
A Generalised Jensen’s Inequality

In Section 4, we require a version of Jensen’s inequality generalised to (possibly) infinite-dimensional
vector spaces, because our random variable takes values inHX , and our convex function is ‖·‖2HX :

HX → R. Note that this square norm function is indeed convex, since, for any t ∈ [0, 1] and any pair
f, g ∈ HX ,

‖tf + (1− t)g‖2HX ≤ (t‖f‖HX + (1− t)‖g‖HX )2 by the triangle inequality

≤ t‖f‖2HX + (1− t)‖g‖2HX , by the convexity of x 7→ x2.

The following theorem generalises Jensen’s inequality to infinite-dimensional vector spaces.
Theorem A.1 (Generalised Jensen’s Inequality, [38], Theorem 3.10). Suppose T is a real Hausdorff
locally convex (possibly infinite-dimensional) linear topological space, and let C be a closed convex
subset of T . Suppose (Ω,F , P ) is a probability space, and V : Ω→ T a Pettis-integrable random
variable such that V (Ω) ⊆ C. Let f : C → [−∞,∞) be a convex, lower semi-continuous
extended-real-valued function such that EV [f(V )] exists. Then

f(EV [V ]) ≤ EV [f(V )].

We will actually apply generalised Jensen’s inequality with conditional expectations, so we need the
following theorem.
Theorem A.2 (Generalised Conditional Jensen’s Inequality). Suppose T is a real Hausdorff locally
convex (possibly infinite-dimensional) linear topological space, and let C be a closed convex subset
of T . Suppose (Ω,F , P ) is a probability space, and V : Ω→ T a Pettis-integrable random variable
such that V (Ω) ⊆ C. Let f : C → [−∞,∞) be a convex, lower semi-continuous extended-real-
valued function such that EV [f(V )] exists. Suppose E is a sub-σ-algebra of F . Then

f(E[V | E ]) ≤ E[f(V ) | E ].

Proof. Let T ∗ be the dual space of all real-valued continuous linear functionals on T . The first part
of the proof of [38, Theorem 3.6] tells us that, for all v ∈ T , we can write

f(v) = sup{m(v) | m affine, m ≤ f on C},
where an affine function m on T is of the form m(v) = v∗(v) + α for some v∗ ∈ T ∗ and α ∈ R. If
we define the subset Q of T ∗ × R as

Q := {(v∗, α) : v∗ ∈ T ∗, α ∈ R, v∗(v) + α ≤ f(v) for all v ∈ T },
then we can rewrite f as

f(v) = sup
(v∗,α)∈Q

{v∗(v) + α}, for all v ∈ T . (5)

See that, for any (v∗, α) ∈ Q, we have

E
[
f(V ) | E

]
≥ E

[
v∗(V ) + α | E

]
almost surely, by assumption (*)

= E
[
v∗ (V ) | E

]
+ α almost surely, by linearity (**).

Here, (*) and (**) use the properties of conditional expectation of vector-valued random variables
given in [12, pp.45-46, Properties 43 and 40 respectively].

We want to show that E
[
v∗(V ) | E

]
= v∗

(
E
[
V | E

])
almost surely, and in order to so, we show

that the right-hand side is a version of the left-hand side. The right-hand side is clearly E-measurable,
since we have a linear operator on an E-measurable random variable. Moreover, for any A ∈ E ,∫
A

v∗
(
E
[
V | E

])
dP = v∗

(∫
A

E
[
V | E

]
dP

)
by [10, p.403, Proposition E.11]

= v∗
(∫

A

V dP

)
by the definition of conditional expectation

=

∫
A

v∗ (V ) dP by [10, p.403, Proposition E.11]
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(here, all the equalities are almost-sure equalities). Hence, by the definition of the conditional
expectation, we have that E

[
v∗(V ) | E

]
= v∗

(
E
[
V | E

])
almost surely. Going back to our above

work, this means that
E
[
f(V ) | E

]
≥ v∗

(
E
[
V | E

])
+ α.

Now take the supremum of the right-hand side over Q. Then (5) tells us that

E
[
f(V ) | E

]
≥ f

(
E
[
V | E

])
,

as required.

In the context of Section 4, HX is real and Hausdorff, and locally convex (because it is a normed
space). We take the closed convex subset to be the whole space HX itself. The function ‖·‖2HX :
HX → R is convex (as shown above) and continuous, and finally, since Bochner-integrability implies
Pettis integrability, all the conditions of Theorem A.2 are satisfied.

B Generalisation Error Bounds

Caponnetto and De Vito [5] give an optimal rate of convergence of vector-valued RKHS regression
estimators, and its results are quoted by Grünewälder et al. [22] as the state of the art convergence
rates, O( logn

n ). In particular, this implies that the learning algorithm is consistent. However, the
lower rate uses an assumption that the output space is a finite-dimensional Hilbert space [5, Theorem
2]; and in our case, this will mean thatHX is finite-dimensional. This is not true if, for example, we
take kX to be the Gaussian kernel; indeed, this is noted as a limitation by Grünewälder et al. [22],
stating that “It is likely that this (finite-dimension) assumption can be weakened, but this requires
a deeper analysis”. In this paper, we do not want to restrict our attention to finite-dimensionalHX .
The upper bound would have been sufficient to guarantee consistency, but an assumption used in the
upper bound requires the operator lXZ,z : HX → GXZ defined by

lXZ,z(f)(z′) = lXZ(z, z′)(f)

to be Hilbert-Schmidt for all z ∈ Z . However, for each z ∈ Z , taking any orthonormal basis {ϕi}∞i=1
ofHX , we see that

∞∑
i=1

〈lXZ,z(ϕi), lXZ,z(ϕi)〉GXZ =

∞∑
i=1

〈kZ(z, ·)ϕi, kZ(z, ·)ϕi〉GXZ

=

∞∑
i=1

〈kZ(z, z)ϕi, ϕi〉HX

= kZ(z, z)

∞∑
i=1

1

=∞,

meaning this assumption is not fulfilled with our choice of kernel either. Hence, results in [5], used
by [22], are not applicable to guarantee consistency in our context.

Kadri et al. [26] address the problem of generalisability of function-valued learning algorithms, using
the concept of uniform algorithmic stability [4]. Let us write

D := {(x1, z1), ..., (xn, zn)}

for our training set of size n drawn i.i.d. from the distribution PXZ , and we denote by Di =

D\(xi, zi) the setD from which the data point (xi, zi) is removed. Further, we denote by F̂PX|Z ,D =

F̂PX|Z ,n,λ the estimate produced by our learning algorithm from the dataset D by minimising the
loss ÊX|Z,n,λ(F ) =

∑n
i=1‖kX (xi, ·)− F (zi)‖2HX + λ‖F‖2GXZ

The assumptions used in this paper, with notations translated to our context, are
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1. There exists κ1 > 0 such that for all z ∈ Z ,

‖lXZ(z, z)‖op = sup
f∈HX

‖lXZ(z, z)(f)‖HX
‖f‖HX

≤ κ2
1.

2. The real function Z × Z → R defined by

(z1, z2) 7→ 〈lXZ(z1, z2)f1, f2〉HX
is measurable for all f1, f2 ∈ HX .

3. The map (f, F, z) 7→ ‖f − F (z)‖2HX is τ -admissible, i.e. convex with respect to F and
Lipschitz continuous with respect to F (z), with τ as its Lipschitz constant.

4. There exists κ2 > 0 such that for all (z, f) ∈ Z ×HX and any training set D,

‖f − F̂PX|Z ,D(z)‖2HX ≤ κ2.

The concept of uniform stability, with notations translated to our context, is defined as follows.
Definition B.1 (Uniform algorithmic stability, [26, Definition 6]). For each F ∈ GXZ , define the
function

R(F ) :Z ×HX → R
(z, x) 7→ ‖kX (x, ·)− F (z)‖2HX .

A learning algorithm that calculates the estimate F̂PX|Z ,D from a training set has uniform stability
β with respect to the squared loss if the following holds: for all n ≥ 1, all i ∈ {1, ..., n} and any
training set D of size n,

‖R(F̂PX|Z ,D)−R(F̂PX|Z ,Di)‖∞ ≤ β.

The next two theorems are quoted from [26].
Theorem B.2 ([26, Theorem 7]). Under assumptions 1, 2 and 3, a learning algorithm that maps a
training set D to the function F̂PX|Z ,D = F̂PX|Z ,n,λ is β-stable with

β =
τ2κ2

1

2λn
.

Theorem B.3 ([26, Theorem 8]). Let D 7→ F̂PX|Z ,D = F̂PX|Z ,n,λ be a learning algorithm with
uniform stability β, and assume Assumption 4 is satisfied. Then, for all n ≥ 1 and any 0 < δ < 1,
the following bound holds with probability at least 1− δ over the random draw of training samples:

ẼX|Z(F̂PX|Z ,n,λ) ≤ 1

n
ÊX|Z,n(F̂PX|Z ,n,λ) + 2β + (4nβ + κ2)

√
ln 1

δ

2n
.

Theorems B.2 and B.3 give us results about the generalisability of our learning algorithm. It remains
to check whether the assumptions are satisfied.

Assumption 2 is satisfied thanks to our assumption that point embeddings are measurable functions,
and Assumption 1 is satisfied if we assume that kZ is a bounded kernel (i.e. there exists BZ > 0
such that kZ(z1, z2) ≤ BZ for all z1, z2 ∈ Z), because

‖lXZ(z, z)‖op = sup
f∈HX ,‖f‖HX=1

‖kZ(z, z)(f)‖HX ≤ BZ .

In [26], a general loss function is used rather than the squared loss, and it is noted that Assumption
3 is in general not satisfied with the squared loss, which is what we use in our context. However,
this issue can be addressed if we restrict the output space to a bounded subset. In fact, the only
elements inHX that appear as the output samples in our case are kX (x, ·) for x ∈ X , so if we place
the assumption that kX is a bounded kernel (i.e. there exists BX > 0 such that kX (x1, x2) ≤ BX for
all x1, x2 ∈ X ), then by the reproducing property,

‖kX (x, ·)‖HX =
√
kX (x, x) ≤

√
BX .

16



So it is no problem, in our case, to place this boundedness assumption. [26, Appendix D] tells us that
Assumption 1 with this boundedness assumption implies Assumption 4 with

κ2 = BX

(
1 +

κ1√
λ

)2

,

while [26, Lemma 2] provides us with a condition which can replace Assumption 3 in Theorem B.2,
giving us the uniform stability of our algorithm with

β =
2κ2

1BX

(
1 + κ1√

λ

)2

λn
.

Then the result of Theorem B.3 holds with this new β.

C Proofs

Lemma 2.1. For each f ∈ HX ,
∫
X f(x)dPX(x) = 〈f, µPX

〉HX .

Proof. Let LP be a functional onH defined by LP (f) :=
∫
X f(x)dP (x). Then LP is clearly linear,

and moreover,

|LP (f)| =
∣∣∣∣∫
X
f(x)dP (x)

∣∣∣∣
=

∣∣∣∣∫
X
〈f, k(x, ·)〉HdP (x)

∣∣∣∣ by the reproducing property

≤
∫
X
|〈f, k(x, ·)〉H|dP (x) by Jensen’s inequality

≤ ‖f‖H
∫
X
‖k(x, ·)‖HdP (x) by Cauchy-Schwarz inequalty.

Since the map x 7→ k(x, ·) is Bochner P -integrable, LP is bounded, i.e. LP ∈ H∗. So by the Riesz
Representation Theorem, there exists a unique h ∈ H such that LP (f) = 〈f, h〉H for all f ∈ H.

Choose f(·) = k(x, ·) for some x ∈ X . Then

h(x) = 〈k(x, ·), h〉H
= LP (k(x, ·))

=

∫
X
k(x′, x)dP (x′),

which means h(·) =
∫
X k(x, ·)dP (x) = µP (·) (implicitly applying [12, Corollary 37]).

Lemma 2.3. For f ∈ HX , g ∈ HY , 〈f ⊗ g, µPXY 〉HX⊗HY = EXY [f(X)g(Y )].

Proof. For Bochner integrability, we see that

EXY
[∥∥kX (X, ·)⊗ kY(Y, ·)

∥∥
HX⊗HY

]
= EXY

[√
kX (X,X)

√
kY(Y, Y )

]
≤
√

EX
[
kX (X,X)

]√
EY
[
kY(Y, Y )

]
,

by Cauchy-Schwarz inequality. (2) now implies that kX (X, ·)⊗ kY(Y, ·) is Bochner PXY -integrable.

Let LPXY
be a functional onHX ⊗HY defined by LPXY

(∑
i fi ⊗ gi

)
:= EXY

[∑
i fi(X)gi(Y )

]
.

Then LPXY
is clearly linear, and moreover,

|LPXY
(
∑
i

fi ⊗ gi)| = |EXY [
∑
i

fi(X)gi(Y )]|

≤ EXY [|
∑
i

fi(X)gi(Y )|] by Jensen’s inequality
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= EXY [|〈
∑
i

fi ⊗ gi, kX (X, ·)⊗ kY(Y, ·)〉HX⊗HY |] by the reproducing property

≤ ‖
∑
i

fi ⊗ gi‖HX⊗HYEXY
[∥∥kX (X, ·)⊗ kY(Y, ·)

∥∥
HX⊗HY

]
by Cauchy-Schwarz inequality.

Hence, by Bochner integrability shown above, LPXY
∈ (HX⊗HY)∗. So by the Riesz Representation

Theorem, there exists h ∈ HX ⊗HY such that LPXY
(
∑
i fi ⊗ gi) = 〈

∑
i fi ⊗ gi, h〉HX⊗HY for all∑

i fi ⊗ gi ∈ HX ⊗HY .

Choose kX (x, ·)⊗ kY(y, ·) ∈ HX ⊗HY for some x ∈ X and y ∈ Y . Then

h(x, y) = 〈kX (x, ·)⊗ kY(y, ·), h〉HX⊗HY by the reproducing property
= LPXY

(kX (x, ·)⊗ kY(y, ·))
= EXY

[
kX (x,X)⊗ kY(y, Y )

]
= µPXY

(x, y),

as required.

Lemma C.1. Let {ϕi}∞i=1 and {ψj}∞j=1 be orthonormal bases of HX and HY respectively (note
that they are countable, since the RKHSs are separable). Then the map

Φ :HX ⊗HY → HS(HX ,HY)
∞∑

i=1,j=1

ci,j(ϕi ⊗ ψj) 7→ [h 7→
∞∑

i=1,j=1

ci,j〈h, ϕi〉HXψj ]

is an isometric isomorphism.

Proof. Φ is clearly linear. We first show isometry:∥∥∥∥∥∥Φ(

∞∑
i=1,j=1

ci,j(ϕi ⊗ ψj))

∥∥∥∥∥∥
2

HS

=

∥∥∥∥∥∥
∞∑

i=1,j=1

ci,j〈·, ϕi〉HXψj

∥∥∥∥∥∥
2

HS

=

∞∑
k=1

∥∥∥∥∥∥
∞∑

i=1,j=1

ci,j〈ϕk, ϕi〉HXψj

∥∥∥∥∥∥
2

HY

by definition

=

∞∑
i=1,j=1

c2i,j by orthonormality

=

∥∥∥∥∥∥
∞∑

i=1,j=1

ci,j(ϕi ⊗ ψj)

∥∥∥∥∥∥
2

HX⊗HY

by orthonormality,

as required. It remains to show surjectivity.

Take an element T ∈ HS(HX ,HY). Then T is completely determined by {Tϕi}∞i=1. For each i,
suppose Tϕi =

∑∞
j=1 d

i
jψj , with dij ∈ R for all i and j. Then

Φ

 ∞∑
i′=1,j=1

di
′

j (ϕi′ ⊗ ψj)

 =

ϕi 7→ ∞∑
i′=1,j=1

〈di
′

j ϕi′ , ϕi〉HXψj


=

ϕi 7→ ∞∑
j=1

dijψj

 by orthonormality

= T.

So Φ is surjective, and hence an isometric isomorphism.
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Before we prove Theorem 2.9, we state the following definition and theorems related to measurable
functions for Banach-space valued functions.
Definition C.2 ([12, p.4, Definition 5]). A function H : Ω→ H is called an F-simple function if it
has the form H =

∑n
i=1 hi1Bi

for some hi ∈ H and Bi ∈ F .

A functionH : Ω→ H is said to beF -measurable if there is a sequence (Hn) ofH-valued, F -simple
functions such that Hn → H pointwise.
Theorem C.3 ([12, p.4, Theorem 6]). If H : Ω → H is F-measurable, then there is a sequence
(Hn) ofH-valued, F-simple functions such that Hn → H pointwise and |Hn| ≤ |H| for every n.

Theorem C.4 ([12, p.19, Theorem 48], Lebesgue Convergence Theorem). Let (Hn) be a sequence
in L1

H(P ), H : Ω → H a P -measurable function, and g ∈ L1
+(P ) such that Hn → H P -almost

everywhere and |Hn| ≤ g, P -almost everywhere, for each n. Then H ∈ L1
H(P ) and Hn → H in

L1
H(P ), i.e.

∫
Ω
HndP →

∫
Ω
HdP .

Theorem 2.9. Suppose that P (· | E) admits a regular version Q. Then QH : Ω → H with
ω 7→ QωH =

∫
Ω
H(ω′)Qω(dω′) is a version of E[H | E ] for every Bochner P -integrable H .

Proof. SupposeH is Bochner P -integrable. SinceQ is a regular version of P (· | E), it is a probability
transition kernel from (Ω, E) to (Ω,F).

We first show that QH is measurable with respect to E . The map Q : Ω→ H is well-defined, since,
for each ω ∈ Ω, QωH is the Bochner-integral of H with respect to the measure B → Qω(B). Since
H is F-measurable, by Theorem C.3, there is a sequence (Hn) of H-valued, F-simple functions
such that Hn → H pointwise. Then for each ω ∈ Ω, QωH = limn→∞QωHn by Theorem
C.4. But for each n, we can write Hn =

∑m
j=1 hj1Bj

for some hj ∈ H and Bj ∈ F , and so
QωHn =

∑m
j=1 hjQω(Bj). For each Bj the map ω 7→ Qω(Bj) is E-measurable (by the definition

of transition probability kernel, Definition 2.7), and so as a linear combination of E-measurable
functions, QHn is E-measurable. Hence, as a pointwise limit of E-measurable functions, QH is also
E-measurable, by [12, p.6, Theorem 10].

Next, we show that, for all A ∈ E ,
∫
A
HdP =

∫
A
QHdP . Fix A ∈ E . By Theorem C.3, there is a

sequence (Hn) ofH-valued, F-simple functions such that Hn → H pointwise. For each n, we can
write Hn =

∑m
j=1 hj1Bj

for some hj ∈ H and Bj ∈ F , and∫
A

QHndP =

∫
A

m∑
j=1

hjQ(Bj)dP

=

∫
A

m∑
j=1

hjP (Bj | E)dP since Q is a version of P (· | E)

=

m∑
j=1

hj

∫
A

E[1Bj | E ]dP by the definition of conditional probability measures

=

∫
A

m∑
j=1

hj1BjdP by the definition of conditional expectations, since A ∈ E

=

∫
A

HndP.

We have Hn → H pointwise by assertion, and as before, QHn → QH pointwise. Hence,∫
A

QHdP = lim
n→∞

∫
A

QHndP by Theorem C.4

= lim
n→∞

∫
A

HndP by above

=

∫
A

HdP by Theorem C.4.

Hence, by the definition of the conditional expectation, QH is a version of E[H | E ].
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Lemma 3.2. For any f ∈ HX , EX|Z [f(X) | Z] = 〈f, µPX|Z 〉HX almost surely.

Proof. The left-hand side is the conditional expectation of the real-valued random variable f(X)
given Z. We need to check that the right-hand side is also that. Note that 〈f, µPX|Z 〉HX is clearly
Z-measurable, and P -integrable (by the Cauchy-Schwarz inequality and the integrability condition
(1)). Take any A ∈ σ(Z). Then∫

A

〈f, µPX|Z 〉HX dP =

∫
A

〈
f,EX|Z [kX (·, X) | Z]

〉
HX

dP by definition

=

〈
f,

∫
A

EX|Z [kX (·, X) | Z]dP

〉
HX

(+)

=

〈
f,

∫
A

kX (·, X)dP

〉
HX

see Definition 2.5

=

∫
A

〈f, kX (·, X)〉HX dP (+)

=

∫
A

f(X)dP by the reproducing property.

Here, in (+), we used the fact that the order of a continuous linear operator and Bochner integration
can be interchanged [12, p.30, Theorem 36]. Hence 〈f, µPX|Z 〉HX is a version of the conditional
expectation EX|Z [f(X) | Z].

Lemma 3.3. For any pair f ∈ HX and g ∈ HY , EXY |Z [f(X)g(Y ) | Z] = 〈f ⊗ g, µPXY |Z 〉HX⊗HY
almost surely.

Proof. The left-hand side is the conditional expectation of the real-valued random variable f(X)g(Y )
given Z. We need to check that the right-hand side is also that. Note that 〈f ⊗ g, µPXY |Z 〉HX⊗HY
is clearly Z-measurable, and P -integrable (by the Cauchy-Schwarz inequality and the integrability
condition (2)). Take any A ∈ σ(Z). Then∫

A

〈f ⊗ g, µPXY |Z 〉HX⊗HYdP =

∫
A

〈
f ⊗ g,EXY |Z [kX (·, X)⊗ kY(·, Y ) | Z]

〉
HX⊗HY

dP

=

〈
f ⊗ g,

∫
A

EXY |Z [kX (·, X)⊗ kY(·, Y ) | Z]dP

〉
HX⊗HY

=

〈
f ⊗ g,

∫
A

kX (·, X)⊗ kY(·, Y )dP

〉
HX⊗HY

=

∫
A

〈f ⊗ g, kX (·, X)⊗ kY(·, Y )〉HX⊗HYdP

=

∫
A

f(X)g(Y )dP.

So 〈f ⊗ g, µPXY |Z 〉HX⊗HY is a version of the conditional expectation EXY |Z [f(X)g(Y ) | Z].

Theorem 4.1. Assume that HX is separable, and denote its Borel σ-algebra by B(HX ). Then we
can write

µPX|Z = FPX|Z ◦ Z,

where FPX|Z : Z → HX is some deterministic function, measurable with respect to Z and B(HX ).

Proof. Let Im(Z) ⊆ Z be the image of Z : Ω → Z , and let Z̃ denote the σ-algebra on Im(Z)

defined by Z̃ = {A ∩ Im(Z) : A ∈ Z} (see [9, page 5, 1.15]). We will first construct a function
F̃ : Im(Z)→ HX , measurable with respect to Z̃ and B(HX ), such that µPX|Z = F̃ ◦ Z.

For a given z ∈ Im(Z) ⊆ Z , we have Z−1(z) ⊆ Ω. Suppose for contradiction that there are two
distinct elements ω1, ω2 ∈ Z−1(z) such that µPX|Z (ω1) 6= µPX|Z (ω2). Since HX is Hausdorff,
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there are disjoint open neighbourhoods N1 and N2 of µPX|Z (ω1) and µPX|Z (ω2) respectively. By
definition of a Borel σ-algebra, we have N1, N2 ∈ B(HX ), and since µPX|Z is σ(Z)-measurable,

µ−1
PX|Z

(N1), µ−1
PX|Z

(N2) ∈ σ(Z). (6)

Furthermore, µ−1
PX|Z

(N1) and µ−1
PX|Z

(N2) are neighbourhoods of ω1 and ω2 respectively, and are
disjoint.

(i) For any B ∈ Z̃ with z ∈ B, since Z(ω1) = z = Z(ω2), we have ω1, ω2 ∈ Z−1(B).
So Z−1(B) 6= µ−1

PX|Z
(N1) and Z−1(B) 6= µ−1

PX|Z
(N2), as ω2 /∈ µ−1

PX|Z
(N1) and ω1 /∈

µ−1
PX|Z

(N2).

(ii) For any B ∈ Z̃ with z /∈ B, we have ω1 /∈ Z−1(B) and ω2 /∈ Z−1(B). So Z−1(B) 6=
µ−1
PX|Z

(N1) and Z−1(B) 6= µ−1
PX|Z

(N2).

Since σ(Z) = {Z−1(B) | B ∈ Z̃} (see [9], page 11, Exercise 2.20), we can’t have µ−1
PX|Z

(N1) ∈
σ(Z) nor µ−1

PX|Z
(N2) ∈ σ(Z). This is a contradiction to (6). We therefore conclude that, for any

z ∈ Z , if Z(ω1) = z = Z(ω2) for distinct ω1, ω2 ∈ Ω, then µPX|Z (ω1) = µPX|Z (ω2).

We define F̃ (z) to be the unique value of µPX|Z (ω) for all ω ∈ Z−1(z). Then for any ω ∈ Ω,
µPX|Z (ω) = F̃ (Z(ω)) by construction. It remains to check that F̃ is measurable with respect to Z̃

and B(HX ).

Take any N ∈ B(HX ). Since µPX|Z is σ(Z)-measurable, µ−1
PX|Z

(N) = Z−1(F̃−1(N)) ∈ σ(Z).

Since σ(Z) = {Z−1(B) | B ∈ Z̃}, we have Z−1(F̃−1(N)) = Z−1(C) for some C ∈ Z̃. Since the
mapping Z : Ω→ Im(Z) is surjective, F̃−1(N) = C. Hence F̃−1(N) ∈ Z̃, and so F̃ is measurable
with respect to Z̃ and B(HX ).

Finally, we can extend F̃ : Im(Z)→ HX to F : Z → HX by [13, page 128, Corollary 4.2.7] (note
thatHX is a complete metric space, and assumed to be separable in this theorem).

Theorem 4.2. FPX|Z ∈ L2(Z, PZ ;HX ) minimises both ẼX|Z and EX|Z , i.e.

FPX|Z = arg min
F∈L2(Z,PZ ;HX )

EX|Z(F ) = arg min
F∈L2(Z,PZ ;HX )

ẼX|Z(F ).

Moreover, it is almost surely unique, i.e. it is almost surely equal to any other minimiser of the
objective functionals.

Proof. Recall that we have

EX|Z(F ) := EZ
[
‖FPX|Z (Z)− F (Z)‖2HX

]
.

So clearly, EX|Z(FPX|Z ) = 0, meaning FPX|Z minimises EX|Z in L2(Z, PZ ;HX ). So it only
remains to show that ẼX|Z is minimised in L2(Z, PZ ;HX ) by FPX|Z .

Let F be any element in L2(Z, PZ ;HX ). Then we have

ẼX|Z(F )− ẼX|Z(FPX|Z ) = EX,Z [‖kX (X, ·)− F (Z)‖2HX ]− EX,Z [‖kX (X, ·)− FPX|Z (Z)‖2HX ]

= EZ [‖F (Z)‖2HX ]− 2EX,Z [〈kX (X, ·), F (Z)〉HX ]

+ 2EX,Z
[
〈kX (X, ·), FPX|Z (Z)〉HX

]
− EZ

[
‖FPX|Z (Z)‖2HX

]
.

(7)

Here,

EX,Z
[
〈kX (X, ·), F (Z)〉HX

]
= EZ

[
EX|Z

[
F (Z)(X) | Z

]]
by the reproducing property
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= EZ
[
〈F (Z), µPX|Z 〉HX

]
by Lemma 3.2

= EZ
[
〈F (Z), FPX|Z (Z)〉HX

]
since µPX|Z = FPX|Z ◦ Z

and similarly,

EX,Z [〈kX (X, ·), FPX|Z (Z)〉HX ] = EZ [EX|Z [FPX|Z (Z)(X) | Z]] by the reproducing property

= EZ
[
〈FPX|Z (Z), FPX|Z (Z)〉HX

]
by Lemma 3.2

= EZ
[
‖FPX|Z (Z)‖2HX

]
.

Substituting these expressions back into (7), we have

ẼX|Z(F )− ẼX|Z(FPX|Z )

= EZ [‖F (Z)‖2HX ]− 2EZ [〈F (Z), FPX|Z (Z)〉HX ] + EZ [‖FPX|Z (Z)‖2HX ]

= EZ [‖F (Z)− FPX|Z (Z)‖2HX ]

≥ 0.

Hence, FPX|Z minimises ẼX|Z in L2(Z, PZ ;HX ). The minimiser is further more PZ-almost surely
unique; indeed, if F ′ ∈ L2(Z, PZ ;HX ) is another minimiser of ẼX|Z , then the calculation in (7)
shows that

EZ
[
‖FPX|Z (Z)− F ′(Z)‖2HX

]
= 0,

which immediately implies that ‖FPX|Z (Z) − F ′(Z)‖HX = 0 PZ-almost surely, which in turn
implies that FPX|Z = F ′ PZ-almost surely.

Theorem 4.4. Suppose that kX and kZ are bounded kernels, i.e. there exist BZ , BX > 0 such that
supz∈Z kZ(z, z) ≤ BZ and supx∈X kX (x, x) ≤ BX , and that the operator-valued kernel lXZ is
C0-universal. Let the regularisation parameter λn decay to 0 at a slower rate than O(n−1/2). Then
our learning algorithm that produces F̂PX|Z ,n,λn is universally consistent (in the surrogate loss ẼX|Z ),
i.e. for any joint distribution PXZ and constants ε > 0 and δ > 0,

PXZ (ẼX|Z(F̂PX|Z ,n,λn
)− ẼX|Z(FPX|Z ) > ε) < δ

for large enough n.

Proof. Follows immediately from [37, Theorem 2.3].

Theorem 4.5. In addition to the setting in Theorem 4.4, assume that FPX|Z ∈ GXZ . Let the regu-
larisation parameter λn decay to 0 with rate O(n−1/4). Then ẼX|Z(F̂PX|Z ,n,λn

)− ẼX|Z(FPX|Z ) =

OP (n−1/4).

Proof. Follows immediately from [37, Theorem 2.4].

Theorem 5.2. Suppose that kX is a characteristic kernel, that PZ and PZ′ are absolutely contin-
uous with respect to each other, and that P (· | Z) and P (· | Z ′) admit regular versions. Then
MCMDPX|Z ,PX′|Z′ = 0 PZ- (or PZ′-)almost everywhere if and only if, for PZ- (or PZ′-)almost all
z ∈ Z , PX|Z=z(B) = PX′|Z′=z(B) for all B ∈ X.

Proof. Write Q and Q′ for some regular versions of P (· | Z) and P (· | Z ′) respectively, and
assume without loss of generality that the conditional distributions PX|Z and PX′|Z′ are given by
PX|Z(ω)(B) = Qω(X ∈ B) and PX′|Z′(ω)(B) = Q′ω(X ′ ∈ B) for B ∈ X. By the definition
of regular versions, for each B ∈ X, the real-valued random variables ω 7→ PX|Z(ω)(B) and
ω 7→ PX′|Z′(ω)(B) are measurable with respect to Z and Z ′ respectively, and so there are functions
RB : Z → R and R′B : Z → R such that PX|Z(ω)(B) = RB(Z(ω)) and PX′|Z′(ω)(B) =
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R′B(Z ′(ω)). Moreover, for each fixed z ∈ Z , the mappings B 7→ PX|Z(Z−1(z))(B) = RB(z)

and B 7→ PX′|Z′(Z
′−1(z))(B) = R′B(z) are measures. We write RB(z) = PX|Z=z(B) and

R′B(z) = PX′|Z′=z(B).

By Theorem 2.9, there exists an event A1 ∈ F with P (A1) = 1 such that for all ω ∈ A1,

µPX|Z (ω) := EX|Z [kX (X, ·) | Z](ω) =

∫
Ω

kX (X(ω′), ·)Qω(dω′) =

∫
X
kX (x, ·)PX|Z(ω)(dx),

and an event A2 ∈ F with P (A2) = 1 such that for all ω ∈ A2,

µPX′|Z′ (ω) := EX′|Z′ [kX (X ′, ·) | Z ′](ω) =

∫
Ω

kX (X ′(ω′), ·)Qω(dω′)

=

∫
X
kX (x′, ·)PX′|Z′(ω)(dx′).

Suppose for contradiction that there exists some D ∈ Z with PZ(D) > 0 such that for all z ∈ D,
FPX|Z (z) 6=

∫
X kX (x, ·)Rdx(z). Then P (Z−1(D)) = PZ(D) > 0, and hence P (Z−1(D)∩A1) >

0. For all ω ∈ Z−1(D) ∩A1, we have Z(ω) ∈ D, and hence

µPX|Z (ω) = FPX|Z (Z(ω)) 6=
∫
X
kX (x, ·)Rdx(Z(ω)) =

∫
X
kX (x, ·)PX|Z(ω)(dx).

This contradicts our assertion that µPX|Z (ω) =
∫
X kX (x, ·)PX|Z(ω)(dx) for all ω ∈ A1, hence there

does not exist D ∈ Z with PZ(D) > 0 such that for all z ∈ D, FPX|Z (z) 6=
∫
X kX (x, ·)Rdx(z).

Therefore, there must exist some C1 ∈ Z with PZ(C1) = 1 such that for all z ∈ C1, FPX|Z (z) =∫
X kX (x, ·)Rdx(z). Similarly, there must exist some C2 ∈ Z with PZ(C2) = 1 such that for all
z ∈ C2, FPX′|Z′ (z) =

∫
X kX (x, ·)R′dx(z). Since PZ and PZ′ are absolutely continuous with respect

to each other, we also have PZ(C2) = 1 = PZ′(C1).

( =⇒ ) Suppose first that MCMDPX|Z ,PX′|Z′ = ‖FPX|Z − FPX′|Z′‖HX = 0 PZ-almost ev-
erywhere, i.e. there exists C ∈ Z with PZ(C) = 1 such that for all z ∈ C,
‖FPX|Z (z)− FPX′|Z′ (z)‖HX = 0. Then for each z ∈ C ∩ C1 ∩ C2,∫

X
kX (x, ·)Rdx(z) = FPX|Z (z) since z ∈ C1

= FPX′|Z′ (z) since z ∈ C

=

∫
X
kX (x, ·)R′dx(z) since z ∈ C2.

Since the kernel kX is characteristic, this means that B 7→ RB(z) and B 7→ R′B(z) are the
same probability measure on (X ,X). By countable intersection, we have PZ(C∩C1∩C2) =
1, so PZ-almost everywhere,

PX|Z=z(B) = PX′|Z′=z(B)

for all B ∈ X.

(⇐= ) Now assume there exists C ∈ Z with PZ(C) = 1 such that for each z ∈ C, RB(z) = R′B(z)
for all B ∈ X. Then for all z ∈ C ∩ C1 ∩ C2,∥∥∥FPX|Z (z)− FPX′|Z′ (z)

∥∥∥
HX

=

∥∥∥∥∫
X
kX (x, ·)Rdx(z)−

∫
X
kX (x, ·)R′dx(z)

∥∥∥∥
HX

since z ∈ C1 ∩ C2

=

∥∥∥∥∫
X
kX (x, ·)Rdx(z)−

∫
X
kX (x, ·)Rdx(z)

∥∥∥∥
HX

since z ∈ C

= 0,

and since PZ(C ∩ C1 ∩ C2) = 1, ‖FPX|Z − FPX′|Z′‖HX = 0 PZ-almost everywhere.
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Theorem 5.4. Suppose kX ⊗ kY is a characteristic kernel on X × Y , and that P (· | Z) admits a
regular version. Then HSCIC(X,Y | Z) = 0 almost surely if and only if X ⊥⊥ Y | Z.

Proof. Write Q for a regular version of P (· | Z), and assume without loss of generality that the
conditional distributions PX|Z , PY |Z and PXY |Z are given by PX|Z(ω)(B) = Qω(X ∈ B) for
B ∈ X , PY |Z(ω)(C) = Qω(Y ∈ C) for C ∈ Y and PXY |Z(ω)(D) = Qω((X,Y ) ∈ D) for
D ∈ X × Y. By Theorem 2.9, there exists an event A1 ∈ F with P (A1) = 1 such that for all
ω ∈ A1,

µPX|Z (ω) := EX|Z [kX (X, ·) | Z](ω) =

∫
Ω

kX (X(ω′), ·)Qω(dω′) =

∫
X
kX (x, ·)PX|Z(ω)(dx),

an event A2 ∈ F with P (A2) = 1 such that for all ω ∈ A2,

µPY |Z (ω) := EY |Z [kY(Y, ·) | Z](ω) =

∫
Ω

kY(Y (ω′), ·)Qω(dω′) =

∫
Y
kY(y, ·)PY |Z(ω)(dy),

and an event A3 ∈ F with P (A3) = 1 such that for all ω ∈ A3,

µPXY |Z (ω) =

∫
X×Y

kX (x, ·)⊗ kY(y, ·)PXY |Z(ω)(d(x, y)).

This means that, for each ω ∈ A1, µPX|Z (ω) is the mean embedding of PX|Z(ω), and for each
ω ∈ A2, µPY |Z (ω) is the mean embedding of PY |Z(ω).

( =⇒ ) Suppose first that HSCIC(X,Y | Z) = ‖µPXY |Z − µPX|Z ⊗ µPY |Z‖HX⊗HY = 0 almost
surely, i.e. there exists A ∈ F with P (A) = 1 such that for all ω ∈ A, ‖µPXY |Z (ω) −
µPX|Z (ω)⊗ µPY |Z (ω)‖HX⊗HY = 0. Then for each ω ∈ A ∩A1 ∩A2 ∩A3,∫

X×Y
kX (x, ·)⊗ kY(y, ·)PXY |Z(ω)(d(x, y)) = µPXY |Z (ω) since ω ∈ A3

= µPX|Z (ω)⊗ µPY |Z (ω) since ω ∈ A

=

∫
X
kX (x, ·)PX|Z(ω)(dx)⊗

∫
Y
kY(y, ·)PY |Z(ω)(dy) since ω ∈ A1 ∩A2

=

∫
X×Y

kX (x, ·)⊗ kY(y, ·)PX|Z(ω)PY |Z(ω)(d(x, y)) by Fubini.

Since the kernel kX⊗kY is characteristic, the distributions PXY |Z(ω) and PX|Z(ω)PY |Z(ω)
on X × Y are the same. By countable intersection, we have P (A ∩A1 ∩A2 ∩A3) = 1, so
PXY |Z and PX|ZPY |Z are the same almost surely, and we have X ⊥⊥ Y | Z.

(⇐= ) Now assume X ⊥⊥ Y | Z, i.e. there exists A ∈ F with P (A) = 1 such that for each
ω ∈ A, the distributions PXY |Z(ω) and PX|Z(ω)PY |Z(ω) are the same. Then for all
ω ∈ A ∩A1 ∩A2 ∩A3,

µPXY |Z (ω) =

∫
X×Y

kX (x, ·)⊗ kY(y, ·)PXY |Z(ω)(d(x, y)) since ω ∈ A3

=

∫
X×Y

kX (x, ·)⊗ kY(y, ·)PX|Z(ω)(dx)PY |Z(ω)(dy) since ω ∈ A

=

∫
X
kX (x, ·)PX|Z(ω)(dx)⊗

∫
Y
kY(y, ·)PY |Z(ω)(dy) by Fubini

= µPX|Z (ω)⊗ µPY |Z (ω) since ω ∈ A1 ∩A2.

and since P (A ∩A1 ∩A2 ∩A3) = 1, HSCIC(X,Y | Z) = 0 almost surely.
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