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Abstract

Recent voxel-based 3D object detectors for autonomous vehicles learn point cloud
representations either from bird eye view (BEV) or range view (RV, a.k.a. perspec-
tive view). However, each view has its own strengths and weaknesses. In this paper,
we present a novel framework to unify and leverage the benefits from both BEV
and RV. The widely-used cuboid-shaped voxels in Cartesian coordinate system only
benefit BEV feature map. Therefore, to enable learning both BEV and RV feature
maps, we introduce Hybrid-Cylindrical-Spherical voxelization. Our findings show
that simply adding detection on another view as auxiliary supervision will lead to
poor performance. We proposed a pair of cross-view transformers to transform
the feature maps into the other view and introduce cross-view consistency loss on
them. Comprehensive experiments on the challenging NuScenes Dataset validate
the effectiveness of our proposed method which leverages joint optimization and
complementary information on both views. Remarkably, our approach achieved
mAP of 55.8%, outperforming all published approaches by at least 3% in overall
performance and up to 16.5% in safety-crucial categories like cyclist.

1 Introduction

With a great surge of autonomous vehicles and accessibility of cheaper laser sensors, e.g. LiDAR,
learning directly from 3D LiDAR point clouds has become increasingly popular. Among LiDAR-
based 3D object detectors, a line of works [1} 2, 13| 4] borrow the success of convolutional neural
networks on 2D images, and group the unordered, irregular and sparse point clouds into cuboid-
shaped volumetric grids, i.e. voxels. 3D feature maps are memory-consuming, and therefore most of
the recent works [4} 15,16} 12, [7] I8] project the feature maps into 2D at different stages in their pipelines.
When choosing 2D representations, it is important that objects in the input point cloud are still visible
in the projected view. In autonomous driving scenarios, object do not overlap in the bird’s-eye-view
(BEV) and the size of the objects are consistent regardless of its distance from the ego-vehicle. Hence
each object projected into BEV remains visible. Alternatively, RV projection suffers from occlusion
and object size variation with respect to distance but it generates dense features. Both BEV and RV
representation are suitable for 3D detection. State-of-the-art voxel based detectors [4} 5] 2} [7] detect
objects based on features from either BEV or RV.
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Features in each view has their strengths and weaknesses. From BEYV, rigid objects are usually kept
a distance from each other so it is easy to separate the objects. However, some important targets
(e.g. traffic cones) are tiny when viewed from BEV, and thus are hard to detect. From RV, similar to
2D images, objects may be partially occluded and appear as difference sizes at different ranges, i.e.,
distances to the sensor. Furthermore, existing RV-based detectors [5] lose depth information during
projection, making it hard to localize accurately.

Main Contributions We present a novel Cross-view Consistent Network (CVCNet) which lever-
ages the advantages of both range view (RV) and Bird’s-eye-view (BEV) in 3D detection. We
highlight two main contributions in this work. Firstly, to the best of our knowledge, we are the first
work that introduces the concept of Cross-view Consistency to 3D detection task. We discover that
the performance will degrade if we simply add detection on another view as an auxiliary supervisory
signal. We posit that object appearances on two views are different and it’s hard for the network to
learn the latent correlation and extract common features from two views. Based on the observation
that the correspondences between two views have similar properties to Hough Transform, we propose
a pair of Hough-Transform-like cross-view transformers that explicitly incorporate the correlation
between two views and enforce consistency on the transformed features. We have conducted ablation
studies and in-depth discussions to show that such consistency is a key factor to benefit from joint
learning in BEV and RV.

Secondly, we designed a new Voxel representation, Hybrid-Cylindrical-Spherical (HCS) Voxels,
which enables us to extract features for both RV and BEV in a unified coordination system. In
contrast, the commonly used cuboid-shaped voxels based on Cartesian coordinates provide benefits
to feature learning on BEV. Driven by outstanding performance of shared models that are applied to
extract common low-level features across different tasks, our model uses the shared 3D network and
two light-weight branches to adapt into different views. Our HCS Voxels play an essential role in this
design as it contains all the dimensions needed for projection to RV and BEV.

Extensive experiments on NuScenes dataset [9] demonstrate that CVCNet outperforms all the
published approaches in overall average precision (mAP). In particular, our mAP on pedestrians,
motorcyclist and cyclist are 83.0%, 61.8%, 38.8%, which is at least 2.9%, 10.3%, and 16.5% better
than existing published methods. These results signify substantial safety improvement when our
algorithm is applied to autonomous vehicles.

2 Related Work

2.1 Voxelization for Point Clouds

To transform point clouds into image-like grid structures so that convolutional neural networks can be
applied, several works group point clouds into volumetric grids. Commonly used volumetric grids are
cuboid-shaped ones under Cartesian coordinate system. VoxNet [10] represents the cuboid-shaped
voxels as occupancy grids: if there are no points in that voxel, the grid value is 0, or 1 otherwise. To
avoid quantization effects of occupancy grids and extract richer voxel features, VoxelNet [1]] samples
a fix number of points within each voxel and applies Voxel Feature Extractor (VFE, a small PointNet
[L1] made of fully connected layers and a max pooling layer) to points in each voxel to extract voxel
features. For efficiency, PointPillars [3] discretizes the 3D space into pillars so there is only one voxel
along the height dimension.

Some recent works start to explore voxel shapes other than cuboids. Alsfasser et al [12] voxelizes
points under the Cylindrical Coordinate System. PolarNet [[13] groups points into 2D polar grids on
BEV for semantic segmentation. MVF [[14] adopts both cuboid-shape voxels and spherical voxels.

2.2 3D Detectors based on Single View

3D Detection on BEV Detection on BEV is popular among voxel-based detectors. Approaches,
e.g. PIXOR [4], based on 2D CNNs project point clouds into BEV. However, projection suffers from
3D structural information loss. To mitigate information loss, recent voxel-based detectors, such as
VoxelNet [[1]], SECOND [2]], PartA? [7] and Fast Point R-CNN [8]], preserve the 3D structure during
voxelization and adopt 3D CNNSs at early or intermediate stages and finally project features to BEV
and detect objects from BEV.
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Figure 1: Overview of our approach: (a) Using HCS Voxelization, input point clouds are converted
to voxel feature maps, and (b) passed into a 3D network shared between Ranged View (RV) and
Bird’s-Eye-View (BEV). The feature maps are then (c) squeezed and passed into (d) RV branch and
(d) BEV branch with light-weight detection heads. (f) A pair of Cross-View Transformers align
feature maps to alternative views. (g, h) In the green and blue box, we illustrate how we train our
network and inference, respectively. (i) For the feature maps illustrated in this figure, we illustrate
only the spatial dimensions, the full feature map sizes are shown in the white box. Note that the color
of the voxels in (a, 2, 3, 4, 5) are consistent to illustrate our HCS voxels.

3D Detection on RV  There are very few works (LaserNet [5]]) that learn representations from
RV. RV is a compact representation that aligns with LiDAR scan pattern. But current RV detectors
requires more data to perform well [3] and are outperformed BEV detectors on public datasets [13].
Occlusion and different scales of objects in RV also pose challenges to detection.

2.3 Other 3D Detectors

Point-based detectors generate proposals in 3D. PointRCNN [16], STD and 3DSSD [18]] generate
proposals around segmented foreground points. Point-GNN [19] employs Graph Neural Networks
as the feature extractor and proposals are generated around vertices. The complexity of point-based
algorithms grows with the number of points so they have not gained popularity on datasets [9} 20]
with a large number of points. MVF uses a mixture of point and voxel representations. It fuses
Cartesian and Spherical voxel features point-wisely by mapping them to the raw points and generate
proposals around 3D points.

Relation to MVF MVF also considers BEV and RV features in their pipeline but our approach is
more efficient than MVF in following ways: 1) we voxelize points in a single shot thanks to HCS
voxelization but MVF does it twice which consumes more time and memory; 2) in MVF, Cartesian
voxels and Spherical voxels have different local contexts and thus it’s basically a two-stream network
that requires two separate 3D backbones to aggregate different local contexts for two views. Only
point-wise features are shared. Ours has one sort of local context since we only have one type of
voxels. This allows us to efficiently utilize shared 3D CNN to extract common low-level features
for both views; 3) MVF finds cross-view correspondences by mapping voxels back to raw point
clouds while we propose a neat solution - learnable cross-view transformers that densely align high
level features on both views; 4) MVF simply do 3D detection on points, but we explicitly introduce
supervision from RV and exploits the underlying cross-view consistency for joint optimization.

2.4 Multi-View Learning and Consistency

A stream of works incorporate multi-view inputs by aggregating the features. MV3D [6] and AVOD
[21] fuse ROI features from point clouds and camera image for 3D object detection. For single-



Table 1: Different Voxelization Methods

Cartesian Cylindrical Spherical HCS
3D Voxel (z,y,2, Az, Ay, Az) (r,0,z, Ar,A0,Az) (R,0,0,AR,A0,A¢) (r,0,¢,Ar,A0, Ad)
BEV Voxel (z,y, Az, Ay) (r,0, Ar, AG) N/A (r,0, Ar,AB)
RV Voxel  N/A N/A (0, 6, NG, Ag) (0,6, NG, Ag)
Details r=/x%+ 32 R= /22 + 92 + 22 r=/x%+ 1>
0 = arctany/x 0 = arctany/x 0 = arctany/x
¢ = arccos z/R ¢ = arctan z/r
References  VoxelNet [1], MVF [14] Alsfasser et al [12] MVF [14] Ours

modal inputs, MVCNN [22] utilizes a shared CNN to extract common features of object images
rendered from different view angles. Consistency is widely used in multi-view geometry. Some depth
estimation methods [23} 24} 25] rely on stereo image pairs and enforce photometric consistency. In
multi-task learning, cross-task consistency such as the geometric constraints between depth, motion
and optical flow [26] empirically improves generalization and stabilize model training.

3 Cross-View Consistent Network

The object detection problem is composed of two separate sub-problems: object classification,
and bounding box regression. Therefore detectors often train two sets of feature maps to conduct
classification to recognize objects, and bounding box regression to localize objects. According to the
prior arts [5]], detection on RV is difficult and requires more training data to achieve good performance.
We also verify this on NuScenes dataset [9] where we observe that detection on RV is 16% inferior to
detection on BEV in overall mAP. Therefore, we design our network to take advantages from both
BEYV and RV to determine the object categories, but only use BEV feature maps to solve bounding
box regression. Our overall approach is described in Figure

3.1 Input Representation

The LiDAR point clouds consists of N points, and each point is represented by a vector of point
feature f, = (7, 0p, Op, Tp, Yp, Zp, ip, tp), Where (xp, yp, zp) is its location in Cartesian coordinates.
rp is the range of the point on the horizontal plane. 8,, ¢, are the azimuth and elevation of the
point observed from the LiDAR sensor. ¢, is the reflection intensity and ¢,, is the timestamp when
the LiDAR point is captured. Points are accumulated from maximum 10 successive frames in
total to obtain denser point clouds. The points from previous frames are motion-compensated and
transformed to the current frame.

3.2 Voxelization

The mathematical formulations of the common voxelization methods are presented in Table[I] The
N/A entries in the table indicates that the original papers did not apply their work to the corresponding

view. We design our proposed coordinate system by replacing R = /22 + y? + 22 in Spherical

coordinates system with » = /22 + y? which is adopted in Cylindrical coordinate system. This
newly designed HCS system enables us to extract features for both RV and BEV in a unified
coordination. The RV in the proposed coordinate system provides a wedge-shape frustum which
can better handle the occlusion issues that commonly exist in the RV detection problem. Moreover,
the wedge-shape voxel in HCS is more aligned with our perceptual system. Voxel partitions have
fine grid in close range and coarse grid in the distance. The formulations of HCS in BEV and RV is
shown in the table as well. We represent voxel features by randomly sampling 7" points in each voxel
and taking the mean of point features.

3.3 Shared 3D Backbone and Dual-View Branches

The low-level features are then extracted by a shared 3D Convolution Neural Network (CNN). We
use the same 3D feature extractor as in CBGS [27]], the start-of-the-art detector on NuScenes dataset
[9]]. Its architecture is made of sparse 3D convolution layers and similar to ResNet [28]. The output
3D feature map is squeezed to BEV and RV by merging r dimension and ¢ dimension into channels
of the feature maps, respectively.



BEYV and RV branch are each composed of a 2D CNN. We adopt the same architecture for these
two branches. It’s a UNet-like architecture [29]] which is widely adopted in recent state-of-the-art
detectors [2,27,[1]]. Similar to CBGS [27]], we add multi-group classification heads and bounding box
regression heads to BEV branch and multi-group classification heads to RV branch. All the group
heads are lightweight 1 x 1 convolutions. Additional details of the shared 3D CNN and the 2D CNN
are provided in the supplementary materials.

3.4 Cross-View Transformers

When detecting the 3d objects in one scene, features from RV and BEV have the same semantic
meaning, and therefore should be consistent across both views. To align the features from both
views, rather than regarding detection on each view as independent supervisory signals, we design
cross-view transformers to map RV features to BEV space and vice versa. We introduce new losses to
enforce matching between the transformed features and target view labels, which we call cross-view
consistency losses and is later defined in Section[4.2]

The size of classification confidence maps for BEV and RV are K x Oy x Ry and K x O x &,
respectively, where K is the number of categories excluding background, and Ry, ©, @ are the
dimensions for range r on the horizontal plane, azimuth 6 and elevation ¢. To align features from
both views, we transform classification confidences from RV to BEV using fryv_ gy and from
BEV to RV by applying fgpv_ ryv. Interestingly, we find the correspondences between locations
in BEV and RV have similar properties to Hough Transform: a location (&, 6., 7.), i.e. a point, on
BEV corresponds to a column of locations {(k¢, 6., ¢)|¢ = 1,2, ..., @}, i.e. aline segment, on RV,
where k., 0., . denote constants. A location on RV also maps to a column of locations on BEV.
This property is similar to one of the properties of Hough Transform, i.e. a point in one domain
corresponds to a line in another. Inspired by Hough Transform, we propose a voting scheme to
accumulate confidences on a column of locations on a source view to its corresponding location on
target view. Taking fry _ ppyv as an example, the transform is a linear function:

frRv=BEV : C(Fifgcme) = Z Wy, 0,,6 X C(};E‘;gm) )]
¢=12,..3;

where C' denotes the confidence score in each location and the weight w,._ ¢_ 4 can be either positive
or negative which can be learned from a 1 x 1 convolution layer so the entire framework is fully
convolutional.

4 Target Encoding and Joint Training

4.1 Target Encoding

We follow HotSpotNet [30] to assign targets. HotSpotNet adopts an anchor-free detection head that
is flexible and can be easily adapted to feature maps with different voxel shapes. We briefly visit the
target assignment policy below.

Classification We assign locations in ground-truth bounding boxes as positive examples. To
balance the number of positive examples in each ground-truth box (b;) of different sizes, M is set
as the maximum number of positive examples in by, where k denotes the category index. If there
are more than M positive examples inside by, only the top M nearest locations of points to the
bounding box center (xz, ys, 25) are chosen as postive examples. Denote this neighboring region as
N (xp, yp, 2p)- For alocation (4, 7) on the feature map F,, (v € { BEV, RV }), the target assignment
policy is:

0, (i,7) ¢ Vb; 2)

ka ('L,])Eb%&(l,])ENM(wb,yb,Zb)
label(w) = ; '
—1, else

where b}, is projected by, to view v. We set M as a constant number. Labels with —1 will be ignored

and do not contribute to the gradient descent. These refer to locations that are inside bzt but not
in Mz (25, Yo, 2) or inside more than one ground-truth bounding boxes. The label is encoded as a
K -dimension one-hot vector.



Bounding Box Regression We regress By, = (d,, dy, z,log [, log w,log h, cos(rot), sin(rot), vy,
vy) as a 10-dimension vector, where d, d,, are the deviation from the positive example to ground-
truth bounding box center in Cartesian coordinates, ot is bounding box orientation and v, v, are
the velocities of target object along x, i axis. HopSpotNet regresses d, dy, z as the outputs of soft
argmin to mitigate regression target scale imbalance. In order to allow our network to handle more
categories, we further add log [, log w, log h as the outputs of soft argmin.

4.2 Joint Training

Denote x as the input, y as the ground-truth labels, «, 5, v and ( to be the loss weights.

Loss on BEV is the weighted sum of classification loss and regression loss:
Leev =D(ysev, fepv) + D(Bg, B) = aLEEY + BLEEY 3)

where D is the loss function calculator between the ground truth and the predictions, e.g. it can
be the cross-entropy loss or focal loss for classification, smooth-L1 or L1 loss for bounding boxes

regression. Biis the predicted bounding boxes. Loss on RV only contains classification loss :
Lry = D(yrv, frv) = vLEY 4)

Cross-view consistency loss When using the Cross-View Transformers described in Section [3.4]to
transform feature maps from a source view to its target view, we constrain them to be consistent with
the labels in the target view. Therefore, we define the cross-view consistency losses as:

Ecvc = Z D(y'm fv’%v o fv’(x)) (5)

v,v' €{BEV,RV } v#£v’

where f,/_,, denotes a cross-view transformer and o is the function composition operator. Cross-View
Consistency Loss is a classification loss where the predictions are the transformed confidence scores
from source view v’ to target view v and the targets are the labels on target view v, as below:

D (Yo, forsw © fur () = CLYTY (6)

Overall loss We apply Focal loss [31] to classification and Smooth-L1 loss [32] for bounding box
regression. The final loss is the sum of losses on BEV, RV and cross-view consistency losses:

L= Lppv + Lry + Leve (N

4.3 Testing Phase

In testing time, final confidence score is obtained by blending BEV scores and RV—BEYV scores,
with weights wppy = 0.8 and wrop = 0.2 respectively.

5 Implementation

Network Details r, 6, and ¢ range is [0.5,51.1], [—3.141,3.141], and [—1.3,0.8] and the shell
voxel size is (0.1,0.003,0.0125). The max number of points per voxel is 8. We set loss weights
a = 8 =+ = (¢ = 1. Additional details can be found in the supplementary materials.

Augmentation Class-balanced grouping and sampling is adopted as CBGS [27]. We conduct
random flip in the 6-axis, scaling with a scale factor sampled from [0.95, 1.05], rotation around z axis
between [-0.3925, 0.3925] rad and translation in range [0.2,0.2,0.2] m in z, y, z axis. To increase
the ratio of positive examples in the training data, we adopt database sampling in SECOND [2]. We
create a ground-truth database using ground-truth points in the annotated frames. During training we
randomly drop half of points off gt database and filter gt boxes with less than 5 points inside.



6 Experiments and Results

6.1 Dataset and Evaluation Metrics

We evaluate our CVCNet on the NuScenes 3D detection dataset [[9]. The dataset contains 1, 000
scenes, including 700 scenes for training, 150 scenes for validation and 150 scenes for test. Each
scene is of 20s duration and captured by 32-beam LiDAR. 40, 000 frames are annotated in total,
including 10 object categories. The mean average precision (mAP) is based on the distance threshold
(i.e. 0.5m, 1.0m, 2.0m and 4.0m). Additionally, NuScenes detection score (NDS) [9], is introduced
as a weighted sum of mAP and precision on box location, scale, orientation, velocity and attributes.

6.2 Comparison with state-of-the-art approaches

We submitted the results of our CVCNet to the NuScenes test server. In Table[2} we compare our
test-set performance to state-of-the-art methods on the official leaderboard. Our submitted result
is based on one single model without bells and whistles such as multi-scale testing used by CBGS
[27]]. Our approach achieves a significant improvement over the winner of 2019 NuScenes Detection
challenge, CBGS[27], by a margin of 3% in overall mAP. We argue the large gain mainly comes
from joint optimization of detection on BEV and RV with cross-view consistency and complementary
information from both views, which we show in following ablation studies.

Table 2: 3D detection mAP on the NuScenes test set

wion PEde motor waffic  barr-

Method car truck bus trailer  vehicle strian cycle bike cone ier mAP NDS
SARPNET [33] 59.9 187 194 180 11.6 694 298 142 446 383 31.6 49.7
PointPillars [3] 68.4 23.0 28.2 234 4.1  59.7 274 1.1 30.8 389 30.5 453

WYSIWYG [34] 79.1 304 46.6 40.1 71 650 182 0.1 288 347 350 419
CBGS [27] 81.1 485 549 429 105 80.1 51.5 223 709 657 528 63.3
CVCNet (Ours) 82.6 495 594 511 162 83.0 618 388 69.7 69.7 558 64.2

6.3 Ablation Studies

Table 3: Ablation study of how training with different losses affect inference from a single view. 3D
detection mAP is evaluated on the NuScenes validation set. B: loss on BEV; R: loss on RV; B—R:
consistency loss from BEV to RV; R—B: consistency loss from BEV to RV.

.. tr- - . o 3
| Supervision ‘ Inference ‘ car  truck bus trailer ﬁ(:tn:zr: pefie T ke e b AP
| B R BoR R-B|BEV RV | vehicle ST Yk cone e
a) | v v 82.1 472 56.7 309 13,5 80.0 504 276 56.8 64.9 51.0
b)| v vV v 82.1 46.9 59.7 309 11.0 79.8 447 246 53.6 64.7 49.8
o|v Vv v v 82.7 477 594 311 140 804 527 327 60.5 646 52.6
d|v v v v 82.8 486 61.6 32.6 162 80.7 547 309 59.7 658 534
e) | v V v v v 82.8 49.1 61.8 334 190 808 533 330 60.2 654 539
H|v v v v [ 791 39.1 527 232 169 779 447 258 558 61.7 477
9|V Vv v v v | 791 395 520 232 147 782 477 282 56.5 60.3 48.0
h|v v v v v v | 832 500 620 345 202 812 544 339 611 655 546

Consistency Losses for Joint Optimization We evaluate detection results models trained with
different supervisions in Table[3] a) & b): when detection from BEV only is evaluated, by simply
adding loss on RV as auxiliary supervisory signal, mAP drops from 51% to 49.8%. The object
appearances on BEV and RV are quite different so it’s hard for the network to learn the correlation
between two views and hence the common representations for both views are not effectively learned.
¢), d) & e): when the correlation between BEV and RV is explicitly incorporated into the network
by cross-view transformers and consistency losses, detection results from BEV are improved. And
RV—BEYV consistency boosts the performance on BEV most significantly. By adding consistency
losses, we improve overall mAP for detection on BEV from 51% to 53.9%. f) & g): we also
see that consistency also improves detection on RV, showing consistency helps detection on BEV
and RV respectively by joint optimization. We implement detection from RV by transforming RV
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Figure 2: Histogram of votes from transformers. A vote denotes contribution from a location on
source view v’ to its corresponding location to target view v. fry_pEv: (a) votes from RV locations
where confidences C' > 0.5; (b) votes from RV locations where C' < 0.5. fppy_grv: (c) votes
from BEV locations where confidences C' > 0.5; (d) votes from BEV locations where confidences
C < 0.5.

classification confidences to BEV (RV—BEV) and combining them with bounding box regression
results from BEV branch. Detection on RV is possible only when transformer from RV to BEV
is applied and thus consistency loss from RV to BEV is applied too. Note that as we explained in
Section 3] we abandon regression on RV due to its poor performance.

Complementary information on different categories To further analyze how incorporating in-
formation from RV and consistency losses affect each category on BEV, we find that the performance
gain is associated with the area of the object on BEV and RV. We only observe slight performance
gain (0.7%) on cars. The BEV area for cars is 9.1m? on average while RV area is 8.8m?2. The area
on RV is smaller than on BEV so incorporating RV does not make cars easier to detect. However, we
observe significant improvement on motorcycles, bicycles and traffic cones. Taking traffic cones as
an example, the BEV area is 0.18m?, which makes it really hard to detect on BEV. The area on RV is
0.63m?, adding more exposure of this category and increasing its chances to be detected.

Blending scores from both views In Table [3|e), g) & h) we show by blending classification
confidences from both view together during inference, i.e. classification confidences from BEV and
RV—BEYV, we achieve better overall mAP (54.6%) than inference from a single view (53.9% and
48.0% respectively).

6.4 Understanding Cross-View Transformers

In Section [3.4] we present cross-view transformers inspired by Hough Transform with learnable
weights implemented by 1 x 1 conv. To understand what the transformers are really doing, we
demonstrate the statistical distribution of votes from transformers fry . ppyv and fpgpv _ ry. Taking
frv—BEV as an example, it transforms classification confidences from each location on RV to their
corresponding locations on BEV. A vote denotes contribution from a location (.., 0., ¢) on RV to
its corresponding location (ke, 6., r.) on BEV, i.e. wy, g,,4 X C’(Izzeﬁ ) in Equation (1} The final

transformed classification confidence, CEFV (., ., 7.), is the sum of votes across {(k, 0., )|¢ =
1,2,...,®,}, a column of locations on RV. In Figure 2| (a), at RV locations where confidences are
high (C > 0.5) for the presence of an object, we observe most locations give positive votes to their
corresponding locations on BEV. This shows that when the network is very certain that there is
an object on RV, it will vote for its presence on BEV. Interestingly, Figure 2] (a) shows the votes
follow Gumbel distribution. However, when the network is unsure whether there is an object on RV
(C < 0.5), the votes can be either positive or negative, and the chances for the votes to be positive
or negative are approximately equal. Figure [2](b) shows the votes where the confidences are low
follow Laplace distribution. We observe similar behavior from fppy_, gy (Figure |Z| (c)(d)). This is
consistent with our intuition that high likelihood of object appearance on view v’ also means high
likelihood of object appearance on its corresponding location on view v, but a location on view v
corresponds to a column of locations on view v’ and it must reason all locations across that column
on view v'.

Discussions We also tried other Hough-Transform-like functions such as average pooling and max
pooling with broadcasting but the mAP drops by 44% and 4% respectively, compared to our learnable
transformers. Average pooling can be regarded as equal votes on each location along a column of
locations. But the column contains both positive and negative examples. Average pooling does not
discriminate different locations along the column, and therefore performs extremely bad. Though



max pooling is inferior to our learnable transformers, it does not hurt the performance compared to
evaluating on BEV only (Table [3p). Max pooling only considers the most confident locations, which
points to the right direction as the presence of object in one view indicates its possible presence on the
corresponding locations on the other view. In that sense, our learnable transformer can be regarded a
soft version of max pooling, but also reasons other locations along the column.

6.5 Comparisons with MVF

In order to further verify the effectiveness of CVCNet, we designed the following experiment to
make a fair comparison with MVF [[14]. The experiments are conducted on the Waymo Open Dataset
which is a large-scale dataset recently released for benchmarking object detection algorithms at
industrial production level and the performance is shown in Table[d] The value ranges we used in
this experiment for 7, 6, and ¢ are [0.5, 76], [—3.141, 3.141], and [—0.41, 0.84] respectively, and the
shell voxel size is (0.2,0.003,0.003). We applied the same augmentation methods used in NuScenes
experiments during the training. Our approach outperforms all one stage detectors in overall mAP for
vehicle detection.

Table 4: Vehicle detection mAP for one-stage detectors on Waymo validation set

Method LEVEL 1 3D IoU=0.7
Overall 0-30m 30-50m  50m-co

StarNet [35] 53.70 - - -
PointPillars 56.62 81.01 51.75 27.94

PPBA [36]+ PointPillars ~ 62.44 - - -
MVF 62.93 86.30 60.02 36.02
AFDet [37] 63.69 87.38 62.19 29.27
CVCNet (ours) 65.20  86.80 63.84 36.65

The performance can potentially be improved significantly by a thorough exploration of alternative
parameters for the Waymo Open Dataset. In the results we show here, substantial improvements are
observed in comparing to MVFE, which is the only method that considers multiple views in the 3D
detection framework.

Our algorithm runs at 11 FPS with a single V100 GPU on Waymo Open Dataset. Since MVF did not
release the experimental details and code, it is difficult to make apple-to-apple comparisons with it on
the inference speed and the number of parameters. However, given that MVF uses separate backbones,
we also adopt our method to separate backbones for BEV and RV and present the results in Table
[ to highlight the advantages of our shared backbone approach in terms of inference speed and
number of parameters. The experiments are conducted on NuScenes validation set. With comparable
performances, adding one more backbone will incur an extra 240 ms of runtime (more than 267%)
per frame and 30 MB of parameters (more than 18%) in our proposed CVCNet.

Table 5: Performance with separated or shared backbones on NuScenes val set

constr-
car truck  bus trailer  uction
vehicle

Backbone

pede- motor- bik traffic barr-
strian cycle 1K€ cone ier

mAP

FPS ‘ #params

separate 3 20IMB | 83.1 50.2 59.2 337 16.0 810 571 34.6 609 66.7 542
shared 11 17IMB | 83.2 50.0 62.0 345 20.2 812 544 339 611 655 54.6

7 Conclusions

We propose a novel framework, Cross-view Consistent Network (CVCNet), to leverage the benefits
from BEV and RV. In contrast to existing 3D LiDAR-based detectors that use Cartesian voxelization,
we propose Hybrid-Cylindrical-Spherical voxelization, which enables learning from both BEV and
RV in one network. We present a dual-view architecture and formulate detection on both views as
a multi-view learning problem. Instead of simply treating detection on BEV and RV as separate
supervisions, we introduce cross-view transformers and enforce cross-view consistency on both views.
Experimental results on the NuScenes and Waymo Open Dataset demonstrate that our approach
significantly improves overall detection accuracy, and therefore enhances safety of autonomous
vehicles. We hope that our work will further enlighten the multi-view or multi-sensor fusion tasks.



Broader Impact

3D detection is the first stage in the computational pipeline for a self-driving car. Just as perception
enables humans to make instant associations and act on them, the ability to identify what and where
the visual targets are from immediate surroundings is a fundamental pillar for the safe operation of an
autonomous vehicle. The pandemic of COVID-19 manifests greater needs for autonomous driving
and delivery robots, when contact-less delivery is encouraged. Though there is controversy about the
ethics for autonomous vehicles especially for their decision making, robust 3D detection with higher
accuracy is always desired to improve safety. In addition, LiDAR point clouds do not capture person
identity and thus 3D detection on LiDAR point clouds does not involves privacy issue.
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