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Abstract

We present an operator-free, measure-theoretic approach to the conditional mean
embedding (CME) as a random variable taking values in a reproducing kernel
Hilbert space. While the kernel mean embedding of unconditional distributions has
been defined rigorously, the existing operator-based approach of the conditional
version depends on stringent assumptions that hinder its analysis. We overcome this
limitation via a measure-theoretic treatment of CMEs. We derive a natural regres-
sion interpretation to obtain empirical estimates, and provide a thorough theoretical
analysis thereof, including universal consistency. As natural by-products, we obtain
the conditional analogues of the maximum mean discrepancy and Hilbert-Schmidt
independence criterion, and demonstrate their behaviour via simulations.

1 Introduction

The idea of embedding probability distributions into a reproducing kernel Hilbert space (RKHS), a
space associated to a positive definite kernel, has received a lot of attention in the past decades [1, 45],
and has found a wealth of successful applications, such as independence testing [20], two-sample
testing [21], learning on distributions [33, 30, 55], goodness-of-fit testing [8, 29] and probabilistic
programming [41, 44], among others – see review [34]. It extends the idea of kernelising linear
methods by embedding data points into high- (and often infinite-)dimensional RKHSs, which has
been applied, for example, in ridge regression, spectral clustering, support vector machines and
principal component analysis among others [40, 25, 52].

Conditional distributions can also be embedded into RKHSs in a similar manner [49],[34, Chapter 4].
Compared to unconditional distributions, conditional distributions can represent more complicated
relations between random variables, and so conditional mean embeddings (CMEs) have the potential
to unlock the arsenal of kernel mean embeddings to a wider setting. Indeed, CMEs have been applied
successfully to dynamical systems [46], inference on graphical models [48], probabilistic inference
via kernel sum and product rules [49], reinforcement learning [23, 35], kernelising the Bayes rule
and applying it to nonparametric state-space models [17] and causal inference [32] to name a few.

Despite such progress, the current prevalent definition of the CME based on composing cross-
covariance operators [46] relies on some stringent assumptions, which are often violated and hinder
its analysis. Klebanov et al. [27] recently attempted to clarify and weaken some of these assumptions,
but strong and hard-to-verify conditions still persist. Grünewälder et al. [22] provided a regression
interpretation, but here, only the existence of the CME is shown, without an explicit expression.
The main contribution of this paper is to remove these stringent assumptions using a novel measure-
theoretic approach to the CME. This approach requires drastically weaker assumptions, and comes
in an explicit expression. We believe this will enable a more principled analysis of its theoretical
properties, and open doors to new application areas. We derive an empirical estimate based on
vector-valued regression along with in-depth theoretical analysis, including universal consistency. In
particular, we relax the assumption of [22] to allow for infinite-dimensional RKHSs.
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As natural by-products, we obtain quantities that are extensions of the maximum mean discrepancy
(MMD) and the Hilbert-Schmidt independence criterion (HSIC) to the conditional setting, which
we call the maximum conditional mean discrepancy (MCMD) and the Hilbert-Schmidt conditional
independence criterion (HSCIC). We demonstrate their properties through simulation experiments.

All proofs can be found in Appendix C.

2 Preliminaries

We take (Ω,F , P ) as the underlying probability space. Let (X ,X), (Y,Y) and (Z,Z) be separable
measurable spaces, and let X : Ω → X , Y : Ω → Y and Z : Ω → Z be random variables with
distributions PX , PY and PZ . We will use Z as the conditioning variable throughout.

2.1 Positive definite kernels and RKHS embeddings

LetHX be a vector space of X → R functions, endowed with a Hilbert space structure via an inner
product 〈·, ·〉HX . A symmetric function kX : X × X → R is a reproducing kernel of HX if and
only if: 1. ∀x ∈ X , kX (x, ·) ∈ HX ; 2. ∀x ∈ X and ∀f ∈ HX , f(x) = 〈f, kX (x, ·)〉HX . A space
HX which possesses a reproducing kernel is called a reproducing kernel Hilbert space (RKHS) [1].
Throughout this paper, we assume that all RKHSs are separable. This is not a restrictive assumption,
since it is satisfied if, for example, kX is a continuous kernel [52, p.130, Lemma 4.33] (for further
details, please see [36]). Given a distribution PX on X , assuming the integrability condition∫

X

√
kX (x, x)dPX(x) <∞, (1)

we define the kernel mean embedding µPX
(·) =

∫
X kX (x, ·)dPX(x) of PX , where the integral is a

Bochner integral [12, p.15, Def. 35]. We will later show a conditional analogue of the following
lemma (for completeness, a proof is provided in Appendix C).
Lemma 2.1 ([45]). For each f ∈ HX ,

∫
X f(x)dPX(x) = 〈f, µPX

〉HX .

Next, suppose HY is an RKHS of functions on Y with kernel kY , and consider the tensor product
RKHS HX ⊗HY (see [58, pp.47-48] for a definition of tensor product Hilbert spaces).
Theorem 2.2 ([1, p.31, Theorem 13]). The tensor productHX⊗HY is generated by the functions f⊗
g : X×Y → R, with f ∈ HX and g ∈ HY defined by (f⊗g)(x, y) = f(x)g(y). Moreover,HX⊗HY
is an RKHS of functions onX×Y with kernel (kX⊗kY)((x1, y1), (x2, y2)) = kX (x1, x2)kY(y1, y2).

Now let us impose a slightly stronger integrability condition:

EX [kX (X,X)] <∞, EY [kY(Y, Y )] <∞. (2)

This ensures that kX (X, ·)⊗kY(Y, ·) is Bochner PXY -integrable, and so µPXY
:= EXY [kX (X, ·)⊗

kY(Y, ·)] ∈ HX ⊗HY . The next lemma is analogous to Lemma 2.1:
Lemma 2.3 ([15, Theorem 1]). For f ∈ HX , g ∈ HY , 〈f ⊗ g, µPXY

〉HX⊗HY = EXY [f(X)g(Y )].

As a consequence, for any pair f ∈ HX and g ∈ HY , we have 〈f⊗g, µPXY
−µPX

⊗µPY
〉HX⊗HY =

CovXY [f(X), g(Y )]. There exists an isometric isomorphism T : HX⊗HY → HS(HX ,HY), where
HS(HX ,HY) is the space of Hilbert-Schmidt operators fromHX toHY (Lemma C.1). The (centred)
cross-covariance operator is defined as CYX := T (µPXY −µPX

⊗µPY
) [15, Theorem 1]. The object

T (µPXY
) is referred to as the uncentred cross-covariance operator in the literature [47, Section 3.2].

The notion of characteristic kernels is essential, since it tells us that the associated RKHSs are rich
enough to enable us to distinguish different distributions from their embeddings.
Definition 2.4 ([16]). A positive definite kernel kX is characteristic to a setP of probability measures
defined on X if the map P → HX : PX 7→ µPX

is injective.

Sriperumbudur et al. [50] discusses various characterisations of characteristic kernels and show that
the well-known Gaussian and Laplacian kernels are characteristic. We then have a metric on P via
‖µPX

− µPX′‖HX for PX , PX′ ∈ P , which is the definition of the MMD [19]. Furthermore, the
HSIC is defined as the Hilbert-Schmidt norm of CYX , or equivalently, ‖µPXY

−µPX
⊗µPY

‖HX⊗HY
[18]. If kX ⊗ kY is characteristic, then HSIC = 0 if and only if X ⊥⊥ Y .
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2.2 Conditioning

We briefly review the concept of conditioning in measure-theoretic probability theory, with Banach
space-valued random variables. We consider a sub-σ-algebra E of F and a Banach spaceH.
Definition 2.5 (Conditional Expectation, [12, p.45, Definition 38]). Suppose H is a Bochner P -
integrable, H-valued random variable. Then the conditional expectation of H given E is any
E-measurable, Bochner P -integrable,H-valued random variable H ′ such that

∫
A
HdP =

∫
A
H ′dP

∀A ∈ E . Any H ′ satisfying this condition is a version of E[H | E ]. We write E[H | Z] to mean
E[H | σ(Z)], where σ(Z) is the sub-σ-algebra of F generated by the random variable Z.

The (almost sure) uniqueness of the conditional expectation is shown in [12, p.44, Proposition 37],
and the existence in [12, pp.45-46, Theorems 39 and 50].
Definition 2.6 ([9, p.149]). The conditional probability of A ∈ F given E is P (A | E) = E[1A | E ].

Note that, in the unconditional case, the expectation is defined as the integral with respect to the
measure, but in the conditional case, the expectation is defined first, and the measure is defined as
the expectation of the indicator function. For this definition to be useful, we require an additional
property, called regular version. We first define the transition probability kernel1.
Definition 2.7 ([9, p.37,40]). Let (Ωi,Fi), i = 1, 2 be measurable spaces. A mapping K : Ω1 ×
F2 → [0,∞] is a transition kernel from (Ω1,F1) to (Ω2,F2) if (i) ∀B ∈ F2, ω 7→ K(ω,B) is
F1-measurable; (ii) ∀ω ∈ Ω1, B 7→ K(ω,B) is a measure on (Ω2,F2). If K(ω,Ω2) = 1 ∀ω ∈ Ω1,
K is said to be a transition probability kernel.
Definition 2.8 ([9, p.150, Definition 2.4]). For each A ∈ F , let Q(A) be a version of P (A|E) =
E[1A|E ]. Then Q : (ω,A) 7→ Qω(A) is said to be a regular version of the conditional probability
measure P (· | E) if Q is a transition probability kernel from (Ω, E) to (Ω,F).

The following theorem, proved in Appendix C, is the reason why a regular version is important. It
means that, roughly speaking, the conditional expectation is indeed obtained by integration with
respect to the conditional measure.
Theorem 2.9 (Adapted from [9, p.150, Proposition 2.5]). Suppose that P (· | E) admits a regular
version Q. Then QH : Ω→ H with ω 7→ QωH =

∫
Ω
H(ω′)Qω(dω′) is a version of E[H | E ] for

every Bochner P -integrable H .

2.3 Vector-valued RKHS regression

In this subsection, we introduce the theory of vector-valued RKHS regression, based on operator-
valued kernels. LetH be a Hilbert space, which will be the output space of regression.
Definition 2.10 ([6, Definition 1]). AnH-valued RKHS on Z is a Hilbert space G such that 1. the
elements of G are functions Z → H; 2. ∀z ∈ Z , ∃Cz > 0 such that ‖F (z)‖H ≤ Cz‖F‖G ∀F ∈ G.

Next, we let L(H) denote the Banach space of bounded linear operators fromH into itself.
Definition 2.11 ([6, Definition 2]). AH-kernel of positive type onZ×Z is a map Γ : Z×Z → L(H)

such that ∀N ∈ N, ∀z1, ..., zN ∈ Z and ∀c1, ..., cN ∈ R,
∑N
i,j=1 cicj〈Γ(zj , zi)h, h〉H ≥ 0 ∀h ∈ H.

Analogously to the scalar case, it can be shown that anyH-valued RKHS G possesses a reproducing
kernel, which is anH-kernel of positive type Γ satisfying, for any z, z′ ∈ Z , h, h′ ∈ H and F ∈ G,
〈F (z), h〉H = 〈F,Γ(·, z)h〉G and 〈h,Γ(z, z′)(h′)〉H = 〈Γ(·, z)(h),Γ(·, z′)(h′)〉G .

Now suppose we want to perform regression with input space Z and output spaceH, by minimising

1

n

n∑
j=1

‖hj − F (zj)‖2H + λ‖F‖2G , (3)

where λ > 0 is a regularisation parameter and {(zj , hj) : j = 1, ..., n} ⊆ Z × H. There is a
corresponding representer theorem (here, δjl is the Kronecker delta):

Theorem 2.12 ([31, Theorem 4.1]). If F̂ minimises (3) in G, it is unique and has the form F̂ =∑n
j=1 Γ(·, zj)(uj) where the coefficients {uj : j = 1, ..., n} ⊆ H are the unique solution of the

linear equations
∑n
l=1(Γ(zj , zl) + nλδjl)(ul) = hj , j = 1, ..., n.

1Here, the term “kernel” must not be confused with the kernel associated to RKHSs.

3



3 Conditional mean embedding

We are now ready to introduce a formal definition of the conditional mean embedding of X given Z.
Definition 3.1. Assuming X satisfies the integrability condition (1), we define the conditional mean
embedding of X given Z as µPX|Z := EX|Z [kX (X, ·) | Z].

This is a direct extension of the unconditional kernel mean embedding, µPX
= EX [kX (X, ·)], but

instead of being a fixed element in HX , µPX|Z is a Z-measurable random variable taking values
in HX (see Definition 2.5). Also, for any function f : X → R, EX|Z [f(X) | Z] is a real-valued
Z-measurable random variable. The following lemma is analogous to Lemma 2.1.
Lemma 3.2. For any f ∈ HX , EX|Z [f(X) | Z] = 〈f, µPX|Z 〉HX almost surely.

Next, assuming X and Y satisfy (2), we define µPXY |Z := EXY |Z [kX (X, ·) ⊗ kY(Y, ·) | Z], a
Z-measurable,HX ⊗HY -valued random variable. We have the following analogy of Lemma 2.3:
Lemma 3.3. For any pair f ∈ HX and g ∈ HY , EXY |Z [f(X)g(Y ) | Z] = 〈f⊗g, µPXY |Z 〉HX⊗HY
almost surely.

By Lemmas 3.2 and 3.3, for any pair f ∈ HX and g ∈ HY ,

〈f ⊗ g, µPXY |Z − µPX|Z ⊗ µPY |Z 〉HX⊗HY = CovXY |Z(f(X), g(Y ) | Z)

= EXY |Z [f(X)g(Y ) | Z]− EX|Z [f(X) | Z]EY |Z [g(Y ) | Z]

almost surely. Hence, we define the conditional cross-covariance operator as CY X|Z := T (µPXY |Z−
µPX|Z ⊗ µPY |Z ) (see Section 2.1 for the definition of T ).

3.1 Comparison with existing definitions

As previously mentioned, the idea of CMEs and conditional cross-covariance operators is not a novel
one, yet our development of the theory above differs significantly from the existing works. In this
subsection, we review the previous approaches and compare them to ours.

The prevalent definition of CMEs in the literature is the following. We first need to endow the
conditioning space Z with a scalar kernel, say kZ : Z × Z → R, with corresponding RKHSHZ .
Definition 3.4 ([46, Definition 3]). The conditional mean embedding of the conditional distribution
P (X | Z) is the operator UX|Z : HZ → HX defined by UX|Z = CXZC−1

ZZ , where CXZ and CZZ are
unconditional (cross-)covariance operators as defined in Section 2.1.

As noted by [46], the motivation for this comes from [15, Theorem 2], which states that for any
f ∈ HX , if EX|Z [f(X) | Z = ·] ∈ HZ , then CZZEX|Z [f(X) | Z = ·] = CZX f . This relation can
be used to prove the following theorem, which is analogous to Lemma 3.2.
Theorem 3.5 ([46, Theorem 4]). For f ∈ HX , assuming EX|Z [f(X) | Z = ·] ∈ HZ , UX|Z satisfies:
1. µX|z := EX|z[kX (X, ·) | Z = z] = UX|ZkZ(z, ·); 2. EX|z[f(X) | Z = z] = 〈f, µX|z〉HX .

Now we highlight the key differences between this approach and ours. Firstly, this approach requires
the endowment of a kernel kZ on the conditioning space Z , and defines the CME as an operator from
HZ to HX . By contrast, Definition 3.1 did not consider any kernel or function on Z , and defined
the CME as a Bochner conditional expectation given σ(Z). We argue that it is more natural not to
endow the conditioning space with a kernel before the estimation stage. Secondly, the operator-based
approach assumes that EX|Z [f(X)|Z = ·], as a function in z, lives inHZ . This is a severe restriction;
it is stated in [46] that this assumption, while true for finite domains with characteristic kernels, is not
necessarily true for continuous domains, and [17] gives a simple counterexample using the Gaussian
kernel. Lastly, it also assumes that C−1

ZZ exists, which is another unrealistic assumption. [17] mentions
that this assumption is too strong in many situations, and gives a counterexample using the Gaussian
kernel. The most common remedy is to resort to the regularised version CXZ (CZZ + λI)−1 and treat
it as an approximation of UX|Z . These assumptions have been clarified and slightly weakened in
[27], but strong and hard-to-verify conditions persist. In contrast, Definition 3.1 extend the notions
of kernel mean embedding, expectation operator and cross-covariance operator to the conditional
setting simply by using the formal definition of conditional expectations (Definition 2.5), and the
subsequent result in Lemma 3.2, analogous to [46, Theorem 4], does not rely on any assumptions.
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A regression interpretation is given in [22], by showing the existence, for each z ∈ Z , of µ(z) ∈ HX
that satisfies E[h(X) | Z = z] = 〈h, µ(z)〉HX . However, no explicit expression for µ(z) is provided.
In contrast, our definition provides an explicit expression µPX|Z = EX|Z [kX (X, ·) | Z].

In [15, Section A.2], the conditional cross-covariance operator is defined, but in a significantly
different way. It is defined as ΣYX |Z := CYX − CYZ C̃−1

ZZCZX , where C̃−1
ZZ is the right inverse of

CZZ on (KerCZZ )⊥. This has the property that, for all f ∈ HX and g ∈ HY , 〈g,ΣYX |Zf〉HY =
EZ [CovXY |Z(f(X), g(Y ) | Z)]. Note that this is different to our relation stated after Lemma 3.3;
the conditional covariance is integrated out over Z . In fact, this difference is explicitly noted by [46].

4 Empirical estimates

In this section, we discuss how we can obtain empirical estimates of µPX|Z = EX|Z [kX (X, ·) | Z].

Theorem 4.1. Denote the Borel σ-algebra ofHX by B(HX ). Then we can write µPX|Z = FPX|Z ◦Z,
where FPX|Z : Z → HX is some deterministic function, measurable with respect to Z and B(HX ).

Hence, estimating µPX|Z boils down to estimating the function FPX|Z , which is exactly the setting
for vector-valued regression (Section 2.3) with input space Z and output spaceHX . In contrast to
[22], where regression is motivated by applying the Riesz representation theorem conditioned on each
value of z ∈ Z , we derive the CME as an explicit function of Z, which we argue is a more principled
way to motivate regression. Moreover, for continuous Z, the event Z = z has measure 0, so it is not
measure-theoretically rigorous to apply the Riesz representation theorem conditioned on Z = z.

The natural optimisation problem is to minimise the loss EX|Z(F ) := EZ [‖FPX|Z (Z)− F (Z)‖2HX ]
among all F ∈ GXZ , where GXZ is a vector-valued RKHS of functions Z → HX . For simplicity,
we endow GXZ with a kernel lXZ(z, z′) = kZ(z, z′)Id, where kZ(·, ·) is a scalar kernel on Z .2

We cannot minimise EX|Z directly, since we do not observe samples from µPX|Z , but only the pairs
(xi, zi) from (X,Z). We bound this with a surrogate loss ẼX|Z that has a sample-based version:

EX|Z(F ) = EZ [‖EX|Z [kX (X, ·)− F (Z) | Z]‖2HX ] ≤ EZEX|Z [‖kX (X, ·)− F (Z)‖2HX | Z]

= EX,Z [‖kX (X, ·)− F (Z)‖2HX ] =: ẼX|Z(F ),

where we used generalised conditional Jensen’s inequality (see Appendix A, or [38]). Sec-
tion 4.1 discusses the meaning of this surrogate loss. We replace the surrogate population loss
with a regularised empirical loss based on samples {(xi, zi)}ni=1 from the joint distribution PXZ :
ÊX|Z,n,λ(F ) := 1

n

∑n
i=1‖kX (xi, ·)−F (zi)‖2HX +λ‖F‖2GXZ , where λ > 0 is a regularisation param-

eter. We see that this loss functional is exactly in the form of (3). Therefore, by Theorem 2.12, the min-
imiser F̂PX|Z ,n,λ of ÊX|Z,n,λ is F̂PX|Z ,n,λ(·) = kTZ(·)f , where kZ(·) := (kZ(z1, ·), ..., kZ(zn, ·))T ,
f := (f1, ..., fn)T and the coefficients fi ∈ HX are the unique solutions of the linear equations
(KZ + nλI)f = kX , where [KZ ]ij := kZ(zi, zj), kX := (kX (x1, ·), ..., kX (xn, ·))T and I is the
n× n identity matrix. Hence, the coefficients are f = WkX , where W = (KZ + nλI)−1. Finally,
substituting this into the expression for F̂PX|Z ,n,λ(·), we have

F̂PX|Z ,n,λ(·) = kTZ(·)WkX ∈ GXZ . (4)

4.1 Surrogate loss, universality and consistency

In this subsection, we investigate the meaning and consequences of using the surrogate loss ẼX|Z
instead of the original EX|Z , as well as the universal consistency property of our learning algorithm.

Denote by L2(Z, PZ ;HX ) the Banach space of (equivalence classes of) measurable functions
F : Z → HX such that ‖F (·)‖2HX is PZ-integrable, with norm ‖F‖2 = (

∫
Z‖F (z)‖2HX dPZ(z))

1
2 .

2EX|Z is not the only loss function, nor is lXZ the only kernel, that we can use for this problem. Kadri et al.
[26] discuss various operator-valued kernels that can be used (albeit without closed-form solutions) and Laforgue
et al. [28] discuss other loss functions that can be used for more robust estimates. We view this flexibility to
facilitate other loss and kernel functions in the regression set-up, although not explored in depth in this work, as
a significant advantage over the previous approaches.
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Figure 1: Solid blue and dashed red lines represent ẼX|Z(F̂PX|Z ,n,λn
) and ẼX|Z(FPX|Z ) respectively.

We can note that the true function FPX|Z belongs to L2(Z, PZ ;HX ), because Theorem 4.1 tells
us that FPX|Z is indeed measurable, and by Theorem A.2 and (2),

∫
Z‖FPX|Z (z)‖2HX dPZ(z) =

EZ [‖EX|Z [kX (X, ·) | Z]‖2HX ] ≤ EZ [EX|Z [‖kX (X, ·)‖2HX | Z]] = EX [‖kX (X, ·)‖2HX ] <∞. The
true function FPX|Z is the unique minimiser in L2(Z, PZ ;HX ) of both EX|Z and ẼX|Z :

Theorem 4.2. FPX|Z minimises both ẼX|Z and EX|Z in L2(Z, PZ ;HX ). Moreover, it is almost
surely equal to any other minimiser of the loss functionals.

Note the difference in the statement of Theorem 4.2 from [22, Theorem 3.1], which only considers the
minimisation of the loss functionals in GXZ , whereas we consider the larger space L2(Z, PZ ;HX ).
Next, we discuss the concepts of universal kernels and universal consistency.
Definition 4.3 ([7, Definition 2]). A kernel lXZ : Z × Z → L(HX ) with RKHS GXZ is C0 if GXZ
is a subspace of C0(Z,HX ), the space of continuous functions Z → HX vanishing at infinity. The
kernel lXZ is C0-universal if is is C0 and GXZ is dense in L2(Z, PZ ;HX ) for any measure PZ on Z .

Carmeli et al. [7, Example 14] shows that lXZ = kZ(·, ·)Id is C0-universal if kZ is a universal scalar
kernel, which in turn is guaranteed if kZ is Gaussian or Laplacian, for example [51]. The consistency
result with optimal rate Op( logn

n ) in [22, Corollaries 4.1, 4.2] is based on [5], and assumes, along
with some distributional assumptions, that HX is finite-dimensional, which is not true for many
common choices of kX (see Appendix B for more details). In [46, Theorem 6], [48, Theorem 1]
and [14, Theorem 1.3.2], consistency is also shown under various assumptions, with rates at best
Op(n−

1
4 ). In Theorem 4.4, we prove universal consistency without any distributional assumptions,

and in Theorem 4.5, we show that a convergence rate of Op(n−1/4) can be achieved with a simple
smoothness assumption that FPX|Z ∈ GXZ (sometimes referred to as the well-specified case; see
[55]). In particular, both results relax the finite-dimensionality assumption onHX of [22].
Theorem 4.4. Suppose that kX and kZ are bounded kernels, i.e. there are BZ , BX > 0 with
supz∈Z kZ(z, z) ≤ B2

Z , supx∈X kX (x, x) ≤ B2
X , and that the operator-valued kernel lXZ is C0-

universal. Let the regularisation parameter λn decay to 0 at a slower rate than O(n−1/2). Then
the learning algorithm that yields F̂PX|Z ,n,λn is universally consistent, i.e. for any joint distribution
PXZ , ε > 0 and δ > 0, PXZ (ẼX|Z(F̂PX|Z ,n,λn

)− ẼX|Z(FPX|Z ) > ε) < δ for sufficiently large n.

Figure experimentally verifies universal consistency under three noise levels. We use the distributions
Z ∼ N (0, 1), (a) X = e−

1
2Z

2

sin(2Z) + Na, Na ∼ 0.3N (0, 1); (b) X = e−
1
2Z

2

sin(2Z) + Nb,
Nb ∼ 3N (0, 1); (c) X = Z +Na, with regularisation λn = 10−7n−

1
4 .

Theorem 4.5. Assume further that FPX|Z ∈ GXZ . Then with probability at least 1− δ,

ẼX|Z(F̂PX|Z ,n,λn
)− ẼX|Z(FPX|Z ) ≤ λn

∥∥∥FPX|Z

∥∥∥2

GXZ

+
2 ln

(
4
δ

)
3nλn

1 +

√
1 +

18n

ln
(

4
δ

)
((BZ ∥∥∥FPX|Z

∥∥∥
GXZ

+BX

)2

λn +B2
X

(
BZ +

√
λn

)2
)

In particular, if λn = O(n−1/4), then ẼX|Z(F̂PX|Z ,n,λn
) − ẼX|Z(FPX|Z ) = Op(n−1/4). The

boundedness assumption is satisfied with many commonly used kernels, such as the Gaussian and
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Laplacian, and hence is not a restrictive condition. Note that some smoothness assumption on FPX|Z
or other distributional assumptions are necessary to achieve universal convergence rates, otherwise
the rates can be arbitrarily slow – for more discussion, see e.g. [56, p.56], [11, p.114, Theorem 7.2] or
[24, p.32, Theorem 3.1]. It is likely that better (and even optimal) rates can be achieved with further
assumptions (see e.g. [5, 53, 3] for results with real or finite-dimensional output spaces), but we leave
further investigation of learning rates with infinite-dimensional output spaces as future work.

Theorem 4.4 is stated with respect to the surrogate loss ẼX|Z , not the original loss EX|Z .
Let us now investigate its implications with respect to the original loss. Write η =

ẼX|Z(FPX|Z ). Since ẼX|Z(F̂PX|Z ,n,λn) ≥ EX|Z(F̂PX|Z ,n,λn), a consequence of Theorem 4.4 is
that limn→∞ PXZ (EX|Z(F̂PX|Z ,n,λn

) > ε + η) ≤ limn→∞ PXZ (ẼX|Z(F̂PX|Z ,n,λn
)− η > ε) = 0

for any ε > 0. This shows that, in the limit as n → ∞, the loss EX|Z(F̂PX|Z ,n,λn
) is at most an

arbitrarily small amount larger than η with high probability.

It remains to investigate what η represents, and how large it is. The law of total expectation gives
η = EX,Z [‖kX (X, ·) − FPX|Z (Z)‖2HX ] = EZ [EX|Z [‖kX (X, ·) − EX|Z [kX (X, ·) | Z]‖2HX | Z]].
Here, the integrand EX|Z [‖kX (X, ·) − EX|Z [kX (X, ·)| | Z]‖2HX | Z] is the variance of kX (X, ·)
given Z (see [2, p.24] for the definition of the variance of Banach-space valued random variables),
and by integrating over Z in the outer integral, η represents the “expected variance” of kX (X, ·).

Suppose X is measurable with respect to Z, i.e. FPX|Z has no noise. Then EX|Z [kX (X, ·) | Z] =

kX (X, ·), and consequently, η = 0. In this case, we have universal consistency in both the surrogate
loss ẼX|Z and the original loss EX|Z . On the other hand, η will be large if information about Z tells us
little aboutX , and subsequently kX (X, ·) ∈ HX . In the extreme case whereX andZ are independent,
we have EX|Z [kX (X, ·) | Z] = EX [kX (X, ·)], and η = EX [‖kX (X, ·)−EX [kX (X, ·)]‖2HX ], which
is precisely the variance of kX (X, ·) in HX . Hence, η represents the irreducible loss of the true
function due to noise in X , and the surrogate loss represents the loss functional taking noise into
account, while the original loss measures the deviance from the true conditional expectation.

5 Measures of discrepancy between conditional distributions and
conditional independence

In this section, we propose conditional analogues of the maximum mean discrepancy (MMD) and the
Hilbert-Schmidt independence criterion (HSIC), to measure, respectively, the discrepancy between
conditional distributions and conditional independence.

5.1 Maximum conditional mean discrepancy

Let X ′ : Ω→ X , Z ′ : Ω→ Z be additional random variables, with
∫
X

√
kX (x′, x′)dPX′(x

′) <∞.
Following Theorem 4.1, we write µPX|Z = FPX|Z ◦ Z and µPX′|Z′ = FPX′|Z′ ◦ Z

′.

Definition 5.1. We define the maximum conditional mean discrepancy (MCMD) between PX|Z and
PX′|Z′ to be the function Z → R defined by MPX|Z ,PX′|Z′ (z) = ‖FPX|Z (z)− FPX′|Z′ (z)‖HX .

Using {(xi, zi)}ni=1, {(x′j , z′j)}mj=1 from joint distributions PXZ , PX ′Z ′ , we obtain a closed-form,
plug-in estimate from (4) for the square of the MCMD function as

M̂2
PX|Z ,PX′|Z′

(·) = ‖F̂PX|Z ,n,λ(·)− F̂PX′|Z′ ,m,λ
′(·)‖2HX

= kTZ(·)WZKXWT
ZkZ(·)− 2kTZ(·)WZKXX ′W

T
Z′kZ′(·) + kTZ′(·)WZ′KX′W

T
Z′kZ′(·),

where [KX ]ij = kX (xi, xj), [KX′ ]ij = kX (x′i, x
′
j), [KXX ′ ]ij = kX (xi, x

′
j), [KZ ′ ]ij = kX (z′i, z

′
j),

kZ′(·) = (kZ(z′1, ·), ..., kZ(z′m, ·))T , WZ = (KZ + nλIn)−1 and WZ′ = (KZ′ +mλ′Im)−1.

The term MMD stems from the equality ‖µPX
− µPX′‖HX = supf∈BX |EX [f(X)]− EX′ [f(X ′)]|

[19, 50], where BX := {f ∈ HX | ‖f‖HX ≤ 1}. The supremum is attained by the witness
function,

µPX
−µP

X′
‖µPX

−µP
X′
‖HX

[21]. Using Lemma 3.2, the analogous (almost sure) equality for the

MCMD is supf∈BX |EX|Z [f(X) | Z]− EX′|Z′ [f(X ′) | Z ′]| = ‖µPX|Z − µPX′|Z′‖HX . We define
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Figure 2: We see that MCMD(X,X ′same|Z) ≈ 0 ∀Z. Near Z = 0, where the dependence on Z of X
and X ′diff are similar, MCMD(X,X ′diff|Z) ≈ 0, whereas away from 0, the dependence on Z of X and
X ′diff are different, and so MCMD(X,X ′diff|Z) > 0. We also see that the conditional witness function
between X and X ′same gives 0 at all values of X given any value of Z, whereas we have a saddle-like
function between X and X ′diff, with non-zero functions in X in the regions of Z away from 0.

the conditional witness function as the HX -valued random variable
µPX|Z−µP

X′|Z′

‖µPX|Z−µP
X′|Z′

‖HX
. We can

informally think of MCMDPX|Z ,PX′|Z′ (z) as “MMD between PX|Z=z and PX′|Z′=z”. However, we
do not have i.i.d. samples from PX|Z=z and PX′|Z′=z , and hence the estimation cannot be done by U-
or V-statistic procedures as done for the MMD. The following theorem says that, with characteristic
kernels, the MCMD can indeed act as a discrepancy measure between conditional distributions.
Theorem 5.2. Suppose that kX is characteristic, that PZ and PZ′ are absolutely continuous with
respect to each other, and that P (· | Z) and P (· | Z ′) admit regular versions. ThenMPX|Z ,PX′|Z′ = 0

almost everywhere if and only if, for almost all z ∈ Z , PX|Z=z(B) = PX′|Z′=z(B) for all B ∈ X.

By [9, p.11 & p.151, Theorem 2.10], we know that the space (Ω,F) being a Polish space with its
Borel σ-algebra is a sufficient condition for P (· | E) to have a regular version for any sub-σ-algebra
E of F . Hence, the assumption that P (· | Z) admits a regular version is not a restrictive one.

The MCMD is reminiscent of the conditional maximum mean discrepancy of [39], defined as the
Hilbert-Schmidt norm of the operator UX|Z −UX′|Z (see Definition 3.4). However, due to previously
discussed assumptions, UX|Z and UX′|Z often do not even exist, and/or do not have the desired
properties of Theorem 3.5, so even at population level, UX|Z − UX′|Z is often not an exact measure
of discrepancy between conditional distributions, unlike the MCMD. Moreover, [39] only considers
the case when the conditioning variable is the same.

5.2 Hilbert-Schmidt conditional independence criterion

In this subsection, we introduce a novel criterion of conditional independence.
Definition 5.3. We define the Hilbert-Schmidt Conditional Independence Criterion between X and
Y given Z to be HSCIC(X,Y | Z) = ‖µPXY |Z − µPX|Z ⊗ µPY |Z‖HX⊗HY .

We can write HSCIC(X,Y | Z) = HX,Y |Z ◦ Z for some HX,Y |Z : Z → R. Given a sample
{(xi, yi, zi)}ni=1 from PXY Z , we obtain a plug-in, closed-form estimate of H2

X,Y |Z(·) as follows:

Ĥ2
X,Y |Z(·) = kTZ(·)W(KX �KY )WTkZ(·)− 2kTZ(·)W((KXWTkZ(·))� (KYW

TkZ(·)))

+ (kTZ(·)WKXWTkZ(·))(kTZ(·)WKYW
TkZ(·))

where [KY ]ij := kY(yi, yj) and � denotes elementwise multiplication of matrices.

Casting aside measure-theoretic issues arising from conditioning on an event of probability 0, we can
conceptually think of the realisation of the HSCIC at each z = Z(ω) as “the HSIC between PX|Z=z

and PY |Z=z”. Again, we do not have multiple samples from each distribution PX|Z=z and PY |Z=z ,
so the estimation cannot be done by U- or V-statistic procedures as done for HSIC. The following
theorem shows that HSCIC is a measure of conditional independence.
Theorem 5.4. Suppose kX ⊗ kY is a characteristic kernel3 on X × Y , and that P (· | Z) admits a
regular version. Then HSCIC(X,Y | Z) = 0 almost surely if and only if X ⊥⊥ Y | Z.

3See [54] for a detailed discussion on characteristic tensor product kernels.
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Figure 3: We see that HSCIC(X,Ynoise|Z) ≈ 0 (left) and HSCIC(X,Yind|Z) ≈ 0 (right) for all
Z, whereas HSCIC(X,Ydep_add|Z) > 0, HSCIC(X,Y ′dep_add|Z) > 0, HSCIC(X,Ydep|Z) > 0,
HSCIC(X,Y ′dep|Z) > 0. In particular, the dependence of Y ′dep_add and Y ′dep on X is greater
than that of Ydep_add and Ydep, and is represented by larger values of HSCIC(X,Y ′dep_add|Z) and
HSCIC(X,Y ′dep|Z) compared to HSCIC(X,Ydep|Z) and HSCIC(X,Ydep_add|Z).

Concurrent and independent work by Sheng and Sriperumbudur [43] proposes a similar criterion with
the same nomenclature (HSCIC). However, they omit the discussion of CMEs entirely, and define the
HSCIC as the usual HSIC between PXY |Z=z and PX|Z=zPY |Z=z , without considerations for condi-
tioning on an event of measure 0. Their focus is more on investigating connections to distance-based
measures [57, 42]. Fukumizu et al. [16] propose ICOND , defined as the squared Hilbert-Schmidt
norm of the normalised conditional cross-covariance operator VŸ Ẍ|Z := C−1/2

Ÿ Ÿ
ΣŸ Ẍ|ZC

−1/2

ẌẌ
, where

Ẍ := (X,Z) and Ÿ := (Y, Z). As discussed, these operator-based definitions rely on a number of
strong assumptions that will often mean that VŸ Ẍ|Z does not exist, or it does not satisfy the conditions
for it to be used as an exact criterion even at population level. On the other hand, the HSCIC defined
as in Definition 5.3 is an exact mathematical criterion of conditional independence at population level.
Note that ICOND is a single-value criterion, whereas the HSCIC is a random criterion.

5.3 Experiments

We carry out simulations to demonstrate the behaviour of the MCMD and HSCIC. In all simu-
lations, we use the Gaussian kernel kX (x, x′) = kY(x, x′) = kZ(x, x′) = e−

1
2σX‖x−x′‖22 with

hyperparameter σX = 0.1, and regularisation parameter λ = 0.01.

In Figure 2, we simulate 500 samples from Z,Z ′ ∼ N (0, 1), X = e−0.5Z2

sin(2Z) +NX , X ′same =

e−0.5Z′2 sin(2Z ′) + NX and X ′diff = Z ′ + NX , where NX ∼ 0.3N (0, 1) is the (additive) noise
variable. The first plot shows simulated data, the second MCMD values against Z, and the heatmaps
show the (unnormalised) conditional witness function, whose norm gives the MCMD.

In Figure 3, on the left, we simulate 500 samples from the additive noise model, Z ∼ N (0, 1),
X = e−0.5Z2

sin(2Z)+NX , Ynoise = NY , Ydep_add = e−0.5Z2

sin(2Z)+NX+0.2X and Y ′dep_add =

e−0.5Z2

sin(2Z) + NX + 0.4X , where NX ∼ 0.3N (0, 1) is the (additive) noise variable. On the
right, we simulate 500 samples from the multiplicative noise model, Z ∼ N (0, 1), X = Yind =

e−0.5Z2

sin(2Z)NX , Ydep = e−0.5Z2

sin(2Z)NY + 0.2X and Y ′dep = e−0.5Z2

sin(2Z)NY + 0.4X ,
where NX , NY ∼ 0.3N (0, 1) are the (multiplicative) noise variables.

6 Conclusion

In this paper, we proposed a new approach to kernel conditional mean embeddings, based on Bochner
conditional expectation. Compared to the previous operator-based approaches, it does not rely
on stringent assumptions that are often violated in common situations. Using this new approach,
we discussed how to obtain empirical estimates via natural vector-valued regression, establishing
universal consistency under no distributional assumptions and convergence rate of Op(n−1/4) in the
well-specified case. Finally, we extended the notions of the MMD, witness function and HSIC to the
conditional case. We believe that our new approach has the potential to unlock the powerful arsenal
of kernel mean embeddings to the conditional setting, in a more convenient and rigorous manner.
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