
We thank all the reviewers for their insightful and encouraging comments, and will update revision to solve the issues.1

To Reviewer #2. Our main goal is to theoretically show the stronger escaping ability of SGD over Adam at the same2

basin. For the by-product, i.e. relation between Radon measure and escaping time, we construct f=min(x2, a(x− 1)2)3

with a local basin at x = 1 shown in right side. By setting a = 105, 500, 150, we obtain three4

basins A, B and C, where their Radon measures obey m(A)<m(B)<m(C). Then we run SDE5

of SGD with initialization x0 =1 for 2000 iterations, and repeat 1000 times. For A, B, C with6

same Lévy noise, their escaping probabilities are 100%, 65.6% and 10.1%, and their average7

iterations for successful escaping are 122, 457 and 1898. It confirms our theory: the larger8

Radon measure of the basin, the harder to escape. We will update it into revision.9

The validity of flatness definition should be verified by existing observations. Our definition well explains recent10

observation, i.e. good generalization of minima at asymmetric valleys which cannot be explained by existing definitions.11

To Reviewer #3. 1) Our theory also indicates that SGD with momentum (SGD-M) can generalize better than Adam.12

Specifically, as SGD-M does not adapt the geometry, it has the following Lévy SDE with Qt=I:13

dθt = −µtQ−1
t mt+εQ

−1
t ΣtdLt, dmt = β1(∇F (θt)−mt), dvt = β2([∇fSt (θt)]

2−vt). (9)
Then we follow Eqn. (6) in manuscript and obtain escaping set W = {y ∈ Rd|Q−1

θ∗Σθ∗y /∈Ω−ε
γ } of SGD-M, where14

Qθ∗=I and Σθ∗=limθt→θ∗Σt. Since Adam has the same SDE (9) exceptQt=diag (
√
ωtvt + ε) and same escaping set W15

except Qθ∗=limθt→θ∗Qt, we can directly derive the escaping time Γ = O
(

1
m(W)Θ(ε−1)

)
of SGD-M with Θ(ε−1)= 2

α
εα.16

As SGD-M and Adam use the same gradient estimation mt, their gradient noise have the same tail index α and thus the17

same factor Θ(ε−1). For m(W), due to different escaping sets WSGD-M of SGD-M and WAdam of Adam, m(WSGD-M) in18

SGD-M differs from m(WAdam) in Adam. By observation, WSGD-M is as same as escaping set WSGD of SGD in Eqn. (6)19

in manuscript, as SGD(-M) have no geometry adaptation. Then Sec. 4.2 proves WSGD has much larger volume than20

WAdam. So m(WSGD-M) is much larger than m(WAdam). Thus, SGD-M has much smaller escaping time than Adam at the21

same basin, and can better escape sharp minima to flat ones for better generalization. We will update this into revision.22

2) We follow [20] which analyzes behavior of SGD, and use standard tail index estimation method in [41] as mentioned23

in line 334. For learning rate (LR), many works analyze it and conclude: i) an initially large LR helps escape local24

minima and accelerates training; ii) decaying LR helps converge to local minima and avoid oscillation. This is testified25

by Fig.s 3 in [Jordan, arXiv:1908.01878; R(Kleinberg, arXiv:1802.06175)]. Moreover, Theorem 1 in [R] and analysis in26

[Lewkowycz, arXiv:2003.02218] show large LR in SGD help escape. Intuitively, with same basin and gradients, larger27

LR gives a larger step and escapes from the basin more easily. These results are consistent with [20] and ours where28

α > 1 in most cases (see more investigations in [20]). We emphasize that one should focus on the overall variation trend29

of α instead of its exact value, as exact value is easily affected by estimation error but variation trend is more robust.30

To Reviewer #4. 1) Assumption 2 often holds as explained in manuscript but is hard to theoretically prove. β1≤β2≤2β131

holds under Adam’s default setting. There always exist constants vmin,vmax,τm andτ3233

such that vmin≤
√
vt,i≤vmax, ‖mt−m̂t‖

‖
∫ t−
0

(ms−m̂s)ds‖
≤τm and ‖m̂t‖

‖∇F (θ̂t)‖
≥τ hold, as i) we allow34

vmin =0 due to constant ε, ii) ‖∫ t−
0

(ms−m̂s)ds‖ 6=0 due to their different definitions and35

‖m̂t‖ 6=0 almost sure when non-convergence. ∫ Γ
0

〈 ∇F (θs)
1+F (θs)

,µsQ−1
s ms

〉
ds≥0 generally36

holds, as ∇F (θt) and its exponential average mt often share similar directions. Right37

figure verifies the validity of these assumptions on 4-layered network (width100).38

2) Our results hold for moderately ill-conditioned local basins (ICLBs). Theorem 2 shows that i) after time interval39

vε=O( 1
µ

ln( 1
µεδ

)), noise-free process θ̂t (ε = 0 in SDEs) approaches the minimizer θ∗ of a basin Ω, i.e. ‖θ̂t−θ∗‖≤ε−δ;40

ii) time interval σ1 between two big jumps ζ (size≥ ε−δ) is σ1 = O( 1
εαδ

). Both Theorems 1 and 2 require vε ≤ σ1 to41

guarantee small distance of current solution θt to θ∗ before each big jump. So if µ of ICLBs is larger than O(εαδ) which42

is very small as ε in SDE is often small to precisely mimic algorithm behaviors, our results still hold. Moreover, to43

obtain result i), we assume the optimization trajectory goes along the eigenvector direction corresponding to µ which is44

the worse case and leads to the worst convergence speed. As the measure of one/several eigenvector directions on high45

dimension is 0, optimization trajectory cannot always go along the eigenvector direction corresponding to µ. So vε is46

actually much larger than O
(

1
µ

ln( 1
µεδ

)
)
, largely improving applicability of our theory. We will update it into revision.47

For extremely ICLBs (µ→ 0 or µ = 0), Anandkumar (arXiv:1602.05908v1) proved that first-order algorithms cannot48

escape from them, which is also the reasons why recent works (e.g. Jin Chi’s works) on escaping saddle points do not49

discuss extremely ICLBs. Similarly, our theory also does not hold for this case, which accords with the previous works.50

Moreover, µ→ 0 and µ = 0 give asymmetric basins which often generalize well [2,19] and are not needed to escape.51

3) Loss around barrier ∩ first decreases to the foot of ∩, then increases to climb ∩ and finally decreases. Fig.2 shows the52

first two phases, as final loss is much smaller than the loss around ∩, indicating the third phase. We will re-plot it.53


