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Abstract

It is not clear yet why ADAM-alike adaptive gradient algorithms suffer from worse
generalization performance than SGD despite their faster training speed. This
work aims to provide understandings on this generalization gap by analyzing their
local convergence behaviors. Specifically, we observe the heavy tails of gradient
noise in these algorithms. This motivates us to analyze these algorithms through
their Lévy-driven stochastic differential equations (SDEs) because of the similar
convergence behaviors of an algorithm and its SDE. Then we establish the escaping
time of these SDEs from a local basin. The result shows that (1) the escaping time
of both SGD and ADAM depends on the Radon measure of the basin positively
and the heaviness of gradient noise negatively; (2) for the same basin, SGD enjoys
smaller escaping time than ADAM, mainly because (a) the geometry adaptation
in ADAM via adaptively scaling each gradient coordinate well diminishes the
anisotropic structure in gradient noise and results in larger Radon measure of a
basin; (b) the exponential gradient average in ADAM smooths its gradient and
leads to lighter gradient noise tails than SGD. So SGD is more locally unstable
than ADAM at sharp minima defined as the minima whose local basins have small
Radon measure, and can better escape from them to flatter ones with larger Radon
measure. As flat minima here which often refer to the minima at flat or asymmetric
basins/valleys often generalize better than sharp ones [1, 2], our result explains the
better generalization performance of SGD over ADAM. Finally, experimental results
confirm our heavy-tailed gradient noise assumption and theoretical affirmation.

1 Introduction

Stochastic gradient descent (SGD) [3, 4] has become one of the most popular algorithms for training
deep neural networks [5–11]. In spite of its simplicity and effectiveness, SGD uses one learning rate
for all gradient coordinates and could suffer from unsatisfactory convergence performance, especially
for ill-conditioned problems [12]. To avoid this issue, a variety of adaptive gradient algorithms
have been developed that adjust learning rate for each gradient coordinate according to the current
geometry curvature of the objective function [13–16]. These algorithms, especially for ADAM, have
achieved much faster convergence speed than vanilla SGD in practice.

Despite their faster convergence behaviors, these adaptive gradient algorithms usually suffer from
worse generalization performance than SGD [12, 17, 18]. Specifically, adaptive gradient algorithms
often show faster progress in the training phase but their performance quickly reaches a plateaus on
test data. Differently, SGD usually improves model performance slowly but could achieve higher
test performance. One empirical explanation [1, 19–21] for this generalization gap is that adaptive
gradient algorithms tend to converge to sharp minima whose local basin has large curvature and
usually generalize poorly, while SGD prefers to find flat minima and thus generalizes better. However,
recent evidence [2, 22] shows that (1) for deep neural networks, the minima at the asymmetric
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(a) ADAM (b) SGD

Figure 1: Illustration of gradient noise in ADAM and SGD on AlexNet trained with CIFAR10. (b)
is produced under the same setting in [23]. By comparison, one can observe (1) α-stable noise can
better characterize real gradient noise and (2) SGD has heavier gradient noise tails than ADAM.

basins/valleys where both steep and flat directions exist also generalize well though they are sharp in
terms of their local curvature, and (2) SGD often converges to these minima. So the argument of the
conventional “flat" and “sharp" minima defined on curvature cannot explain these new results. Thus
the reason for the generalization gap between adaptive gradient methods and SGD is still unclear.

In this work, we provide a new viewpoint for understanding the generalization performance gap. We
first formulate ADAM and SGD as Lévy-driven stochastic differential equations (SDEs), since the
SDE of an algorithm shares similar convergence behaviors of the algorithm and can be analyzed more
easily than directly analyzing the algorithm. Then we analyze the escaping behaviors of these SDEs
at local minima to investigate the generalization gap between ADAM and SGD, as escaping behaviors
determine which basin that an algorithm finally converges to and thus affect the generalization
performance of the algorithm. By analysis, we find that compared with ADAM, SGD is more locally
unstable and is more likely to converge to the minima at the flat or asymmetric basins/valleys which
often have better generalization performance over other type minima. So our results can explain the
better generalization performance of SGD over ADAM. Our contributions are highlighted below.

Firstly, this work is the first one that adopts Lévy-driven SDE which better characterizes the algorithm
gradient noise in practice, to analyze the adaptive gradient algorithms. Specifically, Fig. 1 shows that
the gradient noise in ADAM and SGD, i.e. the difference between the full and stochastic gradients,
has heavy tails and can be well characterized by symmetric α-stable (SαS) distribution [24]. Based
on this observation, we view ADAM and SGD as discretization of the continuous-time processes and
formulate the processes as Lévy-driven SDEs to analyze their behaviors. Compared with Gaussian
gradient noise assumption in SGD [25–27], SαS distribution assumption can characterize the heavy-
tailed gradient noise in practice more accurately as shown in Fig. 1, and also better explains the
different generalization performance of SGD and ADAM as discussed in Sec. 3. This work extends
[23, 28] from SGD on the over-simplified one-dimensional problems to much more complicated
adaptive algorithms on high-dimensional problems. It also differs from [29], as [29] considers
escaping behaviors of SGD along several fixed directions, while this work analyzes the dynamic
underlying structures in gradient noise that plays an important role in the local escaping behaviors of
both ADAM and SGD.

Next, we theoretically prove that for the Lévy-driven SDEs of ADAM and SGD, their escaping time
Γ from a local basin Ω, namely the least time for escaping from the inner of Ω to its outside, is at
the order of O(ε−α/m(W)), where the constant ε∈(0, 1) relies on the learning rate of algorithms
and α denotes the tail index of SαS distribution. Here m(W) is a non-zero Radon measure on the
escaping set W of ADAM and SGD at the local basin Ω (see Sec. 4.1), and actually negatively relies
on the Radon measure of Ω. So both ADAM and SGD have small escaping time at the “sharp" minima
whose corresponding basins Ω have small Radon measure. It means that ADAM and SGD are actually
unstable at “sharp" minima and would escape them to “flatter" ones. Note, the Radon measure
of Ω positively depends on the volume of Ω. So these results also well explain the observations
in [1, 2, 20, 21] that the minima of deep networks found by SGD often locate at the flat or asymmetric
valleys, as their corresponding basins have large volumes and thus large Radon measure.

Finally, our results can answer why SGD often converges to flatter minima than ADAM in terms
of Radon measure, and thus explain the generalization gap between ADAM and SGD. Firstly, our
analysis shows that even for the same basin Ω, ADAM often has smaller Radon measure m(W) on
the escaping set W at Ω than SGD, as the geometry adaptation in ADAM via adaptively scaling each
gradient coordinate well diminishes underlying anisotropic structure in gradient noise and leads to
smaller m(W). Secondly, the empirical results in Sec. 5 and Fig. 1 show that SGD often has much
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smaller tail index α of gradient noise than ADAM for some optimization iterations and thus enjoys
smaller factor ε−α. These results together show that SGD is more locally unstable and would like to
converge to flatter minima with larger measure m(W) which often refer to the minima at the flat and
asymmetric basins/valleys, according with empirical evidences in [12, 17, 30, 31]. Considering the
observations in [1, 19–21] that the minima at the flat and asymmetric basins/valleys often generalize
better, our results well explain the generalization gap between ADAM and SGD. Besides, our results
also show that SGD benefits from its anisotropic gradient noise on its escaping behaviors, while
ADAM does not.

2 Related Work

Adaptive gradient algorithms have become the default optimization tools in deep learning because
of their fast convergence speed. But they often suffer from worse generalization performance than
SGD [12, 17, 30, 31]. Subsequently, most works [12, 17, 18, 30, 31] empirically analyze this issue
from the argument of flat and sharp minima defined on local curvature in [19] that flat minima often
generalize better than sharp ones, as they observed that SGD often converges to flatter minima than
adaptive gradient algorithms, e.g. ADAM. However, Sagun et al. [22] and He et al. [2] observed that
the minima of modern deep networks at the asymmetric valleys where both steep and flat directions
exist also generalize well, and SGD often converges to these minima. So the conventional flat and
sharp argument cannot explain these new results. This work theoretically shows that SGD tends to
converge to the minima whose local basin has larger Radon measure. It well explains the above
new observations, as the minima with larger Radon measure often locate at the flat and asymmetric
basins/valleys. Moreover, based on our results, exploring invariant Radon measure to parameter
scaling in networks could resolve the issue in [32] that flat minima could become sharp via parameter
scaling. See more details in Appendix B. Note, ADAM could achieve better performance than
SGD when gradient clipping is required [33], e.g. attention models with gradient exploding issue, as
adaptation in ADAM provides a clipping effect. This work considers a general non-gradient-exploding
setting, as it is more practical across many important tasks, e.g. classification.

For theoretical generalization analysis, most works [25–27, 34] only focus on analyzing SGD. They
formulated SGD into Brownian motion based SDE via assuming gradient noise to be Gaussian. For
instance, Jastrzkebski et al. [26] proved that the larger ratio of learning rate to mini-batch size in
SGD leads to flatter minima and better generalization. But Simsekli et al. [23] empirically found that
the gradient noise has heavy tails and can be characterized by SαS distribution instead of Gaussian
distribution. Chaudhari et al. [27] also claimed that the trajectories of SGD in deep networks are not
Brownian motion. Then Simsekli et al. [23] formulated SGD as a Lévy-driven SDE and adopted
the results in [28] to show that SGD tends to converge to flat minima on one dimensional problems.
Pavlyukevich et al. [29] extended the one-dimensional SDE in [28] and analyzed escaping behaviors
of SGD along several fixed directions, differing from this work that analyzes dynamic underlying
structures in gradient noise that greatly affect escaping behaviors of both ADAM and SGD.

The literature targeting theoretically understanding the generalization degeneration of adaptive
gradient algorithms are limited mainly due to their more complex algorithms. Wilson et al. [17]
constructed a binary classification problem and showed that ADAGRAD [13] tend to give undue
influence to spurious features that have no effect on out-of-sample generalization. Unlike the above
theoretical works that focus on analyzing SGD only or special problems, we target at revealing the
different convergence behaviors of adaptive gradient algorithms and SGD and also analyzing their
different generalization performance, which is of more practical interest especially in deep learning.

3 Lévy-driven SDEs of Algorithms in Deep Learning

In this section, we first briefly introduce SGD and ADAM, and formulate them as discretization of
stochastic differential equations (SDEs) which is a popular approach to analyze algorithm behaviors.
Suppose the objective function of n components in deep learning models is formulated as

minθ∈Rd F (θ) :=
1

n

n∑
i=1

fi(θ), (1)

where fi(θ) is the loss of the i-th sample. Subsequently, we focus on analyzing SGD and ADAM.
Note our analysis technique is applicable to other adaptive algorithms with similar results as ADAM.
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3.1 SGD and ADAM

As one of the most effective algorithms, SGD [3] solves problem (1) by sampling a data mini-batch
St of size S and then running one gradient descent step:

θt+1 = θt − η∇fSt(θt), (2)

where∇fSt(θt)= 1
S

∑
i∈St∇fi(θt) denotes the gradient on mini-batch St, and η is the learning rate.

Recently, to improve the efficiency of SGD, adaptive gradient algorithms, such as ADAGRAD [13],
RMSPROP [14] and ADAM [15], are developed which adjust the learning rate of each gradient
coordinate according to the current geometric curvature. Among them, ADAM has become the default
training algorithm in deep learning. Specifically, ADAM estimates the current gradient∇F (θt) as

mt = β1mt−1 + (1− β1)∇fSt(θt) withm0 = 0 and β1∈(0, 1).

Then like natural gradient descent [35], ADAM adapts itself to the function geometry via a diagonal
Fisher matrix approximation diag (vt) which serves as a preconditioner and is defined as

vt = β2vt−1 + (1− β2)[∇fSt(θt)]2 with v0 = 0 and β2 ∈ (0, 1).

Next ADAM preconditions the problem by scaling each gradient coordinate, and updates the variable

θt+1 = θt − ηmt/(1− βt1)/
(√

vt/(1− βt2) + ε
)

with a small constant ε. (3)

3.2 Lévy-driven SDEs

Let ut=∇F (θt)−∇fSt(θt) denote gradient noise. From Sec. 3.1, we can formulate SGD as follows

θt+1 =θt − η∇F (θt) + ηut.

To analyze behaviors of an algorithm, one effective approach is to obtain its SDE via making
assumptions on ut and then analyze its SDE. For instance, to analyze SGD, most works [25–27, 34]
assume that ut obeys a Gaussian distribution N (0,Σt) with covariance matrix

Σt =
1

S

[ 1

n

∑n

i=1
∇fi(θt)∇fi(θt)T −∇F (θt)∇F (θt)

T
]
.

However, both recent work [23] and Fig. 1 show that the gradient noise ut has heavy tails and can be
better characterized by SαS distribution [24]. Moreover, the heavy-tail assumption can also better
explain the behaviors of SGD than Gaussian noise assumption. Concretely, for the SDE of SGD on
the one-dimensional problems, under Gaussian noise assumption its escaping time from a simple
quadratic basin respectively exponentially and polynomially depends on the height and width of the
basin [36], indicating that SGD gets stuck at deeper minima as opposed to wider/flatter minima. This
contradicts with the observations in [1, 19–21] that SGD often converges to flat minima. By contrast,
on the same problem, for Lévy-driven SDE, both [23] and this work show that SGD tends to converge
to flat minima instead of deep minima, well explaining the convergence behaviors of SGD.

Following [23], we also assume ut obeys SαS distribution but with a time-dependent covariance
matrix Σt to better characterize the underlying structure in the gradient noise ut. In this way, when
the learning rate η is small and ε = η(α−1)/α, we can write the Lévy-driven SDE of SGD as

dθt = −∇F (θt) + εΣtdLt. (4)

Here the Lévy motionLt ∈ Rd is a random vector and its i-th entryLt,i obeys the SαS(1) distribution
which is defined through the characteristic function E[exp(iωx)] = exp(−σα|ω|α) if x ∼ SαS(σ).
Intuitively, the SαS distribution is a heavy-tailed distribution with a decay density like 1/|x|1+α.
When the tail index α is 2, SαS(1) becomes a Gaussian distribution and thus has stronger data-fitting
capacity over Gaussian distribution. In this sense, the SDE of SGD in [25–27, 34, 37] is actually a
special case of the Lévy-driven SDE in this work. Moreover, Eqn. (4) extends the one-dimensional
SDE of SGD in [23]. Note, Eqn. (4) differs from [29], since it considers dynamic covariance matrix
Σt in gradient noise and shows great effects of its underlying structure to the escaping behaviors in
both ADAM and SGD, while [29] analyzed escaping behaviors of SGD along several fixed directions.

Similarly, we can derive the SDE of ADAM. For brevity, we definem′t=β1m
′
t−1+(1− β1)∇F (θt)

withm′0 = 0. Then by the definitions ofmt andm′t, we can compute

m′t −mt = (1− β1)

t∑
i=0

βt−i1 [∇F (θi)−∇fSi(θi)] = (1− β1)

t∑
i=0

βt−i1 ui.
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As noise ut has heavy tails, their exponential average should have similar behaviors, which is also
illustrated by Fig. 1. So we also assume 1

1−βt1
(m′t−mt) obeys SαS(1) distribution with covariance

matrix Σt. Meanwhile, we can write ADAM as

θt+1 = θt − ηm′t/zt + η(m′t −mt)/zt with zt=(1−βt1)
(√

vt/(1− βt2) + ε
)
.

So we can derive the Lévy-driven SDE of ADAM:

dθt = −µtQ−1
t mt+εQ

−1
t ΣtdLt, dmt = β1(∇F (θt)−mt), dvt = β2([∇fSt(θt)]2−vt), (5)

where ε=η(α−1)/α, Qt=diag
(√
ωtvt + ε

)
, µt=1/(1− e−β1t) and ωt = 1/(1− e−β2t) are two

constants to correct the bias inmt and vt. Note, here we replacem′t withmt for brevity. Appendix A
provides more construction details, randomness discussion and shows the fitting capacity of this SDE
to ADAM. Subsequently, we will analyze escaping behaviors of the SDEs in Eqns. (4) and (5).

4 Analysis for Escaping Local Minima

Now we analyze the local stability of ADAM-alike adaptive algorithms and SGD. Suppose the process
θt in Eqns. (4) and (5) starts at a local basin Ω with a minimum θ∗, i.e. θ0 ∈ Ω. Here we are
particularly interested in the first escaping time Γ of θt produced by an algorithm which reveals
the convergence behaviors and generalization performance of the algorithm. Formally, let Ω−ε

γ

=
{y∈Ω | dis(∂Ω,y)≥εγ} denote the inner part of Ω. Then we give two important definitions, i.e. (1)
the escaping time Γ of the process θt from the local basin Ω and (2) the escaping set W at Ω, as

Γ = inf{t ≥ 0 | θt /∈ Ω−ε
γ

} and W = {y ∈ Rd |Q−1
θ∗ Σθ∗y /∈ Ω−ε

γ

}, (6)

where the constant γ > 0 satisfies limε→0 ε
γ = 0, Σθ∗ = limθt→θ∗Σt for both SGD and ADAM,

andQθ∗= I for SGD andQθ∗=limθt→θ∗Qt for ADAM. Then we define Radon measure [38].
Definition 1. If a measure m(V) defined on Hausdorff topological space X obeys (1) inner regular,
i.e. m(V) = supU⊆Vm(U), (2) outer regular, i.e. m(V) = infV⊆Um(U), and (3) local finiteness,
i.e. every point of X has a neighborhood U with finite m(U), then m(V) is a Radon measure.

Then we define non-zero Radon measure which further obeys m(U)<m(V) if U ⊂V . Since larger
set has larger volume, m(U) positively depends on the volume of the set U . Let m(W) be a non-zero
Radon measure on the set W . Then we first introduce two mild assumptions for analysis.
Assumption 1. For both ADAM and SGD, suppose the objective F (θ) is a upper-bounded non-
negative loss, and is locally µ-strongly convex and `-smooth in the basin Ω.

Assumption 2. For ADAM, suppose its process θt satisfies
∫ Γ

0

〈 ∇F (θs)
1+F (θs)

,µsQ
−1
s ms

〉
ds ≥ 0 almost

sure, and its parameters β1 and β2 obey β1 ≤ β2 ≤ 2β1. Moreover, for ADAM, we assume
‖mt − m̂t‖ ≤ τm‖

∫ t−
0

(ms − m̂s)ds‖ and ‖m̂t‖ ≥ τ‖∇F (θ̂t)‖ where m̂t and θ̂t are obtained
by Eqn. (5) with ε = 0. Each coordinate vt,i of vt in ADAM obeys vmin ≤

√
vt,i ≤ vmax (∀i, t).

104 105
0

4

8
ρt= 10

t ∫
t

0
⟨ ∇F(θs)1+ F(θs)

, μsQ−1s ms⟩ds≥5.7

τ′= || ̂mt||
||∇F( ̂θt)||

≥1.0,
10τ′m=

10||mt− m̂t||

||∫
t

0
(ms− m̂s)ds||

≤10

10−2vmax≤3.29

103vmiQ≥10−3

,teration

Figure 2: Empirical investigation of As-
sumption 2 on ADAM.

Assumption 1 is very standard for analyzing stochastic
optimization [39–44] and network analysis [45–48]. In
Assumption 2, we indeed require similar directions of gra-
dient estimatemt and full gradient∇F (θt) in ADAM in
most cases, as we assume their inner product is non-
negative along the iteration trajectory. So this assumption
can be satisfied in practice. To analyze the processes θt
and θ̂t in ADAM, we make an assumption on the distance
between their corresponding gradient estimates mt and
m̂t which can be easily fulfilled by their definitions. Then
for ADAM, we mildly assume its estimated vt to be bounded. For vmin, we indeed allow vmin = 0
because of the small constant ε. The relation β1 ≤ β2 ≤ 2β1 is also satisfied under the default
setting of ADAM. Actually, we also empirically investigate Assumption 2 on ADAM. In Fig. 2, we
report the values of ρt = 10

t

∫ Γ

0

〈 ∇F (θs)
1+F (θs)

, µsQ
−1
s ms

〉
ds, τ ′m = ‖mt−m̂t‖

‖
∫ t−
0

(ms−m̂s)ds‖ , τ ′ = ‖m̂t‖
‖∇F (θ̂t)‖

,
vmin = mini

√
vt,i, vmax = maxi

√
vt,i in the SDE of ADAM on the 4-layered fully connected

networks with width 20. Note that we scale some values of ρt, τ ′m, τ ′, vmin and vmax so that we can
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plot them in one figures. From Fig. 2, one can observe that ρt, τ ′ and vmin are well lower bounded,
and τ ′m and vmax are well upper bounded. These results demonstrate the validity of Assumption 2.

With these two assumptions, we analyze the escaping time Γ of process θt and summarize the main
results in Theorem 1. For brevity, we define a group of key constants for SGD and ADAM: κ1 =` and
κ2 =2µ in SGD, κ1 = c1`

(vmin+ε)|τm−1| and κ2 = 2µτ
β1(vmax+ε)+µτ (β1− β2

4 ) in ADAM with a constant c1.

Theorem 1. Suppose Assumptions 1 and 2 hold. Let Θ(ε−1)= 2
αε

α, ρ0 = 1
16(1+c2κ1) and ln

(
2∆
µε1/3

)
≤

κ2ε
− 1

3 with ∆=F (θ0) −F (θ∗) and a constant c2. Then for any θ0∈ Ω−2εγ , u >−1, ε ∈ (0, ε0],
γ ∈ (0, γ0] and ρ ∈ (0, ρ0] satisfying εγ ≤ ρ0 and limε→0 ρ = 0, SGD in (4) and ADAM in (5) obey

1− ρ
1 + u+ ρ

≤ E
[
exp

(
−um(W)Θ(ε−1)Γ

)]
≤ 1 + ρ

1 + u− ρ
.

See its proof in Appendix D.1. By setting ε small, Theorem 1 shows that for both ADAM and SGD,
the upper and lower bounds of their expected escaping time Γ are at the order of O

(
1

m(W)Θ(ε−1)

)
.

Note, m(W) has different values for SGD and ADAM due to their differentQθ∗ in Eqn. (6). If the
escaping time Γ is very large, it means that the algorithm cannot well escape from the basin Ω and
would get stuck in Ω. Moreover, given the same basin Ω, if one algorithm has smaller escaping time
Γ than other algorithms, then it is more locally unstable and would faster escape from this basin to
others. In the following sections, we discuss the effects of the geometry adaptation and the gradient
noise structure of ADAM and SGD to the escaping time Γ which are respectively reflected by the
factors m(W) and Θ(ε−1). Our results show that SGD has smaller escaping time than ADAM and
can better escape from local basins with small Radon measure to those with lager Radon measure.

4.1 Preference to Flat Minima

To interpret Theorem 1, we first define the “flat" minima in this work in terms of Radon measure.

Definition 2. A minimum θ∗∈Ω is said to be flat if its basin Ω has large nonzero Radon measure.
Due to the factor m(W) in Theorem 1, both ADAM and SGD have large escaping time Γ at the “flat"
minima. Specifically, if the basin Ω has larger Radon measure, then the complementary set Wc =
{y∈Rd |Q−1

θ∗ Σθ∗y∈Ω−ε
γ} of W also has larger Radon measure. Meanwhile, the Radon measure

on Wc∪W is a constant, meaning the larger m(Wc) the smaller m(W). So ADAM and SGD have
larger escaping time at “flat" minima. Thus, they would escape “sharp" minima due to their smaller
escaping time, and tend to converge to “flat" ones. Since for basin Ω, its Radon measure positively
relies on its volume, m(W) negatively depends on the volume of Ω. So ADAM and SGD are more
stable at the minima with larger basin Ω in terms of volume. This can be intuitively understood: for
the process θt, the volume of the basin determines the necessary jump size of the Lévy motion Lt in
the SDEs to escape, which means the larger the basin the harder for an algorithm to escape.

Note the “flat" minima here is defined on Radon measure, and differ from the conventional flat ones
whose local basins have no large curvature (no large eigenvalues in its Hessian matrix). In most
cases, the flat minima here consist of the conventional flat ones and the minma at the asymmetric
basins/valleys since local basins of these minima often have large volumes and thus larger Radon
measures. Accordingly, our theoretical results can well explain the phenomenons observed in many
works [2, 12, 17, 22, 30, 31] that SGD often converges to the minima at the flat or asymmetric valleys
which is interpreted by our theory to have larger Radon measure and attract SGD to stay at these
places. In contrast, the conventional flat argument cannot explain asymmetric valleys, as asymmetric
valleys means sharp minima under the conventional definition and should be avoided by SGD.

4.2 Analysis of Generalization Gap between ADAM and SGD

Theorem 1 can also well explain the generalization gap between ADAM-alike adaptive algorithms
and SGD. That is, compared with SGD, the minima given by ADAM often suffer from worse test
performance [12, 17, 18, 30, 31]. On one hand, the observations in [1, 19–21] show that the minima
at the flat or asymmetric basins/valleys often enjoy better generalization performance than others. On
the other hand, Theorem 1 shows that ADAM and SGD can escape sharp minima to flat ones with
larger Radon measure. As aforementioned, flat minima in terms of Radon measure often refer to the
minima at the flat or asymmetric basins/valleys. This implies that if one algorithm can escape the
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current minima faster, it is more likely for the algorithm to find flatter minima. These results together
show the benefit of faster escaping behaviors of an algorithm to its generalization performance.

According to Theorem 1, two main factors, i.e. the gradient noise and geometry adaptation respectively
reflected by the factors Θ(ε−1)= 2

αε
−α and m(W), affects the escaping time Γ of both ADAM and

SGD. We first look at the factor Θ(ε−1) in the escaping time Γ. As illustrated in Fig. 3 in Sec. 5, the
gradient noise in SGD enjoys very similar tail index α with ADAM for most optimization iterations,
but it has much smaller tail index α than ADAM for some iterations, which means SGD has larger
Lévy discontinuous jumps in these iterations and thus enjoys smaller escaping time Γ. This different
tail property of gradient noise in these algorithms are caused by the following reason. SGD assumes
the gradient noise ut=∇F (θt)−∇fSt(θt) at one iteration has heavy tails, while ADAM considers the
exponential gradient noise 1−β1

1−βt1

∑t
i=0β

t−i
1 ui which indeed smooths gradient noise over the iteration

trajectory and prevents large occasional gradient noise. In this way, SGD reveals heavier tails of
gradient noise than ADAM and thus has smaller tail index α for some optimization iterations, helping
escaping behaviors. Moreover, to guarantee convergence, ADAM needs to use smaller learning rate η
than SGD due to the geometry adaptation in ADAM, e.g. default learning rate 10−3 in ADAM and
10−2 in SGD, leading to smaller ε = η(α−1)/α and thus larger escaping time Γ in ADAM. Thus,
compared with ADAM, SGD is more locally unstable and will converge to flatter minima which often
locate at the flat or asymmetric basins/valleys and enjoy better generalization performance [1, 19–21].

Besides, the factorm(W) also plays an important role in the generalization degeneration phenomenon
of ADAM. W.o.l.g., assume the minimizer θ∗ = 0 in the basin Ω. As the local basin Ω is often small,
following [34, 49] we adopt second-order Taylor expansion to approximate Ω as a quadratic basin
with center θ∗, i.e. Ω=

{
y | F (θ∗)+1

2y
TH(θ∗)y≤h(θ∗)

}
with a basin height h(θ∗) and Hessian

matrixH(θ∗) at θ∗. Then for SGD, sinceQθ∗ = I in Eqn. (6), its corresponding escaping set W is

WSGD =
{
y ∈ Rd | yTΣθ∗H(θ∗)Σθ∗y ≥ h∗f

}
(7)

with h∗f =2(h(θ∗)−F (θ∗)), while according to Eqn. (6), ADAM has escaping set

WADAM = {y ∈ Rd |yTΣθ∗Q−1
θ∗H(θ∗)Q−1

θ∗ Σθ∗y ≥ h∗f}. (8)

Then we prove that for most time interval except the jump time, the current variable θt is indeed
close to the minimum θ∗. Specifically, we first decompose the Lévy process Lt into two components
ξt and ζt, i.e. Lt = ξt + ζt, with the jump sizes ‖ξt‖<ε−δ and ‖ζt‖≥ε−δ (δ∈(0, 1)). In this way,
the stochastic process ξ does not departure from θt a lot due to its limited jump size. The process ζ
is a compound Poisson process with intensity Θ(ε−δ)=

∫
‖y‖≥ε−δν(dy)=

∫
‖y‖≥ε−δ

dy
‖y‖1+α = 2

αε
αδ

and jumps distributed according to the law of 1/Θ(ε−δ). Specifically, let 0= t0<t1< · · ·<tk< · · ·
denote the time of successive jumps of ζ. Then the inner-jump time intervals σk= tk − tk−1 are i.i.d.
exponentially distributed random variables with mean value E(σk)= 1

Θ(ε−δ)
and probability function

P (σk≥x) =exp(−xΘ(ε−δ)). Based on this decomposition, we state our results in Theorem 2.

Theorem 2. Suppose Assumptions 1 and 2 hold. Assume the process θ̂t is produced by setting ε = 0
in the Lévy-driven SDEs of SGD and ADAM.
(1) θ̂t exponentially converges to the minimizer θ∗ in Ω. Specifically, by defining ∆=F (θ0)−F (θ∗),
κ3 = 2µτ

β1(vmax+ε)+µτ

(
β1 − β2

4

)
in ADAM and κ3 = 2µ in SGD, for any ρ̄ > 0, it satisfies

‖θ̂t − θ∗‖22 ≤ ερ̄ if t ≥ vε , κ−1
3 ln

(
2∆µ−1ε−ρ̄

)
.

(2) Assume δ ∈ (0, 1), p = min((ρ̄(1 + c3κ1))/4, p̄), ρ̄ = 1−δ
16(1+c4κ1) , where κ1 (in Theorem 1), p̄,

c3 and c4 are four positive constants. When θt and θ̂t have the same initialization θ0 = θ̂0, we have

supθ0∈Ω P
(

sup0≤t<σ1
‖θt − θ̂t‖2 ≥ 2ερ̄

)
≤ 2 exp

(
− ε−p

)
.

See its proof in Appendix D.2. By inspecting the first part of Theorem 2, one can observe that the
gradient-noise-free processes θ̂t produced by setting ε = 0 in the Lévy-driven SDEs of SGD and
ADAM locate in a very small neighborhood of the minimizer θ∗ in the local basin Ω after a very
small time interval vε = κ−1

3 ln
(
2∆µ−1ε−ρ̄

)
. The second part of Theorem 2 shows that before the

first jump time t1 = σ1 of the jump ζ with size larger than ε−δ in Lévy motion Lt, the distance
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between θt and θ̂t is very small. So these two parts together guarantee small distance between θt
and θ∗ for the most time interval before the first big jump in the Lévy motion Lt since the mean
jump time E(σ1) = α

2εαδ
= O(ε−1) of the first big jump is much larger than vε = O(ln(ε−1)) when

ε is small. Next after the first big jump, if θt does not escape from the local basin Ω, by using the
first part of Theorem 2, after the time interval vε, θt becomes close to θ∗ again. This process will
continue until the algorithm escapes from the basin. So for most time interval before escaping from
Ω, the stochastic process θt locates in a very small neighborhood of the minimizer θ∗.

The above analysis results on Theorem 2 hold for moderately ill-conditioned local basins (ICLBs).
Specifically, the analysis requires vε≤σ1 to guarantee small distance of current solution θt to θ∗
before each big jump. So if µ of ICLBs is larger thanO(εαδ) which is very small as ε in SDE is often
small to precisely mimic algorithm behaviors, The above analysis results 2 still hold. Moreover, to
obtain the result (1) in Theorem 2, we assume the optimization trajectory goes along the eigenvector
direction corresponding to µ which is the worse case and leads to the worst convergence speed. As
the measure of one/several eigenvector directions on high dimension is 0, optimization trajectory
cannot always go along the eigenvector direction corresponding to µ. So vε is actually much larger
than O

(
1
µ ln( 1

µεδ
)
)
, largely improving applicability of our theory. For extremely ICLBs (µ→ 0 or

µ = 0), the above analysis does not hold which accords with the previous results that first-order
gradient algorithms cannot escape from them provably [50]. Fortunately, µ → 0 and µ = 0 give
asymmetric basins which often generalize well [2, 22] and are not needed to escape.

By using the above results, we have θt≈ θ∗ before escaping and thus vt = limθt→θ∗[∇fSt(θt)]2.
Considering the randomness of the mini-batch St, ωt≈1 and ε≈0, we can approximate

E[Qθ∗ ] ≈ E
[

limθt→θ∗ diag
(√
ωtvt

)]
≈ diag

(√
1

n

∑n

i=1
[∇fi(θ∗)]2

)
.

Meanwhile, since Σθ∗ = 1
S Σ̄θ∗ because of limθt→θ∗F (θt) = 0 where Σ̄θ∗ = 1

n∑n
i=1∇fi(θ∗)∇fi(θ∗)T , one can approximately compute E[Σθ∗Q−1

θ∗ ] ≈ 1
S I. Plugging this re-

sult into the escaping set WADAM yields

WADAM ≈
{
y ∈ Rd

∣∣ yTH(θ∗)y≥S2h∗f

}
.

Now we compare the escaping sets WSGD of SGD and WADAM of ADAM. For clarity, we re-write
WSGD in Eqn. (7) as

WSGD =
{
y ∈ Rd

∣∣yT Σ̄θ∗H(θ∗)Σ̄θ∗y≥S2h∗f

}
.

By comparison, one can observe that for ADAM, its gradient noise does not affect the escaping set
WADAM due to the geometry adaptation via scaling each gradient coordinate, while for SGD, its
gradient noise plays an important role. Suppose H̄(θ∗)=Σ̄θ∗H(θ∗)Σ̄θ∗ , and the singular values
ofH(θ∗) and Σ̄θ∗ are respectively λ1≥λ2≥· · ·≥λd and ς1≥ ς2≥· · ·≥ ςd. Zhu et al. [34] proved
that Σ̄θ∗ of SGD on deep neural networks well aligns the Hessian matrix H(θ∗), namely the top
eigenvectors associated with large eigenvalues in Σθ∗ have similar directions in those in H(θ∗).
Besides, for modern over-parameterized neural networks, both Hessian H(θ∗) and the gradient
covariance matrix Σθ∗ are ill-conditioned and anisotropic near minima [22, 27]. Based on these
results, we can approximate the singular values of H̄(θ∗) as λ1ς

2
1 ≥λ2ς

2
2 ≥ · · · ≥λdς2d , implying

that H̄(θ∗) becomes much more singular than H(θ∗). Then the volume of the component set
Wc

ADAM of WADAM is V(Wc
ADAM)=ζ

∏d
i=1λi where ζ=2d−1(πS/h∗f )d/2g−1(d/2) with a gamma

function g. Similarly, we can obtain the volume V(Wc
SGD) = ζ

∏d
i=1λiς

2
i of the component set

Wc
SGD of WSGD. As aforementioned, covariance matrix Σθ∗ is ill-conditioned and anisotropic near

minima and has only a few larger singular values [22, 27], indicating
∏d
i=1ς

2
i �1. So V(Wc

SGD) is
actually much smaller than V(Wc

ADAM). Hence WSGD has larger volume than WADAM and thus has
larger Radon measure m(WSGD) than m(WADAM). Accordingly, SGD has smaller escaping time
at the local basin Ω than ADAM. Thus, SGD would escape from Ω and converges to flat minima
whose local basins have large Radon measure, while ADAM will get stuck in Ω. Since flat minima
with large Radon measure usually locate at the flat or asymmetric basins/valleys and generalize
better [12, 17, 30, 31, 51], SGD often enjoys better testing performance. From the above analysis, one
can also observe that for SGD, the covariance matrix Σθ∗ helps increase Radon measure m(WSGD)
of WSGD. So anisotropic gradient noise helps SGD escape from the local basin but cannot help
ADAM’s escaping behaviors.
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Figure 3: Behaviors illustration of SGD and ADAM on fully connected networks. In both (a) and
(b), the left and middle figures respectively report the estimated tail index α in SαS distribution and
classification accuracies; right figures show possible barriers between the solutions θ1000 and θ2000

on MNIST, and θ150 and θ1000 on CIFAR10, respectively. Best viewed in ×2 sized color pdf file.

5 Experiments

In this section, we first investigate the gradient noise in ADAM and SGD, and then show their iteration-
based convergence behaviors to testify the implications of our escaping theory. The code is available
at https://panzhous.github.io.

Heavy Tails of Gradient Noise. We respectively use SGD and ADAM to train AlexNet [52] on
CIFAR10, and show the statistical behaviors of gradient noise on CIFAR10. To fit the noise via SαS
distribution, we consider covariance matrix Σt and use the approach in [23, 53] to estimate the tail
index α. Fig. 1 in Sec. 1 and Fig. 4 in Appendix A show that the gradient noise in both SGD and
ADAM usually reveal the heavy tails and can be well characterized by SαS distribution. This testifies
the heavy tail assumption on the gradient noise in our theories.

Escaping Behaviors. We investigate the iteration-based convergence behaviors of SGD and ADAM,
including their training and test accuracies and losses and tail index of their gradient noise. For
MNIST [54] and CIFAR10 [55], we respectively use nine- and seven-layered fully-connected-
networks. Each layer has 512 neurons and contains a linear layer and a ReLu layer. Firstly, the results
in the middle figures show that SGD usually has better generalization performance than ADAM-alike
adaptive algorithms which is consistent with the results in [12, 17, 18, 30].

Moreover, from the trajectories of the tail index α and accuracy of SGD on MNIST and CIFAR10
in Fig. 3, one can observe two distinct phases. Specifically, for the first 1000 iterations in MNIST
and 150 iterations in CIFAR10, both the training and test accuracies increase tardily, while the tail
index parameter α reduces quickly. This process continues until α reaches its lowest value. When
considering the barrier around inflection point (e.g. a barrier between θ1000 and θ2000 on MNIST),
it seems that the process of SGD has a sudden jump from one basin to another one which leads to
a sudden accuracy drop, and then gradually converges. Accordingly, the accuracies are improved
quickly. In contrast, one cannot observe similar phenomenon in ADAM. This is because as our
theory suggested, SGD is more locally unstable and converges to flatter minima than ADAM, which
is caused by the geometry adaptation, exponential gradient average and smaller learning rate in
ADAM. All these results are consistent with our theories and also explain the well observed evidences
in [12, 17, 30, 31, 51] that SGD usually converges to flat minima which often locate at the flat or
asymmetric basins/valleys, while ADAM does not. Because the empirical observations [1, 19–21]
show that minima at the flat or asymmetric basins/valleys often generalize better than sharp ones,
our empirical and theoretical results can well explain the generalization gap between ADAM-alike
algorithms and SGD.

6 Conclusion

In this work, we analyzed the generalization performance degeneration of ADAM-alike adaptive
algorithms over SGD. By looking into the local convergence behaviors of the Lévy-driven SDEs of
these algorithms through analyzing their escaping time, we prove that for the same basin, SGD has
smaller escaping time than ADAM and tends to converge to flatter minima whose local basins have
larger Radon measure, explaining its better generalization performance. This result is also consistent
with the widely observed convergence behaviors of SGD and ADAM in many literatures. Finally our
experimental results testify the heavy gradient noise assumption and implications in our theory.
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Broader Impacts

This work theoretically analyzes a fundamental problem in deep learning field, namely the general-
ization gap between adaptive gradient algorithms and SGD, and reveals the essential reasons for the
generalization degeneration of adaptive algorithms. The established theoretical understanding of these
algorithms may inspire new algorithms with both fast convergence speed and good generalization
performance, which alleviate the need for computational resource and achieve state-of-the-art results.
Yet it still needs more efforts to provide more insights to design practical algorithms.
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