
A Instance augmentation

A.1 Application Ideas

Coordinate transformation. TSP and CVRP experiments in this paper are following the setup
where node locations are randomly sampled from the unit square, i.e., x ∼ (0, 1) and y ∼ (0, 1). All
transformations for the ×8 instance augmentation used in the experiments preserve the range of x
and y, and therefore the new problem instances generated by these transformations are still valid.

For the sake of improving the inference result, however, there is no need to stick to “valid” problem
instances that comply to the setup rule, as long as the (near-) optimal ordering of node sequence can
be generated. Take, for example, rotation by 10 degrees with the center of rotation at (0.5, 0.5). The
new problem instance generated by this transformation may (or may not!) contain nodes that are
outside the unit square, but this is okay. Although the policy network is trained using nodes inside the
unit square only, it is reasonable to assume that it would still perform well with the nodes that are
close from the boundaries. As long as the network can produce alternative result which has nonzero
chance of being better and there is room in the time budget, such non-complying transformations are
still worth trying during the inference stage.

Possible non-complying transformations for CO problems based on Euclidean distances are 1)
rotations by arbitrary angles, 2) translations by small vectors, and 3) scaling (both bigger and smaller)
by small factors. A combination of any of those, plus a flip operation, also works.

Input ordering. In the AM model, the order of input data does not matter because the dot-attention
mechanism does not care about the stacking order of the query vectors. But in practice, POMO can be
applied to other types of neural models such as those based on recurrent structures of RNN or LSTM.
For these neural nets, the feeding order of the input affects the outcome. Attention with positional
encoding (as in the Transformer model) also produces different outputs with different input orderings.

The optimal solution of a CO problem should be identical regardless of the order with which the input
data is given. A simple re-ordering of the input set can lead to an instance augmentation utilizable by
POMO in the neural net architectures described above. This can be much more powerful than ×8
coordinate transformations used in our experiments, because input re-ordering gives N ! number of
augmentations.

A.2 Ablation study without POMO training

In the paper, instance augmentation has been applied only on the POMO-trained networks. But
instance augmentation is a general inference technique that can be adopted for other deep RL CO
solvers, not just the construction-types, but also the improvement-types, too.

We have performed additional experiments that apply the ×8 instance augmentation on the original
AM network, trained by REINFORCE with a greedy rollout baseline. The results are given in Table 1
and 2. It is interesting that ×8 augmentation (i.e., choosing the best out of 8 greedy trajectories)
improves the AM result to the similar level achieved by sampling 1280 trajectories.

Table 1: Inference techniques on the AM for TSP

Method TSP20 TSP50 TSP100
Len. Gap Time Len. Gap Time Len. Gap Time

Concorde 3.83 - (5m) 5.69 - (13m) 7.76 - (1h)

AM, greedy rollout 3.84 0.19% (�1s) 5.76 1.21% (1s) 8.03 3.51% (2s)
AM, 1280 sampling 3.83 0.07% (1m) 5.71 0.39% (5m) 7.92 1.98% (22m)
AM, ×8 augment. 3.83 0.01% (1s) 5.71 0.24% (4s) 7.89 1.67% (14s)

1



Table 2: Inference techniques on the AM for CVRP

Method CVRP20 CVRP50 CVRP100
Len. Gap Time Len. Gap Time Len. Gap Time

LKH3 6.12 - (2h) 10.38 - (7h) 15.68 - (12h)

AM, greedy rollout 6.40 4.45% (�1s) 10.93 5.34% (1s) 16.73 6.72% (3s)
AM, 1280 sampling 6.24 1.97% (3m) 10.59 2.11% (7m) 16.16 3.09% (30m)
AM, ×8 augment. 6.22 1.63% (2s) 10.67 2.81% (6s) 16.35 4.30% (18s)

B Traveling salesman problem

B.1 Problem setup

We need to find the shortest loop connecting all N nodes, where the distance between two nodes is
the Euclidean distance. The location of each node is sampled randomly from the unit square.

B.2 Policy network

Except for the omission of start-node-selecting part, the AM model used in the POMO experiments
is the same as that of Kool et al. [1] (which we refer to as “the original AM paper”).

Encoder No change is made for implementation of POMO. The encoder of the AM produces node
embedding hi for 1 ≤ i ≤ N . We define h̄ as the mean of all node embeddings.

Decoder In the original AM paper, the decoder uses a single “context node embedding,” h(c) as the
input to the decoder. It is defined in Equation (4) of Kool et al. [1] as a concatenation

h(c) =

{[
h̄, hπt−1 , hπ1

]
t > 1[

h̄, vl, vf
]

t = 1.
(1)

Here, t is the number of iterations, and hπt is the embedding of tth selected node, the output of the
decoder after t iterations. vl, vf are trainable parameters, which make h(c)(t = 1) a trainable START
token.

In POMO, we use N different context node embeddings, h1
(c),h

2
(c), . . . ,h

N
(c). Each context node

embedding is given by

hi(c) =

{[
h̄, hiπt−1

, hiπ1

]
t > 1

none t = 1.
(2)

We do not use context node embedding for t = 1, as POMO does not use the decoder to determine
the first selected node. Instead, we simply define

hiπ1
= hi for i = 1, 2, . . . , N. (3)

B.3 Hyperparameters

Node embedding is dh-dimensional with dh = 128. The encoder has Nlayer = 6 attention layers,
where each layer contains a multi-head attention with head number M = 8 and the dimensions of
key, value, and query dk = dv = dq = dh/M = 16. A feed-forward sublayer in each attention layer
has a dimension dff = 512. This set of hyperparameters is also used for CVRP and KP.

C Capacitated vehicle routing problem

C.1 Problem setup

There are N customer nodes whose locations are sampled uniformly from the unit square. A customer
node i has a demand δ̂i = δi/D, where δi is sampled uniformly from a discrete set {1, 2, . . . , 9} and

2



D = 30, 40, 50 for N = 20, 50, 100, respectively. An additional “depot” node is created at a random
location inside the unit square. A delivery vehicle with capacity 1 makes round trips starting and
ending at the depot, delivering goods to customer nodes according to their demands and restocking
while at the depot. We allow no split deliveries, meaning that each customer node is visited only once.
The goal is to find the shortest path for the vehicle.

C.2 Policy network

As CVRP has a fixed starting point (the depot node), POMO is applied on the second node in the
path (the first customer node to visit). The original AM method feeds the depot node as the input to
the policy network (i.e. the deport node serves as the START token), which then chooses the second
node. In our POMO method, we generate N different trajectories by designating all customer nodes
to be the second nodes.

In TSP, all trajectories are made of the same number of nodes, which makes the parallel trajectory
generation quite simple. In CVRP, the vehicle is allowed to make multiple stops at the depot. Better
planned routes tend to make fewer returns to the depot, making those trajectories shorter than the
others. For parallel processing of multiple trajectories, we force the vehicle with no more deliveries
to stay at the depot, with a fixed probability 1, until all other trajectories are finished. This makes all
trajectories to have equal lengths, simplifying parallel calculations using tensors. Note that this does
not change the total travel length of the vehicle. More importantly, this does not change the learning
process of the neural net as the gradient of a constant probability 1 is zero.

D 0-1 knapsack problem

D.1 Problem setup

We prepare a set ofN items, each with weight and value randomly sampled from (0, 1). The knapsack
has the weight capacity 12.5, 25, 25 for N = 50, 100, 200. The goal is to find the optimal subset of
items that maximizes the total value while fit in the knapsack.

D.2 Policy network

We reuse the neural net developed for TSP and apply it to solve KP, as both TSP and KP have an
input of the same form: N number of tuples (x, y) ∈ {x ∈ R, y ∈ R : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. In
TSP, (x, y) is the x- and y-coordinate of a node, while in KP it is weight and value of an item. In KP,
a “visit” to an item (a node) is interpreted as putting it into the knapsack. Inclusion of the first and the
last selected items in the “context node embedding” (hπt−1 and hπ1 in Equation (2)) does not seem
necessary for building a good heuristic for KP, but we have taken the lazy approach and have left the
model unmodified, letting the machine choose what information is relevant.

Some changes are necessary, however. When solving TSP, only visited nodes are masked from
selection. When solving KP, selected items (i.e. visited nodes) as well as items that no longer fit
inside the knapsack are masked. In the case of TSP, an episode ends when all nodes are selected. In
KP, it ends when all leftover items have larger weight than the knapsack’s remaining capacity. To
make multiple trajectories to contain an equal number of items (for parallel processing), auxiliary
items that have zero values and weights are used.

Training algorithm is modified as well. For TSP, to minimize the tour length, negative tour length is
used as reward . For KP, total value of selected items (without negation) is used as reward.

E Our implementation of the original AM

Results of the original AM (trained by REINFORCE with a greedy rollout baseline) in our paper are
slightly better than those reported in the original AM paper, for both TSP and CVRP. This improve-
ment is mainly due to the fact that we have continued training until we observe the convergence in
the training curve using more training instances.

For the full disclosure, here are a few more other changes we have made in our implementation. We
update the critic network (from which the greedy rollout baseline is calculated) after each training

3



epoch no matter what, without the extra logic that decides whether to update the critic network or
not based on its performance compared to that of the actor. We use more (6) attention layers than
the original AM paper (Nlayer = 3), so that the original AM and the POMO-trained AM we compare
have the same structure. The batch size is fixed to 256 instances for all problems. When the training
curve has converged, we apply one-time learning rate decay with a factor of 0.1 and continue training
for a few more epochs.

References
[1] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In

International Conference on Learning Representations, 2019.

4


	Instance augmentation
	Application Ideas
	Ablation study without POMO training

	Traveling salesman problem
	Problem setup
	Policy network
	Hyperparameters

	Capacitated vehicle routing problem
	Problem setup
	Policy network

	0-1 knapsack problem
	Problem setup
	Policy network

	Our implementation of the original AM

