A U A W N =

10
11

A Implementation details

Image augmentations BYOL uses the same set of image augmentations as in SimCLR [8]. First,
a random patch of the image is selected and resized to 224 x 224 with a random horizontal flip,
followed by a color distortion, consisting of a random sequence of brightness, contrast, saturation,
hue adjustments, and an optional grayscale conversion. Finally Gaussian blur and solarization are
applied to the patches. Additional details on the image augmentations are in Appendix C.

Architecture We use a convolutional residual network [22] with 50 layers and post-activation
(ResNet-50(1x) v1) as our base parametric encoders fp and fe. We also use deeper (50, 101, 152
and 200 layers) and wider (from 1x to 4x) ResNets, as in [67, 48, 8]. Specifically, the representation
y corresponds to the output of the final average pooling layer, which has a feature dimension of 2048
(for a width multiplier of 1x). As in SimCLR [8], the representation y is projected to a smaller space
by a multi-layer perceptron (MLP) g, and similarly for the target projection g¢. This MLP consists
in a linear layer with output size 4096 followed by batch normalization [68], rectified linear units
(ReLU) [69], and a final linear layer with output dimension 256. Contrary to SimCLR, the output of
this MLP is not batch normalized. The predictor gy uses the same architecture as gg.

Optimization We use the LARS optimizer [70] with a cosine decay learning rate schedule [71],
without restarts, over 1000 epochs, with a warm-up period of 10 epochs. We set the base learning
rate to 0.2, scaled linearly [72] with the batch size (LearningRate = 0.2 x BatchSize/256). In
addition, we use a global weight decay parameter of 1.5 - 10~ while excluding the biases and batch
normalization parameters from both LARS adaptation and weight decay. For the target network, the
exponential moving average parameter 7 starts from 7, = 0.996 and is increased to one during
training. Specifically, we set 7 = 1 — (1 — Tpase) - (cos(mk/K) + 1)/2 with k the current training
step and K the maximum number of training steps. We use a batch size of 4096 split over 512
Cloud TPU v3 cores. With this setup, training takes approximately 8 hours for a ResNet-50(x1). All
hyperparameters are summarized in Appendix J; an additional set of hyperparameters for a smaller
batch size of 512 is provided in Appendix H.

B Algorithm

Algorithm 1: BYOL: Bootstrap Your Own Latent

Inputs :
D,T,and T’ set of images and distributions of transformations
0, fo, g9, and gy initial online parameters, encoder, projector, and predictor
& fe, 9¢ initial target parameters, target encoder, and target projector
optimizer optimizer, updates online parameters using the loss gradient
K and N total number of optimization steps and batch size

{me}E and {nx}< | target network update schedule and learning rate schedule

for k =1to K do
B+ {z; ~D}Y, // sample a batch of N images
for x; € Bdo
t~Tandt' ~ T’ // sample image transformations
21 + go(fo(t(x;))) and 2o < go(fo(t'(z;))) // compute projections
21 < ge(fe(t'(z:))) and 25 < ge(fe(t(z:))) // compute target projections
) _ 9. (go(21),21) (g0 (22),25))
i =2 <|qe(z1>|z~||z12 + |fI9(zz)|2'||2é||2) // compute the loss for z;
end
N
8+ % > ol // compute the total loss gradient w.r.t.f
i=1
6 < optimizer (6, 56, ;) // update online parameters
E+— 1€+ (1 —71)0 // update target parameters
end
Qutput :encoder fy

15

C Image augmentations

During self-supervised training, BYOL uses the following image augmentations (which are a subset of
the ones presented in [8]):

e random cropping: a random patch of the image is selected, with an area uniformly sampled
between 8% and 100% of that of the original image, and an aspect ratio logarithmically
sampled between 3/4 and 4/3. This patch is then resized to the target size of 224 x 224
using bicubic interpolation;

e optional left-right flip;

e color jittering: the brightness, contrast, saturation and hue of the image are shifted by a

uniformly random offset applied on all the pixels of the same image. The order in which
these shifts are performed is randomly selected for each patch;

e color dropping: an optional conversion to grayscale. When applied, output intensity for a
pixel (r, g, b) corresponds to its luma component, computed as 0.29897+0.5870g+0.11400b;

e Gaussian blurring: for a 224 x 224 image, a square Gaussian kernel of size 23 x 23 is used,
with a standard deviation uniformly sampled over [0.1, 2.0];

e solarization: an optional color transformation z + = - 1, <0.5) + (1 — 2) - 1{z>0.5) for
pixels with values in [0, 1].

Augmentations from the sets 7 and 7~ (introduced in Section 3) are compositions of the above
image augmentations in the listed order, each applied with a predetermined probability. The image
augmentations parameters are listed in Table 6.

During evaluation, we use a center crop similar to [8]: images are resized to 256 pixels along the
shorter side using bicubic resampling, after which a 224 x 224 center crop is applied. In both training
and evaluation, we normalize color channels by subtracting the average color and dividing by the
standard deviation, computed on ImageNet, after applying the augmentations.

Parameter T T
Random crop probability 1.0 1.0
Flip probability 0.5 0.5
Color jittering probability 0.8 0.8
Brightness adjustment max intensity 0.4 0.4
Contrast adjustment max intensity 04 04
Saturation adjustment max intensity 0.2 0.2
Hue adjustment max intensity 0.1 0.1
Color dropping probability 0.2 0.2
Gaussian blurring probability 1.0 0.1
Solarization probability 0.0 0.2

Table 6: Parameters used to generate image augmentations.

D Evaluation on ImageNet training

D.1 Self-supervised learning evaluation on ImageNet

Linear evaluation protocol on ImageNet As in [48, 74, 8, 37], we use the standard linear eval-
uation protocol on ImageNet, which consists in training a linear classifier on top of the frozen
representation, i.e., without updating the network parameters nor the batch statistics. At training
time, we apply spatial augmentations, i.e., random crops with resize to 224 x 224 pixels, and random
flips. At test time, images are resized to 256 pixels along the shorter side using bicubic resampling,
after which a 224 x 224 center crop is applied. In both cases, we normalize the color channels by
subtracting the average color and dividing by the standard deviation (computed on ImageNet), after
applying the augmentations. We optimize the cross-entropy loss using SGD with Nesterov momentum
over 80 epochs, using a batch size of 1024 and a momentum of 0.9. We do not use any regularization
methods such as weight decay, gradient clipping [86], tclip [34], or logits regularization. We finally

16

sweep over 5 learning rates {0.4,0.3,0.2,0.1,0.05} on a local validation set (10009 images from
ImageNet train set), and report the accuracy of the best validation hyperparameter on the test set
(which is the public validation set of the original ILSVRC2012 ImageNet dataset).

Variant on linear evaluation on ImageNet In this paragraph only, we deviate from the protocol
of [8, 37] and propose another way of performing linear evaluation on top of a frozen representation.
This method achieves better performance both in top-1 and top-5 accuracy.

e We replace the spatial augmentations (random crops with resize to 224 x 224 pixels and random
flips) with the pre-train augmentations of Appendix C. This method was already used in [32] with
a different subset of pre-train augmentations.

e We regularize the linear classifier as in [34]° by clipping the logits using a hyperbolic tangent
function
tclip(z) £ « - tanh(z/a),

where « is a positive scalar, and by adding a logit-regularization penalty term in the loss
Loss(z,y) £ cross_entropy (tclip(z),y) + § - average(tclip(z)?),

where z are the logits, y are the target labels, and 3 is the regularization parameter. We set o« = 20
and § = le—2.

We report in Table 7 the top-1 and top-5 accuracy on ImageNet using this modified protocol. These
modifications in the evaluation protocol increase the BYOL’s top-1 accuracy from 74.3% to 74.8%
with a ResNet-50 (1x).

Architecture Pre-train augmentations Logits regularization Top-1 Top-5
74.3 91.6

v 74.4 91.8

ResNet-50 (1x) v 74.7 918
v v 74.8 918

78.6 94.2

v 78.6 94.3

ResNet-50 (4x) v 78.9 94.3
v v 79.0 945

79.6 94.8

v 79.6 94.8

ResNet-200 (2x) v 79.8 95.0
v v 80.0 95.0

Table 7: Different linear evaluation protocols on ResNet architectures by either replacing the
spatial augmentations with pre-train augmentations, or regularizing the linear classifier. No
pre-train augmentations and no logits regularization correspond to the evaluation protocol
of the main paper, which is the same as in [8, 37].

Semi-supervised learning on ImageNet We follow the semi-supervised learning protocol of [8,
77]. We first initialize the network with the parameters of the pretrained representation, and fine-tune
it with a subset of ImageNet labels. At training time, we apply spatial augmentations, i.e., random
crops with resize to 224 x 224 pixels and random flips. At test time, images are resized to 256 pixels
along the shorter side using bicubic resampling, after which a 224 x 224 center crop is applied. In
both cases, we normalize the color channels by subtracting the average color and dividing by the
standard deviation (computed on ImageNet), after applying the augmentations. We optimize the
cross-entropy loss using SGD with Nesterov momentum. We used a batch size of 1024, a momentum
of 0.9. We do not use any regularization methods such as weight decay, gradient clipping [86],
tclip [34], or logits rescaling. We sweep over the learning rate {0.01, 0.02, 0.05,0.1,0.005} and the
number of epochs {30, 50} and select the hyperparameters achieving the best performance on our
local validation set to report test performance.

$https://github.com/Philip-Bachman/amdim-public/blob/master/costs.py

17

https://github.com/Philip-Bachman/amdim-public/blob/master/costs.py

80
a — 1 a
> 70 L /s?s \; 90 T /6‘. /U
g — o g a== /
g /3/ / 5 gof @ O
5 60 5| @
5] @ J 11
< g A < o
—_ 0/ w 70
oy 50 @ [&
e S
s 40 = 60 P
Z [Supervised % Supervised
:é;D 30 / —— BYOL oh 50 —— BYOL
é o SimCLR (repro) _g o SimCLR (repro)
05— 510 20 50 100 W= 510 20 350 100
Percentage of training data Percentage of training data
(a) Top-1 accuracy (b) Top-5 accuracy

Figure 4: Semi-supervised training with a fraction of ImageNet labels on a ResNet-50 (x1).

Supervised: Semi-supervised (100%):

Method Top-1 Top-5 Method Top-1 Top-5
Supervised[8] 76.5 — SimCLR [8] 76.0 93.1
AutoAugment [87] 77.6 93.8 SimCLR (repro) 76.5 93.5
MaxUp [75] 78.9 94.2 BYOL TT.T 93.9

Table 8: Semi-supervised training with the full ImageNet on a ResNet-
50 (x1). We also report other fully supervised methods for extensive
comparisons.

In Table 2 presented in the main text, we fine-tune the representation over the 1% and 10% ImageNet
splits from [8] with various ResNet architectures.

In Figure 4, we fine-tune the representation over 1%, 2%, 5%, 10%, 20%, 50%, and 100% of the
ImageNet dataset as in [32] with a ResNet-50 (1 x) architecture, and compare them with a supervised
baseline and a fine-tuned SimCLR representation. In this case and contrary to Table 2 we don’t reuse
the splits from SimCLR but we create our own via a balanced selection. In this setting, we observed
that tuning a BYOL representation always outperforms a supervised baseline trained from scratch.
In Figure 5, we then fine-tune the representation over multiple ResNet architectures. We observe
that the largest networks are prone to overfitting as they are outperformed by ResNets with identical
depth but smaller scaling factor. This overfitting is further confirmed when looking at the training
and evaluation loss: large networks have lower training losses, but higher validation losses than some
of their slimmer counterparts. Regularization methods are thus recommended when tuning on large
architectures.

Finally, we fine-tune the representation over the full ImageNet dataset. We report the results in Table 8
along with supervised baselines trained on ImageNet. We observe that fine-tuning the SimCLR
checkpoint does not yield better results (in our reproduction, which matches the results reported in
the original paper [8]) than using a random initialization (76.5 top-1). Instead, BYOL’s initialization
checkpoint leads to a high final score (77.7 top-1), higher than the vanilla supervised baseline of [8],
matching the strong supervised baseline of AutoAugment[87] but still 1.2 points below the stronger
supervised baseline [75], which uses advanced supervised learning techniques.

D.2 Linear evaluation on larger architectures and supervised baselines
Here we investigate the performance of BYOL with deeper and wider ResNet architectures. We

compare ourselves to the best supervised baselines from [8] when available (rightmost column in
table 9), which are also presented in Figure 1. Importantly, we close in on those baselines using

18

ResNet-50 ResNet-101

50x4

®
&
°

L

IR RN}

°
°

a
1
3

op-1 accuracy (%)

Top-1 accuracy (%]

&
°
S
T
a
o

20 50 20 50
Fraction of data used for fine-tuning (%) Fraction of data used for fine-tuning (%)

ResNet-152 ResNet-200

g

Top-1 accuracy (%]

&
°
Toj
&
o

25 10 100 25 10 100

20 50 20 50
Fraction of data used for fine-tuning (%) Fraction of data used for fine-tuning (%)

Figure 5: Semi-supervised training with a fraction of ImageNet labels on multiple ResNets architec-
ture pretrained with BYOL. Note that large networks are facing overfitting problems.

BYOL Supervised (ours) Supervised [8]
Architecture Multiplier ~ Weights Top-1 Top-5 Top-1 Top-5 Top-1
ResNet-50 1x 24M 74.3 91.6 76.4 92.9 76.5
ResNet-101 1x 43M 76.4 93.0 78.0 94.0 -
ResNet-152 1x 58M 77.3 93.7 79.1 94.5 -
ResNet-200 1x 63M 77.8 93.9 79.3 94.6 -
ResNet-50 2% 94M 7.4 93.6 79.9 95.0 77.8
ResNet-101 2% 170M 78.7 94.3 80.3 95.0 -
ResNet-50 3x 211M 78.2 93.9 80.2 95.0 -
ResNet-152 2% 232M 79.0 94.6 80.6 95.3 -
ResNet-200 2% 250M 79.6 949 80.1 95.2 -
ResNet-50 4x 375M 78.6 94.2 80.7 95.3 78.9
ResNet-101 3x 382M 78.4 94.2 80.7 95.3 -
ResNet-152 3% 522M 79.5 94.6 80.9 95.2 -

Table 9: Linear evaluation of BYOL on ImageNet using larger encoders.
Top-1 and top-5 accuracies are reported in %.

the ResNet-50 (2x) and the ResNet-50 (4 x) architectures, where we are within 0.4 accuracy points
of the supervised performance. To the best of our knowledge, this is the first time that the gap
to supervised has been closed to such an extent using a self-supervised method under the linear
evaluation protocol. Therefore, in order to ensure fair comparison, and suspecting that the supervised
baselines’ performance in [8] could be even further improved with appropriate data augmentations,
we also report on our own reproduction of strong supervised baselines. We use RandAugment [87]
data augmentation for all large ResNet architectures (which are all version 1, as per [22]). We train
our supervised baselines for up to 200 epochs, using SGD with a Nesterov momentum value of 0.9, a
cosine-annealed learning rate after a 5 epochs linear warmup period, weight decay with a value of
le — 4, and a label smoothing [88] value of 0.1. Results are presented in Figure 6.

19

° J
® 9
80 | ®e
®
e L el5-
° 2002% @ 152-3x
S @ 152-2x S
5 N 101-2x =101—>3<>><
= . ()
= Pl
o T8¢ ® - 200-1x 50-3x
g e ®
&, ® ®
2 152-1x 072x
z
& e o
£ 101-1x
@ Supervised (ours)
@® Supervised [8]
@50-1x ® BYOL
74 i i i i i 3
25M 50M 100M 200M 400M 800M

Number of parameters

Figure 6: Results for linear evaluation of BYOL compared to fully supervised baselines with
various ResNet architectures. Our supervised baselines are ran with RandAugment [87]
augmentations.

20

E Transfer to other datasets

E.1 Datasets

Dataset Classes Original train examples Train examples Valid. examples Test examples Accuracy measure Test provided
ImageNet [21] 1000 1281167 1271158 10009 50000 Top-1 accuracy
Food101 [89] 101 75750 68175 7575 25250 Top-1 accuracy
CIFAR-10 [78] 10 50000 45000 5000 10000 Top-1 accuracy
CIFAR-100 [78] 100 50000 44933 5067 10000 Top-1 accuracy
Birdsnap [90] 500 47386 42405 4981 2443 Top-1 accuracy
Sun397 (split 1) [79] 397 19850 15880 3970 19850 Top-1 accuracy
Cars [91] 196 8144 6494 1650 8041 Top-1 accuracy -
Aiircraft [92] 100 3334 3334 3333 3333 Mean per-class accuracy Yes
PASCAL-VOC2007 [80] 20 5011 2501 2510 4952 11-point mAP / AP50 -
PASCAL-VOC2012 [80] 21 10582 — 2119 1449 Mean IoU -
DTD (split 1) [81] 47 1880 1880 1880 1880 Top-1 accuracy Yes
Pets [93] 37 3680 2940 740 3669 Mean per-class accuracy -
Caltech-101 [94] 101 3060 2550 510 6084 Mean per-class accuracy
Places365 [73] 365 1803460 1803460 - 36500 Top-1 accuracy -
Flowers [95] 102 1020 1020 1020 6149 Mean per-class accuracy Yes

Table 10: Characteristics of image datasets used in transfer learning. When an official test
split with labels is not publicly available, we use the official validation split as test set, and
create a held-out validation set from the training examples.

We perform transfer via linear classification and fine-tuning on the same set of datasets as in [8],
namely Food-101 dataset [89], CIFAR-10 [78] and CIFAR-100 [78], Birdsnap [90], the SUN397
scene dataset [79], Stanford Cars [91], FGVC Aircraft [92], the PASCAL VOC 2007 classification
task [80], the Describable Textures Dataset (DTD) [81], Oxford-IIIT Pets [93], Caltech-101 [94], and
Oxford 102 Flowers [95]. As in [8], we used the validation sets specified by the dataset creators to
select hyperparameters for FGVC Aircraft, PASCAL VOC 2007, DTD, and Oxford 102 Flowers.
On other datasets, we use the validation examples as test set, and hold out a subset of the training
examples that we use as validation set. We use standard metrics for each datasets:

e Top-1: We compute the proportion of correctly classified examples.

e Mean per class: We compute the top-1 accuracy for each class separately and then compute
the empirical mean over the classes.

Point 11-mAP: We compute the empirical mean average precision as defined in [80].

o Mean IoU: We compute the empirical mean Intersection-Over-Union as defined in [80].

AP50: We compute the Average Precision as defined in [80].
We detail the validation procedures for some specific datasets:

e For Sun397 [79], the original dataset specifies 10 train/test splits, all of which contain 50
examples/images of 397 different classes. We use the first train/test split. The original
dataset specifies no validation split and therefore, the training images have been further
subdivided into 40 images per class for the train split and 10 images per class for the valid
split.

e For Birdsnap [90], we use a random selection of valid images with the same number of
images per category as the test split.

e For DTD [81], the original dataset specifies 10 train/validation/test splits, we only use the
first split.

e For Caltech-101 [94], the original does not dataset specifies any train/test splits. We have
followed the approach used in [96]: This file defines datasets for 5 random splits of 25
training images per category, with 5 validation images per category and the remaining
images used for testing.

o For ImageNet, we took the last 10009 last images of the official tensorflow ImageNet split.

e For Oxford-IIIT Pets, the valid set consists of 20 randomly selected images per class.

Information about the dataset are summarized in Table 10.

21

E.2 Transfer via linear classification

We follow the linear evaluation protocol of [48, 74, 8] that we detail next for completeness. We train
a regularized multinomial logistic regression classifier on top of the frozen representation, i.e., with
frozen pretrained parameters and without re-computing batch-normalization statistics. In training
and testing, we do not perform any image augmentations; images are resized to 224 pixels along
the shorter side using bicubic resampling and then normalized with ImageNet statistics. Finally,
we minimize the cross-entropy objective using LBFGS with /s-regularization, where we select the
regularization parameters from a range of 45 logarithmically-spaced values between 10~% and 10°.
After choosing the best-performing hyperparameters on the validation set, the model is retrained on
combined training and validation images together, using the chosen parameters. The final accuracy is
reported on the test set.

E.3 Transfer via fine-tuning

We follow the same fine-tuning protocol as in [32, 48, 76, 8] that we also detail for completeness.
Specifically, we initialize the network with the parameters of the pretrained representation. At training
time, we apply spatial transformation, i.e., random crops with resize to 224 x 224 pixels and random
flips. At test time, images are resized to 256 pixels along the shorter side using bicubic resampling,
after which a 224 x 224 center crop is extracted. In both cases, we normalize the color channels by
subtracting the average color and dividing by the standard deviation (computed on ImageNet), after
applying the augmentations. We optimize the loss using SGD with Nesterov momentum for 20000
steps with a batch size of 256 and with a momentum of 0.9. We set the momentum parameter for
the batch normalization statistics to max(1 — 10/s,0.9) where s is the number of steps per epoch.
The learning rate and weight decay are selected respectively with a grid of seven logarithmically
spaced learning rates between 0.0001 and 0.1, and 7 logarithmically-spaced values of weight decay
between 1075 and 1073, as well as no weight decay. These values of weight decay are divided by the
learning rate. After choosing the best-performing hyperparameters on the validation set, the model is
retrained on combined training and validation images together, using the chosen parameters. The
final accuracy is reported on the test set.

E.4 Implementation details for semantic segmentation

We use the same fully-convolutional network (FCN)-based [7] architecture as [9]. The backbone
consists of the convolutional layers in ResNet-50. The 3 x 3 convolutions in the conv5 blocks
use dilation 2 and stride 1. This is followed by two extra 3 x 3 convolutions with 256 channels,
each followed by batch normalization and ReL.U activations, and a 1 X 1 convolution for per-pixel
classification. The dilation is set to 6 in the two extra 3 x 3 convolutions. The total stride is 16
(FCN-16s [7]).

We train on the train_aug2012 set and report results on val2012. Hyperparameters are selected on
a 2119 images held-out validation set. We use a standard per-pixel softmax cross-entropy loss to train
the FCN. Training is done with random scaling (by a ratio in [0.5, 2.0]), cropping, and horizontal
flipping. The crop size is 513. Inference is performed on the [513, 513] central crop. For training
we use a batch size of 16 and weight decay of 0.0001. We select the base learning rate by sweeping
across 5 logarithmically spaced values between 10~2 and 10~ !. The learning rate is multiplied by
0.1 at the 70-th and 90-th percentile of training. We train for 30000 iterations, and average the results
on 5 seeds.

E.5 Implementation details for object detection

For object detection, we follow prior work on Pascal detection transfer [40, 23] wherever possible.
We use a Faster R-CNN [82] detector with a R50-C4 backbone with a frozen representation. The
R50-C4 backbone ends with the conv4 stage of a ResNet-50, and the box prediction head consists
of the conv5 stage (including global pooling). We preprocess the images by applying multi-scale
augmentation (rescaling the image so its longest edge is between 480 and 1024 pixels) but no other
augmentation. We use an asynchronous SGD optimizer with 9 workers and train for 1.5M steps. We
used an initial learning rate of 10~2, which is reduced to 10~ at 1M steps and to 10> at 1.2M steps.

22

E.6 Implementation details for depth estimation

For depth estimation, we follow the same protocol as in [83], and report its core components for
completeness. We use a standard ResNet-50 backbone and feed the convb features into 4 fast up-
projection blocks with respective filter sizes 512, 256, 128, and 64. We use a reverse Huber loss
function for training [83, 97].

The original NYU Depth v2 frames of size [640, 480] are down-sampled by a factor 0.5 and center-
cropped to [304, 228] pixels. Input images are randomly horizontally flipped and the following color
transformations are applied:

e Grayscale with an application probability of 0.3.

Brightness with a maximum brightness difference of 0.1255.
e Saturation with a saturation factor randomly picked in the interval [0.5, 1.5].

e Hue with a hue adjustment factor randomly picked in the interval [—0.2,0.2].

We train for 7500 steps with batch size 256, weight decay 0.0005, and learning rate 0.16 (scaled
linearly from the setup of [83] to account for the bigger batch size).

E.7 Further comparisons on PASCAL and NYU v2 Depth

For completeness, Table 11 and 12 extends Table 4 with other published baselines which use
comparable networks. We see that in almost all settings, BYOL outperforms these baselines, even
when those baselines use more data or deeper models. One notable exception is RMS error for NYU
Depth prediction, which is a metric that’s sensitive to outliers. The reason for this is unclear, but one
possibility is that the network is producing higher-variance predictions due to being more confident
about a test-set scene’s similarities with those in the training set.

Method APso mloU
Supervised-IN [9] 74.4 74.4
RelPos [23], by [40]* 66.8 -
Multi-task [40]* 70.5 -
LocalAgg [98] 69.1 -
MoCo [9] 74.9 72.5
MoCo + IG-1B [9] 75.6 73.6
CPC[32]*" 76.6 -
SimCLR (repro) 75.2 75.2
BYOL (ours) 77.5 76.3

Table 11: Transfer results in semantic segmentation and object detection.

* uses a larger model (ResNet-101). ** uses an even larger model (ResNet-161).

Higher better Lower better
Method pct.<1.25 pet.<1.25 pet.<1.25% rms rel
Supervised-IN [83] 81.1 95.3 98.8 0.573 0.127
RelPos [23], by [40]* 80.6 94.7 98.3 0.399 0.146
Color [41], by [40]* 76.8 93.5 97.7 0.444 0.164
Exemplar [46, 40]* 71.3 90.6 96.5 0.513 0.191
Mot. Seg. [99], by [40]* 74.2 92.4 97.4 0.473 0.177
Multi-task [40]* 79.3 94.2 98.1 0.422 0.152
SimCLR (repro) 83.3 96.5 99.1 0.557 0.134
BYOL (ours) 84.6 96.7 99.1 0.541 0.129

Table 12: Transfer results on NYU v2 depth estimation.

23

F Pretraining on Places 365

To ascertain that BYOL learns good representations on other datasets, we applied our representation
learning protocol on the scene recognition dataset Places365-Standard [73] before performing linear
evaluation. This dataset contains 1.80 million training images and 36500 validation images with
labels, making it roughly similar to ImageNet in scale. We reuse the exact same parameters as in
Section 4 and train the representation for 1000 epochs, using BYOL and our SimCLR reproduction.
Results for the linear evaluation setup (using the protocol of Appendix D.I for ImageNet and
Places365, and that of Appendix E on other datasets) are reported in Table 13.

Interestingly, the representation trained by using BYOL on Places365 (BYOL-PL) consistently outper-
forms that of SimCLR on the same dataset, but underperforms the BYOL representation trained on
ImageNet (BYOL-IN) on all tasks except Places365 and SUN397 [79], another scene understanding
dataset. Interestingly, all three unsupervised representation learning methods achieve a relatively high
performance on the Places365 task; for comparison, reference [73] (in its linked repository) reports a
top-1 accuracy of 55.2% for a ResNet-50v2 trained from scratch using labels on this dataset.

Method Places365 ImageNet Foodl01 CIFARIO CIFARIO0 Birdsnap SUN397 Cars Aircraft DTD Pets Caltech-101 Flowers

BYOL-IN 51.0 74.3 75.3 91.3 78.4 57.3 62.6 67.2 60.6 76.5 90.4 94.3 96.1
BYOL-PL 53.2 58.5 64.7 84.5 66.1 28.8 64.2 55.6 55.9 68.5 66.1 84.3 90.0
SimCLR-PL 53.0 56.5 61.7 80.8 61.1 21.2 62.5 40.1 44.3 64.3 59.4 77.1 85.9

Table 13: Transfer learning results (linear evaluation, ResNet-50) from Places365 (PL). For
comparison purposes, we also report the results from BYOL trained on ImageNet (BYOL-IN).

G Additional ablation results

To extend on the above results, we explore how other network parameters may impact BYOL’s perfor-
mance. We iterate over multiple weight decays, learning rates, and projector/encoder architectures
to observe that small hyperparameter changes do not drastically alter the final score. We note that
removing the weight decay in either BYOL or SimCLR leads to network divergence, emphasizing the
need for weight regularization in the self-supervised setting. Furthermore, we observe that changing
the scaling factor in the network initialization [85] did not impact the performance (higher than 72%
top-1 accuracy).

We use the same experimental setup as in Section 5, i.e., 300 epochs, averaged over 3 seeds with
the initial learning rate set to 0.3, the batch size to 4096, the weight decay to 106 and the base
target decay rate Thase to 0.99 unless specified otherwise. Confidence intervals correspond to the
half-difference between the maximum and minimum score of these seeds; we omit them for half-
differences lower than 0.25 accuracy points.

G.1 Architecture settings

Table 14 shows the influence of projector and predictor architecture on BYOL. We examine the effect
of different depths for both the projector and predictor, as well as the effect of the projection size. We
do not apply a ReLU activation nor a batch normalization on the final linear layer of our MLPs such
that a depth of 1 corresponds to a linear layer. Using the default projector and predictor of depth 2
yields the best performance.

Table 15a shows the influence of the initial learning rate on BYOL. Note that the optimal value depends
on the number of training epochs. Table 15b displays the influence of the weight decay on BYOL.

G.2 Batch size

We run a sweep over the batch size for both BYOL and our reproduction of SimCLR. As explained
in Section 5, when reducing the batch size by a factor N, we average gradients over /N consecutive
steps and update the target network once every IV steps. We report in Table 16, the performance of
both our reproduction of SimCLR and BYOL for batch sizes between 4096 (BYOL and SimCLR default)
down to 64. We observe that the performance of SimCLR deteriorates faster than the one of BYOL

24

Proj.gs Pred.q¢ Top-1 Top-5
depth depth

1 61.9 86.0 Projector go Top-1 Top-5
1 2 65.0 86.8 output dim

3 057 868 16 69.9:05 89.9

1 71.5 90.7 32 71.3 90.6
2 2 72.5 90.8 64 72.2 90.9

3 71.4 90.4 128 72.5 91.0

T
3 2 72.1 90.5 ’ ’

3 72.1 90.5

(b) Projection dimension.

(a) Projector and predictor depth (i.e. the number
of Linear layers).

Table 14: Effect of architectural settings where top-1 and top-5 accuracies are reported in %.

Learning
rate Top-1 Top-5 Weight decay Top-1 Top-5
coefficient

0.01 34.8+3.0 60.8+3.2

0.1 65.0 87.0 1-1077 72.1 90.4
0.2 71.7 90.6 5-1077 72.6 91.0
0.3 72.5 90.8 1-10°¢ 72.5 90.8
0.4 72.3 90.6 5-107° 71.0+03 90.0
0.5 71.5 90.1 1-107° 69.6+0.4 89.3
1 69.4 89.2

(b) Weight decay.

(a) Base learning rate.

Table 15: Effect of learning rate and weight decay. We note that BYOL’s performance is quite robust
within a range of hyperparameters. We also observe that setting the weight decay to zero may lead to
unstable results (as in SimCLR).

which stays mostly constant for batch sizes larger than 256. We believe that the performance at batch
size 256 could match the performance of the large 4096 batch size with proper parameter tuning
when accumulating the gradient. We think that the drop in performance at batch size 64 in table 16 is
mainly related to the ill behaviour of batch normalization at low batch sizes [100].

Batch Top-1 Top-5

size BYOL (ours) SimCLR (repro) BYOL (ours) SimCLR (repro)
4096 72.5 67.9 90.8 88.5
2048 72.4 67.8 90.7 88.5
1024 72.2 67.4 90.7 88.1
512 72.2 66.5 90.8 87.6
256 71.8 64.3+2.1 90.7 86.3+1.0
128 69.6+0.5 63.6 89.6 85.9
64 59.7+1.5 59.242.9 83.2+1.2 83.0+1.9

Table 16: Influence of the batch size.

G.3 Image augmentations

Table 17 compares the impact of individual image transformations on BYOL and SimCLR. BYOL is
more resilient to changes of image augmentations across the board. For completeness, we also
include an ablation with symmetric parameters across both views; for this ablation, we use a Gaussian
blurring w.p. of 0.5 and a solarization w.p. of 0.2 for both 7 and 7", and recover very similar results
compared to our baseline choice of parameters.

25

Top-1

Top-5

Image augmentation BYOL (ours) SimCLR (repro) BYOL (ours) SimCLR (repro)
Baseline 72.5 67.9 90.8 88.5
Remove flip 71.9 67.3 90.6 88.2
Remove blur 71.2 65.2 90.3 86.6
Remove color (jittering and grayscale) 63.4+0.7 45.7 85.340.5 70.6
Remove color jittering 71.8 63.7 90.7 85.9
Remove grayscale 70.3 61.9 89.8 84.1
Remove blur in 7~ 72.4 67.5 90.8 88.4
Remove solarize in 7~ 72.3 67.7 90.8 88.2
Remove blur and solarize in 7’ 72.2 67.4 90.8 88.1
Symmetric blurring/solarization 72.5 68.1 90.8 88.4
Crop only 59.4+0.3 40.3+0.3 82.4 64.8+0.4
Crop and flip only 60.1+0.3 40.2 83.0+0.3 64.8
Crop and color only 70.7 64.2 90.0 86.2
Crop and blur only 61.1+0.3 41.7 83.9 66.4
Table 17: Ablation on image transformations.

Loss weight 5 Temperature o Top-1 Top-5

0 0.1 72.5 90.8

0.01 72.2 90.7

0.1 72.4 90.9

0.3 72.7 91.0

0.1 1 72.6 90.9

3 72.5 90.9

10 72.5 90.9

0.01 70.9 90.2

0.1 72.0 90.8

0.3 72.7 91.2

0.5 1 72.7 91.1

3 72.6 91.1

10 72.5 91.0

0.01 53.9+05 77.5+05

0.1 70.9 90.3

1 0.3 72.7 91.1

1 72.7 91.1

3 72.6 91.0

10 72.6 91.1

Table 18: Top-1 accuracy in % under linear evaluation protocol at 300 epochs of sweep
over the temperature « and the dispersion term weight 5 when using a predictor and a

target network.

G.4 Details on the relation to contrastive methods

As mentioned in Section 5, the BYOL loss Eq. 2 can be derived from the InfoNCE loss

B B

I ap a 2 - 2a'5§: 3 So(vs,vy)

nfoNCEG™” = — >~ Sp(vi, v})— 5 In eXPT+ZeXP
i=1

with

So(u1, u2)

i=1

(1>

J#i

(p(u1),¥(uz))

26

J

6 Cun)llz - [l (uz)llz

So(vi, v;)

(%

- (5)

(6)

The InfoNCE loss, introduced in [10], can be found in factored form in [84] as

InfoNCE, £ Zl Zexz,f(ll))m J) v

As in SimCLR [8] we also use negative examples given by (v;, v;) i to get

exp f(on,)
— 8
Z 5 S e flu) + § e f 1) ®

B
Z Vi, Vg —BZln Zcxpf V4, Vj —|—Zcxpf Vi, U] .

i=1 Ve

To obtain Eq.5 from Eq.9, we subtract In B (which is independent of #), multiply by 2, take
f(z,y) = So(z,y)/a and finally multiply the second (negative examples) term by 8. Using 5 = 1
and dividing by 2« gets us back to the usual InfoNCE loss as used by SimCLR.

In our ablation in Table 5b, we set the temperature « to its best value in the SimCLR setting (i.e.,
« = 0.1). With this value, setting 5 to 1 (which adds negative examples), in the BYOL setting (i.e.,
with both a predictor and a target network) hurts the performances. In Table 18, we report results
of a sweep over both the temperature « and the weight parameter 3 with a predictor and a target
network where BYOL corresponds to 3 = 0. No run significantly outperforms BYOL and some values
of « and S hurt the performance. While the best temperature for SimCLR (without the target network
and a predictor) is 0.1, after adding a predictor and a target network the best temperature « is higher
than 0.3.

Using a target network in the loss has two effects: stopping the gradient through the prediction
targets and stabilizing the targets with averaging. Stopping the gradient through the target change the
objective while averaging makes the target stable and stale. In Table 5b we only shows results of
the ablation when either using the online network as the prediction target (and flowing the gradient
through it) or with a target network (both stopping the gradient into the prediction targets and
computing the prediction targets with a moving average of the online network). We shown in Table 5b
that using a target network is beneficial but it has two distinct effects we would like to understand
from which effect the improvement comes from. We report in Table 19 the results already in Table 5b
but also when the prediction target is computed with a stop gradient of the online network (the
gradient does not flow into the prediction targets). This shows that making the prediction targets
stable and stale is the main cause of the improvement rather than the change in the objective due to
the stop gradient.

G.5 SimCLR baseline of Section 5

The SimCLR baseline in Section 5 (8 = 1, without predictor nor target network) is slightly different
from the original one in [8]. First we multiply the original loss by 2a.. For comparaison here is the
original SimCLR loss,

InfoNCEy £ BZSQ Vi, i) Zln Zexp Un”y +Zexp o(vi, g) (10

=1 11 VE)

Note that this multiplication by 2« matters as the LARS optimizer is not completely invariant with
respect to the scale of the loss. Indeed, LARS applies a preconditioning to gradient updates on all
weights, except for biases and batch normalization parameters. Updates on preconditioned weights are
invariant by multiplicative scaling of the loss. However, the bias and batch normalization parameter
updates remain sensitive to multiplicative scaling of the loss.

We also increase the original SimCLR hidden and output size of the projector to respectively 4096
and 256. In our reproduction of SimCLR, these three combined changes improves the top-1 accuracy
at 300 epochs from 67.9% (without the changes) to 69.2% (with the changes).

27

Method Predictor Target parameters (3 Top-1
BYOL v 13 0 725
v 13 1 709

£ 1 70.7

v sg(0) 1 702

SimCLR 0 1 694
v sg(0) 1 701

sg(0) 1 69.2

v 0 1 69.0

v sg(0) 0 55

v 0 0 0.3

13 0 0.2

sg(0) 0 o1

0 0 0.1

Table 19: Top-1 accuracy in %, under linear evaluation protocol at 300 epochs, of
intermediate variants between BYOL and SimCLR (with caveats discussed in Appendix G.5).
sg means stop gradient.

Representation /; norm

Projection /; norm

=
o
w

107

10t

107

106

10°

104

0 100 200 300
Training epochs
(a) Representation {2-norm
0 100 200 300

Training epochs

(b) Projection ¢2-norm

— BatchNorm
LayerNorm
—None

— BatchNorm
LayerNorm
—None

Figure 7: Effect of normalization on the /> norm of network outputs.

28

Normalization Top-1 Top-5

{2-norm 72.5 90.8
LAYERNORM 72.54+0.4 90.1
No normalization 67.4 87.1
BATCHNORM 65.3 85.3

Table 20: Top-1 accuracy in % under linear evaluation protocol at 300 epochs for different
normalizations in the loss.

G.6 Ablation on the normalization in the loss function

BYOL minimizes a squared error between the ¢5-normalized prediction and target. We report results
of BYOL at 300 epochs using different normalization function and no normalization at all. More
precisely, given batch of prediction and targets in R, (p;,t;);<p with B the batch size, BYOL

uses the loss function & Zil lne, (pi) — ne,(2:)||3 with ng, : @ — x/||z|l2. We run BYOL
with other normalization functions: non-trainable batch-normalization and layer-normalization and
no normalization. We divide the batch normalization and layer normalization by v/d to have a
consistent scale with the /5-normalization. We report results in Table 20 where ¢, LAYERNORM, no
normalization and BATCHNORM respectively denote using n,, npn, nin and ny, with

J

; j z; — pn ()

J . J . [7 .
ngy, ' T — — oM T =~ Np T,

ong () - Vd

B
)U’{BN B B 2 :IZ’ UIJ3N ‘X B E :(l‘z) —,U,%N(l')27
- i—1

j Nl = pni ()12
(2

HIN; & T — ', OLN; T — Nz

When using no normalization at all, the projection 5 norm rapidly increases during the first 100
epochs and stabilizes at around 3 - 105 as shown in Figure 7. Despite this behaviour, using no
normalization still performs reasonably well (67.4%). The {5 normalization performs the best.

H Training with smaller batch sizes

The results described in Section 4 were obtained using a batch size of 4096 split over 512 TPU
cores. Due to its increased robustness, BYOL can also be trained using smaller batch sizes without
significantly decreasing performance. Using the same linear evaluation setup, BYOL achieves 73.7%
top-1 accuracy when trained over 1000 epochs with a batch size of 512 split over 64 TPU cores
(approximately 4 days of training). For this setup, we reuse the same setting as in Section 3, but use a
base learning rate of 0.4 (appropriately scaled by the batch size) and Tpyse = 0.9995 with the same
weight decay coefficient of 1.5 - 1076,

I Details on Equation 4 in Section 3.2
In this section we clarify why BYOL’s update is related to Eq. 4 from Section 3.2,

V@EM(J*(ZG) - Zé“i] = VeE[HIE[zHZg] — zéuz] = VyE ZVar(zé,Azg)]) (4)

Recall that ¢* is defined as

q* & arg minE[Hq(Zg) — zguﬂ, where ¢*(z9) = E[2¢|20], (3)
q

29

and implicitly depends on 6 and ¢; therefore, it should be denoted as ¢* (0, £) instead of just ¢*. For
simplicity we write ¢* (6, £)(zg) as ¢*(0, €, zg) the output of the optimal predictor for any parameters
0 and £ and input zy.

BYOL updates its online parameters following the gradient of Eq. 4, but considering only the gradients
of ¢ with respect to its third argument z when applying the chain rule. If we rewrite

* 2 *
E[lq* (0.6 20) — 2] = E[L(a" (6.6.20). 20)].)
the gradient of this quantity w.r.t. 8 is

0

% (12)

oL o oL or x
g 00 Oqg 0z 00

E[L(q*(9>§a 29)7 Zé)} = E|:

where %—‘19* and %—qz* are the gradients of ¢* with respect to its first and last argument. Using the

envelope theorem, and thanks to the optimality condition of the predictor, the term E {%—5 . aaqe*] =0.

Therefore, the remaining term E {%—s . %—‘i . %} where gradients are only back-propagated through

the predictor’s input is exactly the direction followed by BYOL.

J Importance of a near-optimal predictor

In this part we build upon the intuitions of Section 3.2 on the importance of keeping the predictor
near-optimal. Specifically, we show that it is possible to remove the exponential moving average
in BYOL’s target network (i.e., simply copy weights of the online network into the target) without
causing the representation to collapse, provided the predictor remains sufficiently good.

J.1 Predictor learning rate

In this setup, we remove the exponential moving average (i.e., set 7 = 0 over the full training in Eq. 1),
and multiply the learning rate of the predictor by a constant A compared to the learning rate used
for the rest of the network; all other hyperparameters are unchanged. As shown in Table 21, using
sufficiently large values of A provides a reasonably good level of performance and the performance
sharply decreases with A to 0.01% top-1 accuracy (no better than random) for A\ = 0.

To show that this effect is directly related to a change of behavior in the predictor, and not only to a
change of learning rate in any subpart of the network, we perform a similar experiment by using a
multiplier A on the predictor’s learning rate, and a different multiplier u for the projector. In Table 22,
we show that the representation typically collapses or performs poorly when the predictor learning
rate is lower or equal to that of the projector. As mentioned in Section 3.2, we further hypothesize
that one of the contributions of the target network is to maintain a near optimal predictor at all times.

J.2 Optimal linear predictor in closed form

Similarly, we can get rid of the slowly moving target network if we use a closed form optimal
predictor on the batch, instead of a learned, non-optimal one. In this case we restrict ourselves to a
linear predictor,

= argéninHZgQ - ZéH; = (Z;Zg)_IZ;Zé

with [|-[|, being the Frobenius norm, Zy and Z{ of shape (B, ") respectively the online and target

projections, where B is the batch size and F' the number of features; and ¢* of shape (F, F), the
optimal linear predictor for the batch.

At 300 epochs, when using the closed form optimal predictor with a projection size of 16 (the
predictor is a 16 x 16 matrix computed optimal on a batch of 4096 elements), and directly hard
copying the weights of the online network to the target (= 0), we obtain a top-1 accuracy of 50.3%.

30

A Top-1
0 0.01
1 5.5
2 62.8+1.5
10 66.6
20 66.3+0.3
Baseline 72.5

Table 21: Top-1 accuracy at 300 epochs when removing the slowly moving target network,
directly hard copying the weights of the online network into the target network, and
applying a multiplier to the predictor learning rate.

Apred
1 1.5 2 5 10
1 3.2+2.9 25.7+6.6 60.8+2.9 66.7+0.4 66.9
1.5 | 1.442.0 9.2+7.0 55.2+58 61.5+0.6 66.0+0.3
Uproj 2 2.0+2.8 5.3+1.9 15.8+13.4 60.9+0.8 66.3
5 1.5+0.9 2.5+1.5 2.5+1.4 20.54#2.0 60.5+0.6
10 0.1 2.1+0.3 1.9+0.8 2.8+0.4 8.3+6.8

Table 22: Top-1 accuracy at 300 epochs when removing the slowly moving target network,
directly hard copying the weights of the online network in the target network, and applying
a multiplier p to the projector and A to the predictor learning rate. The predictor learning

rate needs to be higher than the projector learning rate in order to successfully remove the

Online network

q0(20)

dn

» B
o @
o) o
o o
23 o
o o
= =

Buippaquia Swy
d1N

Exponential Moving <q9(29), Z@
 Avereee llgozo)ll, - [12¢]l,

-
-

3

18NS8Y
Buippaquia Sw
dn
uonoaloid

Target network

Figure 8: BYOL sketch summarizing the method by emphasizing the neural architecture.

31

J BYOL pseudo-code in JAX

J.1 Hyper-parameters

HPS = dict(
max_steps=int (1000. * 1281167 / 4096), # 1000 epochs
batch_size=4096,
mlp_hidden_size=4096,
projection_size=256,
base_target_ema=4e-3,
optimizer_config=dict(
optimizer_name='lars',
beta=0.9,
trust_coef=1e-3,
weight_decay=1.5e-6,
As in SimCLR and official implementation of LARS, we exzclude bias
and batchnorm weight from the Lars adaptation and weightdecay.
exclude_bias_from_adaption=True),
learning_rate_schedule=dict(
The learning rate is linearly increase up to
its base wvalue * batchisze / 256 after warmup_steps
global steps and then anneal with a cosine schedule.
base_learning_rate=0.2,
warmup_steps=int (10. * 1281167 / 4096),
anneal _schedule='cosine'),
batchnorm_kwargs=dict(
decay_rate=0.9,
eps=le-5),
seed=1337,
)

J.2 Network definition

def network(inputs):
"""Build the encoder, projector and predictor."""
embedding = ResNet(name='encoder', configuration='ResNetV1_50x1') (inputs)
proj_out = MLP(name='projector') (embedding)
pred_out = MLP(name='predictor') (proj_out)
return dict(projection=proj_out, prediction=pred_out)

class MLP(hk.Module):
"""Mylti Layer Perceptron, with mormalization."""

def __init(self, name):
super () .__init__(name=name)

def __call__(self, inputs):
out = hk.Linear(output_size=HPS['mlp_hidden_size']) (inputs)
out = hk.BatchNorm(**HPS['batchnorm_kwargs']) (out)
out = jax.nn.relu(out)
out = hk.Linear (output_size=HPS['projection_size']) (out)
return out

For simplicity, we omit BatchNorm related states.

In the actual code, we use hk.transform_with_state. The corresponding
net_init function outputs both a params and a state wvariable,

with state containing the moving averages computed by BatchNorm
net_init, net_apply = hk.transform(network)

33

J.3 Loss function

def loss_fn(online_params, target_params, image_1, image_2):
"""Compute BYOL's loss function.

Args:
online_params: parameters of the online network (the loss is later
differentiated with respect to the online parameters).
target_params: parameters of the target network.
tmage_1: first transformation of the input image.
image_2: second transformation of the input image.

Returns:
BYOL's loss function.

nmnn

online_network_out_1 = net_apply(params=online_params, inputs=image_1)
online_network_out_2 = net_apply(params=online_params, inputs=image_2)
target_network_out_1 = net_apply(params=target_params, inputs=image_1)
target_network_out_2 = net_apply(params=target_params, inputs=image_2)

def regression_loss(x, y):
norm_x, norm_y = jnp.linalg.norm(x, axis=-1), jnp.linalg.norm(y, axis=-1)
return -2. * jnp.mean(jnp.sum(x * y, axis=-1) / (norm_x * norm_y))

The stop_gradient is not necessary as we explicitly take the gradient with
respect to online parameters only. We leave @t to indicate that gradients
are not backpropagated through the target network.
loss = regression_loss(online_network_out_1['prediction'],

jax.lax.stop_gradient (target_network_out_2['projection']))
loss += regression_loss(online_network_out_2['prediction'],

jax.lax.stop_gradient (target_network_out_1['projection']))
return loss

J.4 Training loop

def main(dataset):
"""Main training loop."""

rng = jax.random.PRNGKey (HPS['seed'])

rng, rng_init = jax.random.split(rng, num=2)
dataset = dataset.batch(HPS['batch_size'])
dummy_input = dataset.next()

byol_state = init(rng_init, dummy_input)

for global_step in range(HPS['max_steps']):
inputs = dataset.next()

rng, rngl, rng2 = jax.random.split(rng, num=3)
image_1 = simclr_augmentations(inputs, rngl, image_number=1)
image_2 = simclr_augmentations(inputs, rng2, image_number=2)
byol_state = update_fn(

**xbyol_state,

global_step=global_step,

image_l=image_1,

image_2=image_2)

return byol_state['online_params']

34

J.5 Update function

optimizer = Optimizer (x*HPS['optimizer_config'])

def update_fn(online_params, target_params, opt_state, global_step, image_1,
image_2):
"""Update online and target parameters.

Args:
online_params: parameters of the online network (the loss is differentiated
with respect to the online parameters only).
target_params: parameters of the target metwork.
opt_state: state of the optimizer.
global_step: current training step.
image_1: first transformation of the input image.
image_2: second transformation of the input image.

Returns:
Dict containing updated online parameters, target parameters and
optimization state.

update online network

grad_fn = jax.grad(loss_fn, argnums=0)

grads = grad_fn(online_params, target_params, image_1, image_2)

lr = learning_rate(global_step, **HPS['learning rate_schedule'])

updates, opt_state = optimizer(lr).apply(grads, opt_state, online_params)

online_params = optix.apply_updates(online_params, updates)

update target network
tau = target_ema(global_step, base_ema=HPS['base_target_ema'])
target_params = jax.tree_multimap(lambda x, y: x + (1 - tau) * (y - x),
target_params, online_params)
return dict(
online_params=online_params,
target_params=target_params,
opt_state=opt_state)

def init(rng, dummy_input) :
"""BYOL's state initialization.

Args:
rng: Tandom number generator used to initialize parameters.
dummy_input: a dummy image, used to compute intermediate outputs shapes.

Returns:
Dict containing initial online parameters, target parameters and
optimization state.
mnimn
online_params = net_init(rng, dummy_input)
target_params = net_init(rng, dummy_input)
opt_state = optimizer(0).init(online_params)
return dict(
online_params=online_params,
target_params=target_params,
opt_state=opt_state)

35

