A Generalised Jensen’s Inequality

In Sectiond] we require a version of Jensen’s inequality generalised to (possibly) infinite-dimensional
vector spaces, because our random variable takes values in #.x, and our convex function is -3, , :

Hx — R. Note that this square norm function is indeed convex, since, for any ¢ € [0, 1] and any pair
fv g€ HX,

I1£f + (1 = )gll3., < (tllfll2en + (1 =)llgllae)* by the triangle inequality
<t fF. + A =Dlgl5., by the convexity of = +— x2.
The following theorem generalises Jensen’s inequality to infinite-dimensional vector spaces.

Theorem A.1 (Generalised Jensen’s Inequality, [38]], Theorem 3.10). Suppose T is a real Hausdorff
locally convex (possibly infinite-dimensional) linear topological space, and let C be a closed convex
subset of T. Suppose (2, F, P) is a probability space, and V' : Q0 — T a Pettis-integrable random
variable such that V() C C. Let f : C — [—00,00) be a convex, lower semi-continuous
extended-real-valued function such that By [f (V)] exists. Then

fEy[V]) <Ev[f(V)].

We will actually apply generalised Jensen’s inequality with conditional expectations, so we need the
following theorem.

Theorem A.2 (Generalised Conditional Jensen’s Inequality). Suppose T is a real Hausdorff locally
convex (possibly infinite-dimensional) linear topological space, and let C be a closed convex subset
of T. Suppose (0, F, P) is a probability space, and V : Q@ — T a Pettis-integrable random variable
such that V(Q) C C. Let f : C — [—00,00) be a convex, lower semi-continuous extended-real-
valued function such that By [f (V)] exists. Suppose £ is a sub-o-algebra of F. Then

FE[V [ €]) <E[f(V) [ €]
Proof. Let T* be the dual space of all real-valued continuous linear functionals on 7. The first part
of the proof of [38, Theorem 3.6] tells us that, for all v € T, we can write
f(v) = sup{m(v) | m affine, m < f on C},

where an affine function m on 7T is of the form m(v) = v*(v) + « for some v* € T* and o € R. If
we define the subset @ of 7* x R as

Q:={(Ww,a): v eT  aeRv"(v)+a< f(v)forallv e T},
then we can rewrite f as

fw)y= sup {v*(v)+a}, forallv e T. )
(vv,@)€eQ

See that, for any (v*, ) € Q, we have
E[f(V)|&] ZE[v*(V)+a|£] almost surely, by assumption (¥)
=E[v* (V)| €] +a almost surely, by linearity (**).

Here, (*) and (**) use the properties of conditional expectation of vector-valued random variables
given in [[12| pp.45-46, Properties 43 and 40 respectively].

We want to show that E [v*(V) | €] = v* (E V| 5]) almost surely, and in order to so, we show

that the right-hand side is a version of the left-hand side. The right-hand side is clearly £-measurable,
since we have a linear operator on an £-measurable random variable. Moreover, for any A € £,

/ v* (]E V| 5]) dpP = v* (/ E[V|€&] dP) by [10} p.403, Proposition E.11]
A A
=0 ( / VdP> by the definition of conditional expectation
A

= / v* (V) dP by [10, p.403, Proposition E.11]
A
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(here, all the equalities are almost-sure equalities). Hence, by the definition of the conditional
expectation, we have that E [v*(V) | £] = v* (]E V| 5]) almost surely. Going back to our above
work, this means that

E[f(V)I€]zv (E[V]¢€])+a.
Now take the supremum of the right-hand side over ). Then (3)) tells us that

E[f(V)I€] = f(E[VIe]),

as required. O

In the context of Section E], ‘H x is real and Hausdorff, and locally convex (because it is a normed
space). We take the closed convex subset to be the whole space # itself. The function ||-[|3, , :
‘Hx — Ris convex (as shown above) and continuous, and finally, since Bochner-integrability implies
Pettis integrability, all the conditions of Theorem are satisfied.

B Generalisation Error Bounds

Caponnetto and De Vito [3] give an optimal rate of convergence of vector-valued RKHS regression
estimators, and its results are quoted by Griinewilder et al. [22] as the state of the art convergence
rates, O(loi ). In particular, this implies that the learning algorithm is consistent. However, the
lower rate uses an assumption that the output space is a finite-dimensional Hilbert space [5, Theorem
2]; and in our case, this will mean that 7 y is finite-dimensional. This is not true if, for example, we
take kx to be the Gaussian kernel; indeed, this is noted as a limitation by Griinewilder et al. [22],
stating that “It is likely that this (finite-dimension) assumption can be weakened, but this requires
a deeper analysis”. In this paper, we do not want to restrict our attention to finite-dimensional H x.
The upper bound would have been sufficient to guarantee consistency, but an assumption used in the
upper bound requires the operator lx z . : Hx — Gxz defined by

Ixz:.(f)(2") = lxz(z,2)(f)

to be Hilbert-Schmidt for all z € Z. However, for each z € Z, taking any orthonormal basis {¢; } 32,
of H x, we see that

oo

D Axz:(0) Ixz,:(0))onz = D (kz(2,)0is k2 (2, )9i) gz

=1 i=1

meaning this assumption is not fulfilled with our choice of kernel either. Hence, results in [5]], used
by [22], are not applicable to guarantee consistency in our context.

Kadri et al. [26] address the problem of generalisability of function-valued learning algorithms, using
the concept of uniform algorithmic stability [4]. Let us write

D:={(z1,21), ., (T, 2n)}
for our training set of size n drawn i.i.d. from the distribution Pxz, and we denoteAby Dt =
D\ (w4, 2;) the set D from which the data point (z;, 2;) is removed. Further, we denote by Fp, , p =
Fpy, ;.n,x the estimate produced by our learning algorithm from the dataset D by minimising the
10ss Ex 17,02 (F) = 20y [k (i) = F(z0) |3, + A FI3,.

The assumptions used in this paper, with notations translated to our context, are
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1. There exists k; > 0 such that for all z € Z,

l 2,2
||lXZ(Z,Z)||op: sup H XZ( )(f)”?—tx SH%
fEHX (RaET

2. The real function Z x Z — R defined by

(21, 22) = (lxz (21, 22) 1, f2) 2w
is measurable for all f1, fo € H .

3. The map (f, F,z) — || f — F(z)3,, is T-admissible, i.e. convex with respect to F" and
Lipschitz continuous with respect to F'(z), with 7 as its Lipschitz constant.

4. There exists k2 > 0 such that for all (z, f) € Z x Hx and any training set D,
If = Fpy (2|7, < Fo.

The concept of uniform stability, with notations translated to our context, is defined as follows.
Definition B.1 (Uniform algorithmic stability, [26] Definition 6]). For each F' € Gy z, define the
function
R(F):ZxHx =R
(z,2) = [lkx(2,) — F(2)|5,-

A learning algorithm that calculates the estimate FPX‘ D irom a training set has uniform stability

B with respect to the squared loss if the following holds: for all n > 1, all ¢ € {1,...,n} and any
training set D of size n,

HR(FPX\Z,D) - ,R’(FPX‘Z,D'i)HOO < 6

The next two theorems are quoted from [26].

Theorem B.2 ([26, Theorem 7]). Under assumptions 1, 2 and 3, a learning algorithm that maps a
training set D to the function FleZ’D = FPx\zm,)\ is B-stable with

2,2
TRy

2an

Theorem B.3 ([26, Theorem 8]). Let D Flezp = FpX‘Z,n,A be a learning algorithm with
uniform stability B, and assume Assumption 4 is satisfied. Then, for alln > 1 and any 0 < § < 1,
the following bound holds with probability at least 1 — & over the random draw of training samples:

8=

- . 1. . Int
Ex1z(Fpy znn) < ;5X|Z,n(FPX|Z,n,)\) +28+ (4nB + k2) Trf

Theorems and [B.3|give us results about the generalisability of our learning algorithm. It remains
to check whether the assumptions are satisfied.

Assumption 2 is satisfied thanks to our assumption that point embeddings are measurable functions,
and Assumption 1 is satisfied if we assume that k= is a bounded kernel (i.e. there exists Bz > 0
such that kz (21, 22) < Bg forall z1, 29 € Z), because

llxz(z,2)|lop = sup lkz(z,2)(f)llrr < Bz.
FeH x| fllr,=1

In [26]], a general loss function is used rather than the squared loss, and it is noted that Assumption
3 is in general not satisfied with the squared loss, which is what we use in our context. However,
this issue can be addressed if we restrict the output space to a bounded subset. In fact, the only
elements in H y that appear as the output samples in our case are kx (z, -) for © € X, so if we place
the assumption that &y is a bounded kernel (i.e. there exists By > 0 such that kx (21, 22) < By for
all 1,z € &), then by the reproducing property,

||kX(I7')||HX =V kX(xax) < \/E
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So it is no problem, in our case, to place this boundedness assumption. [26, Appendix D] tells us that
Assumption 1 with this boundedness assumption implies Assumption 4 with

2
R

while [26, Lemma 2] provides us with a condition which can replace Assumption 3 in Theorem |B.2}
giving us the uniform stability of our algorithm with

2
\ 26t By (1+ 24 )

An '
Then the result of Theorem [B.3|holds with this new /3.

C Proofs
Lemma 2.1. Foreach f € Hx, [, f(x)dPx(x) = (f, Py )1x

Proof. Let Lp be a functional on H defined by Lp( f X ). Then Lp is clearly linear,
and moreover,

Le(f)] = ' [ rwr)

<f7 k(x,))ndP(z)

by the reproducing property

/\ fik(x,))n|dP(x) by Jensen’s inequality
< ||fHH/ |k (x, || dP(x) by Cauchy-Schwarz inequalty.

Since the map x — k(z, -) is Bochner P-integrable, Lp is bounded, i.e. Lp € H*. So by the Riesz
Representation Theorem, there exists a unique h € H such that Lp(f) = (f, h)y forall f € H.

Choose f(-) = k(x, -) for some x € X. Then

h(z) = (k(z, )7h>7-£
= Lp(k(z,"))
)dp

/ k(2 x
which means h(-) = [, k P(x) = pp(-) (implicitly applying [12} Corollary 37]). O
Lemma 2.3. For f € Hx, g € Hy, (f ® g, bpyy )Hromy = Exy[f(X)g(Y)].
Proof. For Bochner integrability, we see that
Exy [Hkx( D@ kYY) 0ms } =Exy {\/kX(X’X)\/ky(KY)}

< \V/Ex [k (X, X)] /By [ky(Y.Y)],
by Cauchy-Schwarz inequality. (2) now implies that kx (X, -) ® ky (Y, -) is Bochner Pxy -integrable.

Let Lp,, be afunctional on Hy ® Hy defined by Lp,, (3, fi ® gi) :=Exy [X; fi(X)g:(Y)].
Then Lp,, is clearly linear, and moreover,

|Lny Zfl®gz ‘—“EXY Zfz z )H

<Exy \Z [i(X)gi(Y)]] by Jensen’s inequality
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=Exvy|| <Z fi ® i kx(X,-) @ ky(Y, ) mrxemy ] by the reproducing property

i

< ||Z fi @ gillnrony, Exy [Hkx( )R ky(Y, HH ©Hy } by Cauchy-Schwarz inequality.

Hence, by Bochner integrability shown above, Lp,, € (Hx ®Hy)*. So by the Riesz Representation
Theorem, there exists h € Ha ® Hy suchthat Lp, ., (3, fi ® g:) = (32, fi ® giy B) 3@, for all
Ziﬁ@gi €EHxy @Hy.

Choose kx(z,-) @ ky(y, ) € Hx ® Hy for some x € X and y € V. Then
h(z,y) = (kx(z,-) @ ky(y,-), ) Hromy by the reproducing property
= Lpyy (kx(z,") @ ky(y,-))
=Exy [kx(x, X)® k‘y(y,Y)]
= prxy (2,9),

as required. O

Lemma C.1. Let {;}32, and {1);}32, be orthonormal bases of Hx and Hy respectively (note
that they are countable, since the RKHSs are separable). Then the map

O Hy @Hy - HS(Hx, Hy)

o0 o0
Z cij(pi ® ;) = [h Z ci i (b, i) j]
i=1,7=1 1=1,5=1
is an isometric isomorphism.
Proof. ® is clearly linear. We first show isometry:
2 2
oo o0
o > cileiev)| = D il enuat
i=1,j=1 HS i=1,j=1 Hs
2
(o) oo
= Z Z Ci i {Phs i) HVj by definition
k=1 ||i=1,j=1 Hoy
o0
= Z c by orthonormality
1=1,7=1
2
o0
= Z 5.5 (i ® ;) by orthonormality,
HaxQ@Hy

as required. It remains to show surjectivity.

Take an element T € HS(H.x, Hy). Then T' is completely determined by {T'y;}2,. For each i,
suppose Tp; = Z] 1 ]z/)], with dl € R for all 7 and j. Then

. -
® Z d; (90,‘/@1%‘) = |¥i> Z 4101 » Pi H,\e"pJ
i'=1,j=1 i'=1,j=1
- -
= |pi Z d;); by orthonormality
L j:1
=T.
So @ is surjective, and hence an isometric isomorphism. O
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Before we prove Theorem [2.9] we state the following definition and theorems related to measurable
functions for Banach-space valued functions.

Definition C.2 ([12] p.4, Definition 5]). A function H : Q2 — H is called an F-simple function if it
has the form H = 2?21 h;1p, for some h; € H and B; € F.

A function H : © — H is said to be F-measurable if there is a sequence (H,,) of H-valued, F-simple
functions such that H,, — H pointwise.

Theorem C.3 ([12, p.4, Theorem 6]). If H : Q0 — H is F-measurable, then there is a sequence
(H,) of H-valued, F-simple functions such that H,, — H pointwise and |H,| < |H| for every n.
Theorem C.4 ([12] p.19, Theorem 48], Lebesgue Convergence Theorem). Let (H,,) be a sequence
in L},(P), H : @ — H a P-measurable function, and g € L} (P) such that H,, — H P-almost
everywhere and |H,| < g, P-almost everywhere, for each n. Then H € L}, (P)and H,, — H in
Ly, (P), i.e. jQH dP%jQHdP

Theorem 2.9. Suppose that P(- | £) admits a regular version . Then QH : Q — H with
Wi QuH = [, H(w')Qu(dw') is a version of E[H | £] for every Bochner P-integrable H.

Proof. Suppose H is Bochner P-integrable. Since @ is a regular version of P(- | £), itis a probability
transition kernel from (2, £) to (2, F).

We first show that QQ H is measurable with respect to £. The map @ : 2 — H is well-defined, since,
for eachw € Q, Q,, H is the Bochner-integral of H with respect to the measure B — @, (B). Since
H is F-measurable, by Theorem there is a sequence (H,,) of H-valued, F-simple functions
such that H,, — H pointwise. Then for each w € Q, Q,H = lim,,_, . Q,H, by Theorem
But for each n, we can write H,, = Z;n:l hjlp, for some h; € H and B; € F, and so
QuHy, = 377", hjQu(B;). For each B the map w + Q,,(B;) is £-measurable (by the definition
of transition probability kernel, Definition 2.7), and so as a linear combination of £-measurable

functions, Q H,, is £-measurable. Hence, as a pointwise limit of £-measurable functions, Q H is also
E-measurable, by [12, p.6, Theorem 10].

Next, we show that, forall A € €, [, HIP = [, QHdP. Fix A € £. By Theorem there is a
sequence (H,) of H-valued, F-simple functions such that H,, — H pointwise. For each n, we can
write H,, = 7" | h;1p, for some h; € H and B; € F, and

AQHndP:Aith(B )dP

m

/ZhPB | £)dP since @ is a version of P(- | &)

Jj=1

= Z hj / [1p, | £]dP by the definition of conditional probability measures

/ Z hjlp,dP by the definition of conditional expectations, since A € £

/HdP

We have H,, — H pointwise by assertion, and as before, Q H,, — @ H pointwise. Hence,

n—oo

/ QHdP = lim QH dP by Theorem|C.4]
A

= lim HndP by above
n—oo
= / HdP by Theorem [C.4]
Hence, by the definition of the conditional expectation, QH is a version of E[H | £]. O

19



Lemma 3.2. Forany f € Hx, Ex|z[f(X) | Z] = (f, iy, , )1 almost surely.

Proof. The left-hand side is the conditional expectation of the real-valued random variable f(X)
given Z. We need to check that the right-hand side is also that. Note that (f, u Px|z )21, 18 clearly
Z-measurable, and P-integrable (by the Cauchy-Schwarz inequality and the integrability condition
(1)). Take any A € o(Z). Then

[t airgnedP = [ (£ ExialheX) 121, dP by defniion

_ <f,/AEXZ[kX(.,X) | Z]dP> (+)

Hx
= <f,/ kx(',X)dP> see Definition 2.3
A Hx
= [ bl XD (+)
= / f(X)dP by the reproducing property.
A

Here, in (4), we used the fact that the order of a continuous linear operator and Bochner integration
can be interchanged [12, p.30, Theorem 36]. Hence (f, u Px|z )21~ 1s @ version of the conditional
expectation Ex |z [f(X) | Z]. O

Lemma 3.3. For any pair f € Hy and g € Hy, Exy z[f(X)g(Y) | Z] = <f®g,,upXYlZ>HX®Hy
almost surely.

Proof. The left-hand side is the conditional expectation of the real-valued random variable f(X)g(Y)
given Z. We need to check that the right-hand side is also that. Note that (f ® g, it PXY'Z>H *OHy
is clearly Z-measurable, and P-integrable (by the Cauchy-Schwarz inequality and the integrability
condition (2)). Take any A € o(Z). Then

/A<f®gvupxy\z>HX®H)idP:A<f®g’EXY|Z[kX("X)®ky("y) | Z]>Hx®3‘-[y dP

_ <f®g, [ Exvislhat ) @k 7| Z]dP>
A Hx@Hy

_ <f®g,/AkX(-,X)®ky(-,Y)dP>

HxQ@Hy

- /A (F © 9.k X) @ ky (.Y wcony AP

- [ fexg(vyar,
A
So (f @ g, tPyy ;) Hx@Hy is a version of the conditional expectation Exyz[f(X)g(Y) | Z]. O

Theorem 4.1. Assume that H y is separable, and denote its Borel o-algebra by B(H x). Then we
can write

/’LPX‘Z = FPX‘Z OZ7

where F’ Px|z - Z — My is some deterministic function, measurable with respect to 3 and B(H x ).

Proof. Let Im(Z) C Z be the image of Z : @ — Z, and let 3 denote the o-algebra on Im(Z)
defined by 3 = {ANIm(Z) : A € 3} (see [9 page 5, 1.15]). We will first construct a function
F :1m(Z) — M x, measurable with respect to 3 and B(H x), such that up, , = F o Z.

For a given 2z € Im(Z) C Z, we have Z~!(z) C €. Suppose for contradiction that there are two
distinct elements wy,ws € Z~1(2) such that IPy, (w1) # IPy, 2 (w2). Since Hx is Hausdorff,
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there are disjoint open neighbourhoods Ny and Nj of pipy , (w1) and pip, , (w2) respectively. By
definition of a Borel o-algebra, we have N1, Na € B(Hx), and since jipy , is 0(Z)-measurable,

Hpe, (N1, i, (N2) € 0(2). ©

Furthermore, u;)l(lz (N7) and “1_’;1(‘2 (N2) are neighbourhoods of wy and wy respectively, and are
disjoint.

2z = Z(ws), we have wi,ws € Z71(B).
1

(i) For any B € 3 with z € B, since Z(w;) =
) # _XZ( 2), as wy ¢ ”Px\z(Nl) and wy ¢

So Z7X(B) # pp,,,(N1) and Z~1(B
Ky, (N2).

(ii) For any B € 3 with z ¢ B, we have w; ¢ Z~'(B) and wy ¢ Z'(B). So Z~'(B) #
Kpy,,(N1) and Z7X(B) # up,  (Na).

Since 0(Z) = {Z'(B) | B € 3} (see [9], page 11, Exercise 2.20), we can’t have ,u;)l”Z(Nl) €
o(Z) nor ,u;)lqz (N2) € o(Z). This is a contradiction to (6). We therefore conclude that, for any
z € Z,if Z(w1) = z = Z(w2) for distinct wy, wsy € §, then ,U/PX‘Z<UJ]_> = upx‘z(wg).

We define F'(z) to be the unique value of Py, (w) for all w € Z7!(z). Then for any w € €,

PPy, (w) = F(Z(w)) by construction. It remains to check that F is measurable with respect to 3
and B(Hy).

Take any N € B(Hx). Since ppy , is 0(Z)-measurable, ,ul_jl‘Z(N) = Z Y F~Y(N)) € o(2).

Since 0(Z) = {Z~'(B) | B € 3}, we have Z~'(F~'(N)) = Z~1(C) for some C € 3. Since the
mapping Z : {2 — Im(Z) is surjective, F~Y(N) = C. Hence F~*(N) € 3, and so F is measurable
with respect to 3 and B(H x).

Finally, we can extend F: Im(Z) - Hxto F: Z — Hx by [13] page 128, Corollary 4.2.7] (note
that H y is a complete metric space, and assumed to be separable in this theorem). O

Theorem 4.2. Fp, , € L*(Z, Pz; Hx) minimises both SX‘Z and Ex/z, i.e.

Fp.,= —argmin Ex|z(F)=  argmin S~X|Z(F).
FGLQ(Z,Pz;’Hx) FELQ(Z,Pz;Hx)

Moreover, it is almost surely unique, i.e. it is almost surely equal to any other minimiser of the
objective functionals.

Proof. Recall that we have
Ex(2(F) =Bz || Fry . (2) = F(Z) I,
So clearly, Ex|z(Fpy,,) = 0, meaning Fp, , minimises Ex|z in L?(Z,Pz;Hx). So it only
remains to show that EX‘Z is minimised in L?(Z, Pz; Hx) by Fpy -
Let F' be any element in L?(Z, Pz; H ). Then we have
Ex1z(F) = Ex1z(Fpy,,) = Ex zllkx(X,") = F(2)|3,] — Ex zlllkx (X,-) — Fpy ,(Z) |3,
=EZ[|F(2)|3,] — 2Ex,z[(kx (X, ), F(Z)) ]

+ 2B,z (ke (X,), gz (D) ]| = Bz [Py (2B
(7

Here,

Ex,z [(kx(X,-), F(Z))n.] = Ez [EX‘Z [F(Z)(X) | Z” by the reproducing property
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=Ez [<F(Z),upx‘z>%x] by Lemma[3.7]
=Ez [<F(Z),FPX‘Z(Z)>HX} since jpy , = Fpy , 02

and similarly,

Ex,z[{(kx(X,"), Fpy ,(Z))nx] = Ez[Ex|z[Fpy ,(Z)(X) | Z]] by the reproducing property
=B [(Fry s (2), Fry s (Z))o | by Lemmaf32)

= Ez [1Fry, (2)I, ] -
Substituting these expressions back into (7), we have

5X|Z(F) _gX|Z(FPX‘z)
=Ez[|F(2)|l3,) = 2Bz [(F(Z), Fry , (Z)) 1) + Bzl Fry . (2)II51,]
=Ez[|F(Z) = Fpy,, (2|3,
> 0.

Hence, F Px|z minimises € x|z in L? (Z, Pz;Hx). The minimiser is further more Pz-almost surely

unique; indeed, if I’ € L%(Z, Pz;Hx) is another minimiser of I3 x|z- then the calculation in
shows that

Ez |IFp,(2) = F'(Z)l3,] =0,

which immediately implies that || Fp, ,(Z) — F'(Z)|#, = 0 Pz-almost surely, which in turn
implies that Fp, , = F’" Pz-almost surely. O
Theorem 4.4. Suppose that ky and kz are bounded kernels, i.e. there exist Bz, By > 0 such that
sup,cz kz(z,2) < Bz and sup,cy kx(z,z) < By, and that the operator-valued kernel [y z is
Co-universal. Let the regularisation parameter \,, decay to 0 at a slower rate than O(n~'/2). Then

our learning algorithm that produces FPX\Z .n,\,, 18 universally consistent (in the surrogate loss E X|2)>
i.e. for any joint distribution Py 7 and constants ¢ > 0 and § > 0,

PXZ(5X|Z(FPX|Z,n,,\n) - gX\Z(FPX‘Z) >e€) <9

for large enough n.

Proof. Follows immediately from [37, Theorem 2.3].
O

Theorem 4.5. In addition to the setting in Theorem@ assume that F'p, , € Gy z. Let the regu-
larisation parameter \,, decay to 0 with rate O(n~'/4). Then SX‘Z(FPx\z,nﬂ\n) — gXlZ(FPX‘Z) =
Op(n~ 1/4) .

Proof. Follows immediately from [37, Theorem 2.4]. O

Theorem 5.2. Suppose that ky is a characteristic kernel, that P, and Py are absolutely contin-
uous with respect to each other, and that P(- | Z) and P(- | Z’) admit regular versions. Then
MCMDp, . Pxrjgr = 0 Pz- (or Pz -)almost everywhere if and only if, for Pz- (or Pz/-)almost all

S Z, PX|Z:z(B) = PX’lZ':z(B) fOf all B & ff

Proof. Write @ and @’ for some regular versions of P(- | Z) and P(- | Z') respectively, and
assume without loss of generality that the conditional distributions Px |z and Pz are given by
Px|z(w)(B) = Qu(X € B) and Px/ |z (w)(B) = Q, (X’ € B) for B € X. By the definition
of regular versions, for each B € X, the real-valued random variables w — Px|z(w)(B) and
w + Px1 1z (w)(B) are measurable with respect to Z and Z' respectively, and so there are functions
Rp : Z — Rand R : Z — R such that Px|z(w)(B) = Rp(Z(w)) and Px/ |z (w)(B) =
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R5(Z'(w)). Moreover, for each fixed z € Z, the mappings B — Px|z(Z7'(2))(B) = Rp(z)
and B — Px/ 7/(Z'7(2))(B) = Rlz(z) are measures. We write Rp(z) = Px|z=.(B) and
RIB(Z) = PX’|Z’:Z<B>'

By Theorem 2.9} there exists an event A; € F with P(A;) = 1 such that for all w € Ay,

iy (@) = Ex 2k (X, / Fae(X (&), )Qu () / ke (2, ) P () (d),

and an event Ay € F with P(As) = 1 such that for all w € A,
20 () = Bzl (X' ) | 20) = [ b (X (), )Qu ()
/ ]fX PX’lZ’( )(d"l}‘/)

Suppose for contradiction that there exists some D € 3 with Pz(D) > 0 such that for all z € D,
Fpy,,(2) # [y kx(2,-)Raz(2). Then P(Z~1(D)) = Pz(D) > 0, and hence P(Z~!(D)N A;) >
0. Forallw € Z~1(D ) N Ay, we have Z(w) € D, and hence

by, (@) = Fpy, (Z(w)) # /X b () Ra (Z(w)) = /X ke () Py () (d).

This contradicts our assertion that yip,,, (w) = [, kx(z,-)Px|z(w)(dz) for allw € Ay, hence there
does not exist D € 3 with Pz(D) > 0 such that for all z € D, FpX|Z ) # fx kx(z, )Rz (2).
Therefore, there must exist some C; € 3 with Pz(C7) = 1 such that for all z € C, FleZ( z) =
S kx (2, ) Raz(2). Similarly, there must exist some Cy € 3 with Pz(C3) = 1 such that for all
z € Cy, Fpy, , () = S kx(z, )R, (z). Since Pz and Py are absolutely continuous with respect
to each other, we also have Py (Cs) = 1 = Py (Cy).

(=) Suppose first that MCMDp, , p., , = 1 Fpy, — FpX,‘Z,HHX = 0 Pz-almost ev-
erywhere, i.e. there exists C € 3 with Pz(C) = 1 such that for all z € C,
”FPX\Z(Z) — FPX/IZ’ (Z)”HX = 0. Then foreach z € C N Cy; N Cy,

/ kx(x, ) Raz(2) = Fpy,,(2) since z € C4
X

=Fpy,(2) since z € C

= [ kx(z, )R, (2) since z € Cs.
X

Since the kernel ky is characteristic, this means that B — Rp(z) and B — R'g(z) are the
same probability measure on (X, X). By countable intersection, we have Pz (CNC1NCy) =
1, so Pz-almost everywhere,

Px|z=2(B) = Px1|z:=.(B)
forall B € X.

(<=) Now assume there exists C' € 3 with Pz(C') = 1 such that for each z € C, Rp(z) = Rz(#)
forall B € X. Thenforallz €¢ CNC; NCsy,

|Frez () = Frg,(2)

:] [ keI Rar(e) = [ el Ral2)
— 0,

Hx

/‘)C.kx(x,)Rdz(Z)*/XkX(xv)R/dac(z)

since z € C1 NCy

Hx

since z € C

Hx
and since Pz(C'NC1 N C2) =1, [|[Fpy , — Fpy, , llsx = 0 Pz-almost everywhere.
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Theorem 5.4. Suppose kx ® ky is a characteristic kernel on X' x Y, and that P(- | Z) admits a
regular version. Then HSCIC(X,Y | Z) = 0 almost surely if and only if X 1L Y | Z.

Proof. Write @ for a regular version of P(- | Z), and assume without loss of generality that the
conditional distributions Px |, Py|z and Pxy|z are given by Px|z(w)(B) = Q. (X € B) for
B € X, Pyiz(w)(C) = Qu(Y € C) for C € 9 and Pxy|z(w)(D) = Qu((X,Y) € D) for

D € X x 2. By Theorem there exists an event A; € F with P(A;) = 1 such that for all
w € Al,

g2 @) 1= Ex 2l (X) | 2)) = [ Ra(X6))Qulde!) = [ b(o. )Pz (da),
an event Ay € F with P(As) = 1 such that for all w € A,,
o129 = B pplhy (V) 1 210) = [ by V@), )Qu(a) = [ ot )Pr s ) ),
and an event A3 € F with P(A3) = 1 such that for all w € A3,
e @)= [ kale ) @ kyly. ) Pevia()de )

This means that, for each w € Ay, pup ,(w) is the mean embedding of Px|z(w), and for each
w € Ag, pupy ,(w) is the mean embedding of Py |z (w).

(== Suppose first that HSCIC(X,Y | Z) = |[pyy , — 1Py, ® Py ;|| Hr0Hy = 0 almost
surely, i.e. there exists A € F with P(A) = 1 such that for all w € A, ||ppy, ,(w) —
PPy, (W) @ ppy,, (W)[[#reny = 0. Then foreachw € AN A; N Ay N As,

/X yk;((x, ) ® ky(y,-)Pxy|z(w)(d(x,y)) = upXYlZ(w) since w € As

= :“PX|Z(W) ® ,UPy|Z(w) sincew € A

= /Xk;((ac,-)PXM(w)(dac) ®A}ky(y,-)Py|Z(w)(dy) since w € A; N Ay

= /X N k?((x’ ) ® ky(y, ')PX|Z<w)PY\Z(w)(d(x7 y)) by Fubini.

Since the kernel kx ®ky is characteristic, the distributions Pxy|z(w) and Py |z (w) Py |z(w)
on X x ) are the same. By countable intersection, we have P(AN A1 N A3 N A3) =1, s0
Pxy|z and Px |z Py |z are the same almost surely, and we have X 1 Y | Z.

(<) Now assume X L Y | Z, ie. there exists A € F with P(A) = 1 such that for each
w € A, the distributions Pyy|z(w) and Px|z(w)Py|z(w) are the same. Then for all
we€ANAINA;N As,

ey s (@) = /X | Rl ) © k(0. ) Py )l ) since w € Aj
-/ | B, @ ky(y. ) P2 ) () Pr o)) sincew € A

= [ k@ )Pxiz()(d)® [ k(w1 Priz(w)(dy) by Fubin
X Yy
:MPX\z(W)@)HPY‘Z(W) since w EAlﬁAQ.
and since P(AN A; N A N Ag) = 1, HSCIC(X,Y | Z) = 0 almost surely.
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