ log( 1

ε̃ )+log( 1
α )+log(4m2(f(x0)−f∗+2F))

log( 1
σ )

+ 8 + 2
c log(ε̃)−log(2‖gr,0−ĝr‖)

log σ of the consen-
sus protocol on the iteration before the injection of noise and on the iteration at the end of phase two
we have

H(x−1,y−1)−H(xTcap ,yTcap) + 4ε̃
c
2 ≥ g−1,tg

i + w−1,tw
i + αz−1,tz

i −
(
g
Tcap,tg
i + w

Tcap,tw
i + αz

Tcap,tz
i

)
(383)

H(x−1,y−1)−H(xTcap ,yTcap)− 4ε̃
c
2 ≤ g−1,tg

i + w−1,tw
i + αz−1,tz

i −
(
g
Tcap,tg
i + w

Tcap,tw
i + αz

Tcap,tz
i

)
(384)

Combining all the above we can achieve our third objective

Theorem 7. Assume the conditions of Corollary 12 hold and set ε̃
c
2 = F

40 . After

8
c̃ log( 1

ε̃ )+log( 1
α )+log(4m2(f(x0)−f∗+2F))

log( 1
σ )

+ 9 + 2
c log(ε̃)−log(2‖gr,0−ĝr‖)

log σ + log(2m
3
2 )

log( 1
σ )

iterations of
the consensus protocol the nodes decide whether enough progress has been made in phase II.
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Proof. First notice that by setting ε̃
c
2 = F

40 the estimation of each node i regarding the potential
function decrease is off at most by F10 . Thus the nodes can distinguish between second phases that
achieve decrease at least F and second phases that achieve decrease less than F2 . To do so we utilize
Lemma 28 with ind0

i = 1{
g
−1,tg
i +w−1,tw

i +αz−1,tz
i −

(
g
Tcap,tg
i +w

Tcap,tw
i +αz

Tcap,tz
i

)
≤F2

}. Notice that

if the potential function decrease in the current phase II is at least F then all nodes are going to
approve and in the case the the current phase II achieves less than F2 decrease all nodes are going to
disapprove. Finally, notice that if the decrease is between F and F2 both outcomes are possible; this
is acceptable since enough progress have been made in this case as well.
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