
A Appendix: Universality Proofs

We prove that sufficiently wide and deep neural networks with supervised feedback and local learning
rules can approximate any learning algorithm. We borrow some of the notation and proof techniques
from Finn et al. [1]. We suppose the network propagates an input x forward, receives a target
signal y from a supervisor, propagates a function of y back to its neural activations (feedback), and
undergoes synaptic plasticity according to a local learning role dependent on these activations. We let
{(xk,yk)} denote the training data, observed in that order, and x? denote the test input.

We want to construct a network architecture with feedforward function f̂(·; θ) and feed-
back function g(y) such that f̂(x?; θ′) ≈ ftarget({(x,y)k},x?), where θ′ = θk, θ0 = θ, and
θk+1 = θk + ∆θk(y, f̂(x; θk)). The update ∆θ(y, f̂(x; θ)) is assumed to proceed according to
a local learning rule that adjust a synaptic weight w based on the previous weight value, the presy-
naptic activity a, and the postsynaptic activity b, where the values of a and b are taken following
feedback propagation. We will consider Hebb’s learning rule: w ← w + α(ab) and Oja’s learning
rule: w ← w + α(ab− b2w).

We let f̂ be a deep neural network with 2N + 2 layers and ReLU nonlinearities. We will ensure
nonnegativity of the activations of the intermediate 2N layers, allowing us to treat them as linear.
This simplification allows us to write the model as follows:

f̂(·; θ) = fout

((
N∏
i=1

W2
iW

1
i

)
φ(·; θft); θout

)
,

where φ(·; θft) is an initial neural network with parameters θft.
∏N
i=1 W

2
iW

1
i is a product of 2N

square linear weight matrices, and fout(·; θout) is an output neural network with parameters θout. We
adopt corresponding notation of B1

i ,B
2
i – feedback matrices projecting a function ϕ(y) of the target

(computed with a one-layer feedback network) to the outputs of the layers W1
i ,W

2
i respectively, as

well as β1
i , β

2
i (feedback strength) and α1

i , α
2
i (plasticity coefficients at W1

i and W2
i). Concretely, the

activation xji at the output of layer Wj
i is set to ReLU((1− βji)x

j
i + βjiB

j
iϕ(y)), where βji ∈ [0, 1].

We will ensure nonnegativity of the projection so that we may ignore the ReLU. The weights of layer
Wj

i are then updated according to one of the following rules:

Wj
i ←Wj

i + αjix
j
i (x̃

j
i)
T (Hebb’s rule)

Wj
i ←Wj

i + αji [x
j
i (x̃

j
i)
T − diag(xji)

2Wj
i] (Oja’s rule),

where x̃ji refers to the activations at the layer preceding layer xji , and diag(x) denotes a square
diagonal matrix with x along the diagonal. We will conduct the proofs for Hebb’s rule and Oja’s rule
in parallel, using L as an indicator variable – a value of 1 indicates we are using Oja’s rule, and 0
corresponds to Hebb’s rule. Hence we may write the learning rule compactly as follows:

Wj
i ←Wj

i + αji [x
j
i (x̃

j
i)
T − L · diag(xji)

2Wj
i].

We set all W2
i to be identity matrices, all β2

i to 0 (rendering the values of B2
i irrelevant), all β1

i to
1, all α2

i to be 0, and all α1
i to be a constant α (assumed in the rest of the proof to be sufficiently

small). These choices specify an architecture consisting of feedforward layers organized in pairs.
The first layer in each pair consists of a general feedforward matrix W1

i , which we will henceforth
write simply as Wi. The matrix Wi will undergo plasticity at rate α induced by the feedforward
activations at its input and feedback-induced activations at its output from feedback matrix B1

i (which
we will now write simply as Bi). The second layer is a nonplastic identity transformation which
effectively “shields” Wi−1 from undergoing plasticity induced by the feedback projection Bi. We
assume no feedback propagation to and no plasticity in the feature extractor φ or output network
fout. Thus feedforward propagation is affected only by the Wi, φ, and fout, and plasticity updates
following feedback propagation will only modify the Wi matrices.

Now we expand f̂(x?; θ′). We let zk =
(∏N

i=1 Wi

)
φ(xk). After one step, each Wi is updated as

follows:

1

∆Wi
= αBiϕ(y1)φ(x1)T

 N∏
j=i+1

Wj

T

− αL · diag(Biϕ(y1))2Wi.

and up to terms of O(α2), the update is of the same form for all steps k = 1, 2, ...,K. We let α be
small enough that higher-order terms in α can be ignored. Now

∆Wi
=

K∑
k=1

αBiϕ(yk)φ(xk)T

 N∏
j=i+1

Wj

T

− αL · diag(Biϕ(yk))2Wi

+O(α2).

Thus we can expand
∏N
i=1 W

′
i =

∏N
i=1(Wi + ∆Wi

) into the following form:

N∏
i=1

Wi + α

K∑
k=1

N∑
i=1

i−1∏
j=1

Wj

Biϕ(yk)φ(xk)T

 N∏
j=i+1

Wj

T  N∏
j=i+1

Wj

 (1)

−αL
K∑
k=1

N∑
i=1

i−1∏
j=1

Wj

 diag(Biϕ(yk))2

 N∏
j=i

Wj

+O(α2), (2)

This expansion allows us to derive the form of z?, the intermediate (pre-fout) output of the network
acting on x?:

z? =

N∏
i=1

Wiφ(x?) + α

K∑
k=1

N∑
i=1

i−1∏
j=1

Wj

Biϕ(yk)φ(xk)T

 N∏
j=i+1

Wj

T  N∏
j=i+1

Wj

φ(x?)

(3)

−αL
K∑
k=1

N∑
i=1

i−1∏
j=1

Wj

 diag(Biϕ(yk))2

 N∏
j=i

Wj

φ(x?),

Note that appropriate choice of Wi and Bi allows us to simplify the form of z? in Equation 3 into
the following:

z? = G0φ(x?) + α

K∑
k=1

N∑
i=1

G0(Gi−1)−1Biϕ(yk)φ(xk)TGT
i G

T
i φ(x?) (4)

−αL
K∑
k=1

N∑
i=1

G0(Gi−1)−1[diag(Biϕ(yk))]2Gi−1φ(x?) (5)

where the GT
i =

(∏N
i+1 Wi

)
can be set to arbitrary invertible square matrices.

Now, our goal is to choose GT
i , Bi, ϕ, and φ to ensure that the expression above contains a complete

description of the values of {(x,y)k} (up to permuting the order of the examples) and x?. Since
fout can approximate any function to arbitrary precision, f̂(x?; θ′) = fout(z

?) can approximate any
function of {(x,y)k} and x?.

We set ϕ(y) = discr(y), yielding a one-hot d-dimensional vector indicating the value of y up to
arbitrary precision. We let φ (recall φ is a universal function approximator) have the following form:

φ(x) ≈

 0
discr(x)
0J2d

discr(x)

 ,
2

where discr(x) is a one-hot J-dimensional vector indicating the value of x up to a discretization of
arbitrary precision, and 0J2 is a zero vector of dimension J2. Note that φ satisfies the requirement
that all its outputs are nonnegative. We furthermore let N = J2 and rewrite the layer index i as a
double index (j, l) where j and l each range from 1 through J . For future reference let us denote the
dimensionality of y as d. Gj,l and Bj,l are defined as follows:

Gj,l :=

 0 G̃j,l 0 0
0 0J×J 0 0
0 0 0J2d×J2d 0
0 0 0 IJ×J

+ εI Bj,l :=

 01×d
0J×d
B̃j,l

0J×d

 (6)

where G̃j,l is a 1× J matrix containing ones in the j and l positions and zeroes elsewhere, the εI is
included to ensure the invertibility of Gj,l, and B̃j,l maps ϕ(y) to a vector consisting of a stack of
J2 d-dimensional vectors, all of which are zero except the vector in the slot corresponding to (j, l),
which is ϕ(y). That is,

B̃j,lϕ(y) :=



0d
...
0d

discr(y)
0d
...
0d


(7)

with ϕ(y) appearing in the J ∗ j + l position.

Now we observe that:

φ(x)TGT
jl ≈

{
eTj if discr(x) ∈ {ej , el}
0 otherwise

Gjlφ(x?) ≈
{
ej if discr(x?) ∈ {ej , el}
0 otherwise

where the approximation in the equalities is due to the ε terms included to ensure invertibility.

As a result, we have:

z? ≈ G0φ(x?) + α

K∑
k=1

 0
0J
z̃?k
0J

 ,

where z̃?k ≈
{
v(discr(yk), {j + J ∗ l, l + J ∗ j}) if discr(x?) = ej 6= el = discr(xk)

v(discr(yk), {j + J ∗ i|1 ≤ i ≤ J} ∪ {i+ J ∗ j|1 ≤ i ≤ J}) if discr(x?) = ej = discr(xk)

with v(a, A) defined as the J2d-dimensional vector consisting of J2 stacked d-dimensional vectors,
all of which are zero except those located in the slots specified by the set A, which are set to a.

Now we claim that {(x,y)k} and x? can be decoded with arbitrary accuracy from z?. Indeed,
note that G0 =

∏N
i=1 Wi contains an identity matrix in its last J-dimensional block, meaning that

G0φ(x?), and hence z?, contains an unaltered copy of discr(x?) in its last J dimensions, from which
x? can be decoded to arbitrary accuracy. Given the value of x? we may also subtract G0φ(x?) from
z? and multiply by 1

α to obtain an unaltered version of
∑K
k=1 z̃

?
k. Next, we may decode

∑K
k=1 z̃

?
k

in the following fashion. First, we can infer whether, and if so how many, of the xk have the same
discretization as x? by checking if any of the J d-dimensional vectors in slot j + J ∗ j is nonzero,
and if so, what its value is. If slot j + J ∗ j has nonzero value c, we subtract c from all slots with
index j + J ∗ i and i+ J ∗ j for any i. Given discr(x?) = el the resulting vector, which we may call
z̃??k , This leaves us with a vector which in each slot j + J ∗ l and l + J ∗ j indicates (by summing
the d components of the slot) how many times an x has been observed with discr(x) = ej and (by
looking at the nonzero components in the slot) counts of how many times every possible discr(y)

3

value was observed to correspond with that discr(x). Thus, the set {(x,y)k} as well as x? can be
decoded to arbitrary accuracy from z?.

Since fout is a universal function approximator, we let fout(z
?) be the function that performs the

decoding procedure above and then uses the inferred values of {(x,y)k} and x? to approximate
ftarget({(x,y)k},x?) to arbitrary precision.

B Appendix: Experimental Details

B.1 Hyperparameters

In Tables 1 and 2 we give values of hyperparameters used in our experiments. For most hyperpa-
rameters not essentially related to our algorithm, we inherited values from the published OML code.
Through initial experimentation we determined that proper selection the meta-learning rate of the
network plasticity coefficients was particularly important for performance. For every network, we
performed a sweep for this hyperparameter over several orders of magnitude – the optimal value
of each is indicated in the tables.. In the classification experiments, it was necessary to weight the
plasticity in the penultimate and readout layers differently. Given our computational resource con-
straints, we first optimized over the penultimate layer plasticity learning rate and subsequently over
the penultimate-readout plasticity ratio. We were also unable to achieve performance improvements
by meta-optimizing over β in our classification experiments, and so we clamped it at a value of 1.0.
Our search was not exhaustive, and more experimentation could reveal a benefit of intermediate β
values for these tasks.

B.2 Meta-training procedure

As noted in the text our training procedure for differed slightly from that of OML. On regression tasks,
we found that a naive implementation of the gradient-based baseline (and the reported OML numbers)
had difficulty exceeding the feature reuse regime – that is, plasticity in non-readout layers was not
helpful. However, by initializing the gradient-based baseline with the feedforward weights uncovered
by our FLP algorithm, we were able to substantially improve the performance of the gradient-based
baseline. We used this initialization procedure so as to consider the strongest possible baseline –
however, the difficulty of meta-optimizing the gradient-based learner may be of independent interest.

On classification tasks, we simplified the published OML training procedure so that the task used in
meta-training (25 learning steps on 5 examples of 5 classes each) was the same as that being tested.
In OML, a proxy task is used in which the network must learn one class during meta-training without
forgetting classes it already has learned from other meta-training examples. Implemented naively, this
procedure could lead to the network simply memorizing the meta-training classes without learning to
learn novel classes. To mitigate this issue, the OML training procedure resets the readout weights
corresponding to the current classes of interest at each meta-training step. This strategy enables OML
to generalize well to longer sequences than those used during meta-training. However, applying this
method to our framework is difficult, as resetting classifier weights disrupts the relationship between
the meta-learned feedforward initialization and feedback weights. We hope to find ways around this
issue in future work.

B.3 Dataset details

On Omniglot, the meta-training dataset consists of the first 963 character classes, and the meta-testing
dataset consists of the the remaining 660 classes. On mini-ImageNet, the first 64 classes and final 20
classes are used for meta-training and meta-testing, respectively.

B.4 Evaluation details

Performance values for a single network were obtained by averaging results over 50 (for regression
tasks) or 500 (for classification tasks) randomly sampled lifetims.

1Following the published code for OML ([2]), the sixth layer of the network has a width of 900.

4

Table 1: Experimental parameters (regression)

Parameter Value

Meta LR (feedforward weights) 1e-4
Meta LR (feedback weights) 1e-4
Meta LR (β) 1e-4
Feedback strength(Initial β) 0.5
Meta LR (plasticity coefficients) [1e-6, 1e-7, 1e-8, 1e-9]
Initial plasticity 0.0
Minibatch size 32
Meta-training epochs 20000
Nonlinearity ReLU
MLP layers 9
Layer width 300 1

Meta-training optimizer Adam

Table 2: Experimental parameters (classification)

Parameter Value

Meta LR (feedforward weights) 1e-4
Meta LR (feedback weights) 1e-4
Feedback strength (β) 1.0 (clamped)
Meta LR (plasticity coefficient, penultimate layer) [1e-2, 1e-3 (omni), 1e-4 (img), 1e-5]
Meta LR (plasticity coefficient, readout-penultimate ratio) [1e-5, 1e-4 (img), 1e-3, 1e-2 (omni), 1e-1]
Initial plasticity 0.0
Minibatch size 1
Meta-training epochs 40000
Nonlinearity ReLU
Convolutional layers 6
Convolutional kernel size 3
Convolutional feature # Omniglot: 128, Mini-ImageNet: 256
Fully connected layers 2
Fully connected width Omniglot: 128, Mini-ImageNet: 1000
Meta-training optimizer Adam

B.5 Runtime and computing infrastructure

Meta-training a network for 20,000 epochs takes roughly 3 days for the regression tasks on a
single NVIDIA 1080 Ti GPU. Meta-training the classification networks takes roughly 1.5 days (for
Omniglot) and 3 days (for mini-Imagenet) on a single NVIDIA 1080 Ti GPU.

5

C Appendix: Learning Trajectories

i.i.d. continual

R
eg

re
ss

io
n

O
m
ni
gl
ot

Figure 1: Inner-loop learning trajectories for the regression and Omniglot tasks in the i.i.d. and continual learning
cases. These figures reflect performance on inner-loop training data and thus do not account for generalization
error. In the continual case, performance is only assessed on the classes seen thus far. Error bars indicate standard
errors.

References
[1] Chelsea Finn and Sergey Levine. Meta-learning and universality: Deep representations and

gradient descent can approximate any learning algorithm. arXiv preprint arXiv:1710.11622,
2017.

[2] Khurram Javed and Martha White. Meta-learning representations for continual learning. Ad-
vances in Neural Information Processing Systems, 2019.

6

	Appendix: Universality Proofs
	Appendix: Experimental Details
	Hyperparameters
	Meta-training procedure
	Dataset details
	Evaluation details
	Runtime and computing infrastructure

	Appendix: Learning Trajectories

