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A Additional numerical experiments

A.1 Two classes

In this section, we provide additional numerical experiments to compare CURE in (/) with other
clustering methods on the same real dataset as Section We focus on six methods: (i) discriminative
K-means (DisKmeans) in [Ye et al.| (2008)); (ii) a discriminative clustering formulation described
in Bach and Harchaoui| (2008); |Flammarion et al.[(2017); (iii) Model-based clustering (Mclust) in
Fraley and Raftery| (1999); (iv) Projection Pursuit (PP) in [Pena and Prieto| (2001)); (v) Adaptive
LDA-guided K-means Clustering in Ding and Li| (2007); and (vi) Minimum Density Hyperplane
(MDH) in [Pavlidis et al.| (2016).

As suggested by|Ye et al.|(2008)), the regularization parameter A therein has a significant impact on
the performance of DisKmeans. To resolve this issue, they provide an automatic tuning framework.
Here we provide a comparison between CURE and DisKmeans. For the DisKmeans, we consider
pre-chosen A € {0,1,10,100} as well as A from the automatic tuning procedure suggested by |Ye
et al.| (2008)), initialized from 1. Due to high computational cost of DisKmeans with automatic tuning
(which includes eigendecomposition of (N7 4+ Na) x (N1 + N2 ) matrix in each iteration), we conduct
the experiment on smaller dataset: we fix N; = 1000 and choose N> from {1000, 500, 333, 250}.
As is shown in Table [T} CURE has lower misclassification rate under all settings. It is also worth
mentioning that the automatic tuning procedure sends A — oo, in which case DisKmeans is equivalent
to classical K-means.

Table 1: Misclassification rate of CURE and disciminative K-means.

N12N2

1:1 2:1 3:1 4:1
Method
CURE / 524+03% | 6.7£06% | 9.1+£09% | 11.2+1.2%
A=0 49.9% 49.5% 49.5% 47.7%
Discriminative A=1 48.8% 46.6% 49.4% 48.3%
K-means A=10 46.5% 44.2% 47.4% 41.8%
Ye et al.[(2008) A =100 6.6% 49.4% 46.5% 27.2%
automatic tuning 43.3% 49.4% 47.5% 45.8%

For experiments comparing CURE with other five methods, we still adopt the usual setting of sample
size: we fix N3 = 6000 and choose N3 from {6000, 3000, 2000, 1500}. Model-based clustering
(Mclust) in|Fraley and Raftery|(1999), Projection Pursuit (PP) in|Pefia and Prieto|(2001) and Minimum
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Density Hyperplane (MDH) in [Pavlidis et al.|(2016) are implemented using open-source R packages
with default settings. In addition:

1. The discriminative clustering method appeared in Bach and Harchaoui| (2008)); Flammarion et al.
(2017) stems from the optimization problem
. 2
min — Xv|5, 1

vERY ye{£+1}4 ”y ”2 M
where X is the centered data matrix. We adopt the alternating minimization scheme: given v, the
optimal y is obtained by sgn(Xwv) (or by running K-means on X v, which has similar empirical
performance) while given y, the optimal v is obtained from solving a least squares problem. In the
first step, v is initialized from a uniform distribution over the unit sphere. The iterative algorithm

is terminated when vy, the predicted label, no longer changes.

2. Following the instructions in/Ding and Li/(2007), we implement the adaptive LDA-guided K-means
clustering algorithm (Algorithm 1 therein) by alternating between linear discriminant analysis and
K-means until convergence.

Table [2] shows the misclassification rate and the standard deviation of CURE and the other five
methods over 50 independent trials. It is clear that CURE is more accurate and stable than these five
methods under all settings.

Table 2: Misclassification rate of CURE and Method (T)).

N1 : N2 . . . .
Method 1:1 2:1 3:1 4:1

CURE 5.240.2% 7.14+0.4% 9.3+0.7% 11.3+1.1%
Method () 31.1+£13.8% | 32.9+13.3% | 34.7+12.7% | 36.8 £11.2%
Mclust 48.7+ 1.3% 39.1£4.8% 34.1+8.0% 28.2 £ 7.8%
Projection Pursuit 36.9+9.8% | 37.4+£9.6% | 39.7£6.9% | 40.6 £7.3%

LDA-guided K-means 45.9% 49.0% 45.6% 44.3%

MDH 48.6% 43.1% 38.3% 35.2%

A.2 Multiple classes

To illustrate how the general CURE in Section [2.3| works, we consider the clustering problem with
the first 4 classes in Fashion-MNIST (T-shirt/top, Trouser, Pullover, Dress), each of which has 6000
training samples and 1000 testing samples. Our training process only uses features of training samples
and does not touch any labels.

We let the number of classes K be 4, the embedding space ) be RX, the target distribution v be
% ZjK:l 6ej, the discrepancy measure D be the Wasserstein-1 distance, and define the classification
rule g(y) = argmin;¢ x[|ly — e;jll2. We compare two classes F of feature mappings: linear

functions and fully-connected neural networks with one hidden layer that has 100 nodes. Initial
values All of the weight parameters are initialized using i.i.d. samples from N (0, 0.052).

Let fo be a feature transform in F, parametrized by 6. Denote by {x;}? ; the samples, where
n = 4 x 6000 = 24000. The loss function is

n n K
1
L@) =Wy — 0 N, V) = min i x;) — el
( ) 1<n ; fo(x:) ) Pe[0,1]"xK, 1T P=1] /K, PlK:1"/nZZpJ|f9( ) J|

i=1 j=1
It is natural to optimize with respect to P and 6 in an alternating manner. We apply random sampling
techniques to speedup computation. In the ¢-th iteration,

1. Draw B = 200 samples {:cti}f;l uniform at random (with replacement) from the dataset;

2. Use the Python function ot . sinkhorn?2 in library POT (Flamary and Courty, [2017) with reg =
0.1 to obtain the solution P; to an entropy-regularized version of

B K
ke g in > D viilfo. (i) —ejl;
Pel0,1] ,1.P=1]. /K, Plgx=1p/B =11



— Linear
0.7 —— MNonlinear

0.6

05

Testing error
=]
£

o 1 2 3 4 5
Epoch

Figure 1: 4-class Fashion-MNIST: Testing errors of linear functions and neural networks, with error
bar quantifying one standard deviation.

3. Update model parameters by 0,11 = 6; — n0L(0;), where 0 is the sub-differential operator,
n = 1073 and

K
Li(6) =) pijlfo(wn) —ejl, V6.
j=1

An epoch refers to n/B = 12 consecutive iterations. The learning curves in Figure (1| shows the
advantage of neural network and demonstrates the flexibility of CURE with nonlinear function
classes.

B Proof sketch of Theorem [1]

B.1 Step 1: properties of the test function f

We now investigate the function f defined in (8) and relate it to h(z) = (z® — 1)?/4. As Lemma
suggests, | '], | f”| and | f"”| are all bounded by constants determined by a and b; |’ — h/| and
1" — h"'| are bounded by polynomials that are independent of a and b. See Appendix D] for a proof.

Lemma 1. When a is sufficiently large and b > 2a, f has the following properties:
1. f"is continuous with Fy £ sup g | f'(x)| < 2a*band | f'(x) — B ()| < 7|2*Lyz5a}s
2. f" is continuous with Fy = sup, g | /" (x)| < 30 and | " (z) — b (x)| < 9271|450}

3. f" exists in R\ {£a, £b} with F3 2 sup,ca) (+q.40) |f" ()] < 6a.

B.2 Step 2: landscape analysis of the population loss

To kick off the landscape analysis we investigate the population version of Ly, namely

L (0,8) = Exop (e + 87 X) + 3o+ 87 o) @

One of the main obstacles is the complicated piecewise definition of f, which prevent us from
obtaining closed form formulae. We bypass this problem by relating the population loss with f to
that with the quartic function h. See Appendix [E]|for a proof.

Theorem 1 (Landscape of the population loss). Consider Model[I|and assume that b > 2a. There
exist positive constants A, e,8 and 1 determined by M, EZ%, ||p]l2, Amax(2) and Amin(X) but
independent of d and n, such that when a > A,

1. The only two global minima of L, are +~*, where v* = (—cB"T g, c8") for some c € (1/2,2)

and
9 1/2
5h< 141 el ) —

4 2
lelg- +6lplg- + Mz



2. [[VLi()|l2 > ¢ if dist(v, {£y*} U S) > 6, where S = {0} U {(-B T uo,B) : n'pB
07 BTEﬂ = 1/MZ}’

3. V2Lyi(v) = oI if dist(v, {£y*}) < 6, and u" V2 Li(y)u < —n if dist(y,S) < 0 withu =
0,27 p/|IZ7 ull2).

Theorem|[I] precisely characterizes the landscape of Ly. In particular, all of its critical points make
up the set {£~v*} U S, where ++* are global minima and S consists of strict saddles. The local
geometry around critical points is also desirable.

B.3 Step 3: landscape analysis of the empirical loss

Based on geometric properties of the population loss L1, we establish similar results for the empirical
loss L; through concentration analysis. See Appendix Iﬂ for a proof.
Theorem 2 (Landscape of the empirical loss). Consider Model and assume that b > 2a > 4. Let

~* and S be defined as in Theorem([I] There exist positive constants A, Cy, Cy, Co, My, €,6 and n
determined by M, Mz, ||pt||2, Anax(2) and Amin (2) but independent of d and n, such that when a >

Aandn > Cyd, the followings hold with probability exceeding 1—C1 (d/n)©>? —C} exp(—Can'/?):

1 IVLy(9)ll2 > e if dist(v, {=y*} U S) > 4;
2. uTVQf/l('y)u < —nifdist(y,S) <6, withu = (0,2 p/[| = 1 u|2);

3 |IVLi(m) — VLi(%)llz £ M|y — 7ellz and |V2Li(m1) — V2Li(y)2 < Mi[l V
(dlog(n/d)//n)]|v1 — Y2||2 hold for all 1,2 € R x R4,

Theorem 2] shows that a sample of size n 2> d suffices for the empirical loss to inherit nice geometric
properties from its population counterpart. The corollary below illustrates that as long as we can
find an approximate second-order stationary point, then the statistical estimation error can be well
controlled by the gradient. We defer the proof of this to Appendix

Corollary 1. Under the settings in Theorem there exist constants C, C1, C% such that the followings
happen with probability exceeding 1 — C}(d/n)C>® — C} exp(—=Chn'/3): for any v € R x R4
satisfying |V L1 (%) |2 < € and Auin[VZL1 ()] > —n,

. . - d n
i 7 =l < C(IVL: (), +y/ 106 ().

As a result, when the event above happens, any local minimizer v of L satisfies

d n
min |[s5 —~*|, < C1/ = =).
s:linl”‘sfy Yl <€ nlog(d)

B.4 Step 4: convergence guarantees for perturbed gradient descent

The landscape analysis above shows that all local minimizers of Ly are statistically optimal (up to
logarithmic factors), and all saddle points are non-degenerate. Then it boils down to finding any -~y
whose gradient size is sufficiently small and Hessian has no significantly negative eigenvalue. Thanks
to the Lipschitz smoothness of VL, and V2L, this can be efficiently achieved by the perturbed
gradient descent algorithm (see Algorithm[I)) proposed by Jin et al|(2017). Small perturbation is
occasionally added to the iterates, helping escape from saddle points efficiently and thus converge
towards local minimizers. Theorem 3| provides algorithmic guarantees for CURE on top of that. We
defer the proof to Appendix [H]

Implementation of the algorithm requires specification of hyperparameters a, b, M1, € and 7. Under
the regularity assumptions in Model |1} many structural parameters are well-behaved constants and
that helps choose hyperparameters at least in a conservative way. In theory, we can let b = 2a; a and
M be sufficiently large; € and 7 be sufficiently small. In our numerical experiments, the algorithm
does not appear to be sensitive to choices of hyperparameters. We do not go into much details to
avoid distractions.



Algorithm 1 Perturbed gradient descent PerturbedGD (vpgd, 4, p; €pgds Cpgd Opgd s Dped)

X <= 3maX{lOg(dgApgd/(Cpgdsggd‘spgd))v4}’ Tpgd ¢ Cpgd /Lo T \/@spgd/(X%)’ Jthres
\/@spgd/XQ’ fthres — Cpgdgégsd/(xg\/ﬁ)a tihres < XE/(ngdm), tnoise <= —tthres — 1.
Initialize v* = ~,zq.
Fort=0,1,...do
If ||VL1<’7t)||2 < Jthres and ¢ — tnoise > Tthres:
Update tyoise < 1,
Perturb v* < ~' + ¢ with & ~ U(B(0,7))
Ift — tnoise = tthres and IA/I (’Yt) - ﬁl(:)'tm‘se) > _.fthres:
Return Atnoise
Update v+« y* — 1300 VL1 (7).

Theorem 3 (Algorithmic guarantees). Consider the settings in Theorem 2| and adopt the constants
My, € and 1 therein. With probability exceeding 1 — Cy[(d/n)“2¢ + e=Can'’? 4 n=19], Algorithm
with parameters Ypga = 0, { = My, dpga = n~ ', p = My max{1,dlog(n/d)/\/n}, €pga =
min{y/dlog(n/d)/n,(?/p,n?/p,e} and Apeq = 1/4 terminates within O(n/d + d*/n) iterations
and the output 4 satisfies

. d P
VB, <4/ Slog () <e and Aain(V2Li(4)) = .

Theorem [3]and Corollary [Timmediately lead to

ey Dros (2) 4/ Drox (1),

min 1% —7*ll, < [VE1(3)

which finishes the proof of Theorem I}

C Preliminaries

Before we start the proof, let us introduce some notations. Recall the deﬁgition of the ra_ndom vector
X =po+puY + /27 and the i.i.d. samples X1,..., X, € R Let X = (1,X), X, =(1,X;)
and fig = (1, ). For any v = (a, B) € R x R%, define

La(v) =L(y)+AR(y) and  Ly(y) = L(7) + AR(%),

where

Loy) =Ef(y " X) =Efa+8TX), Ly =13 (4" X) =~ 3 fla+ 87X,
i=1 i=1
RO = 50+ 8T = 57 o)’ R =50+ 870 Yo X2 = S(y 0 Y0 X2
=1 =1

Note that the results stated in Section [3|and [Bfocus on the special case when A = 1. The proof in the
appendices allows for general choices of A > 1.



D Proof of Lemma 1l

By direct calculation, one has

b (z), lz| <a
F@) = [W(a) + 0" (a) (2| — a) — g5 (2| — a)?)sgn(x), a<|z| <D,
(7' (a) + 252" (a)] sgn(z), ] > b
h'(x), lz] < a
f@) = n(a)(1 - 558, a<a|<b,
0, |z| > b.
h'"(x), |z] < a
F(@) =S -2 sn(z), a<lz|<b
0, |z| > b

When a is sufficiently large and b > 2a, we have F} £ sup, e |f'(z)| = b/ (a) + bTT/“h”(a) < 2ab,
Fy £ sup,cp |[f"(z)| = h"(a) < 3a?, and F3 £ sup, 4, |/ (x)] = B (a) V hbf? < 6a.

In addition, one can also check that when a < |z| < b, we have |/ (a)| < |z| and |h"(a)| < 3|z|?,
thus

/() = 1 (@) < | (@)] + W (2)] < W ()| + | (a) (] = a)| + [A"(a)(|2] = @)?/(2a)]| + |2° — 2
< Jof? + 8fel? + 5ol + [af’ < Tlaf?
provided that b > 2a > 2. When |z| > b, we have
[/ (2) = 1 (@) < |f'(@)] + W (2)] < W (a)] +|(b— a)h"(a)/2] + |2° — =
<|z]*+ ;|x|2 + |z < 4|z)?.
This combined with f'(z) = h'(x) when |z| < a gives | f/(z) — I/ (2)| < 1{j3|>q) 7|2|*. Similarly
we have | f”(z) — b/ (x)] < 1{jz)>q} 922

E Proof of Theorem /1

It suffices to focus on the special case g = 0 and 3 = I;. We first give a theorem that characterizes
the landscape of an auxiliary population loss, which serves as a nice starting point of the study of the
actual loss functions that we use.

Theorem 4 (Landscape of the auxillary population loss). Consider model (1) with po = 0 and
3 = I,. Suppose that Mz > 3. Let h(x) = (2? — 1)?/4 and \ > 1. The stationary points of the
population loss

Ly (a,B) =Eh (a+ B X) + %aQ
are {(a, B) : VLY (a, B) = 0} = St U Sk, where
1. St = {(0,4£8M)} consists of global minima, with

1/2
g 1+1/ |ul "
lially + 6 [l el3 + Mz

2. S8 =1{(0,8): p"B=0, ||Bl3=1/Mz} U {0} consists of saddle points whose Hessians have
negative eigenvalues.

We also have the following quantitative results: there exist positive constants €, 6" and n"* determined
by Mz, ||p|l2 and X such that




L[VLR(y)ll2 = " if dist (v, ST U S3) = 6"

2. V2Lh(y) = "1 if dist(vy, ST) < 36", and u T V2LE (v)u < —n" if dist (v, S§) < 36" where
u = (0, /|| 2)-

Proof. See Appendix [E-} O

The following Lemmacontrols the difference between the landscape of L) and Lﬁ within a compact
ball.

Lemma 2. Let X be a random vector in R4TY with || X ||y, < M, f be defined in (8) with b > 2a >
4, h(x) = (22 = 1)?/dforz € R, Ly(v) =Ef(v" X) +Xa?/2and L} (y) = Eh(y " X) + Aa?/2
for v € R¥1L. There exist constants Cy, Cy > 0 such that for any R > 0,

01a2
sup [|[VLx (7) = VIX (9)||, < CoR*M* exp (—) :
s | [ Ve

C’la2
sup ||[V2Ly (7) — V2L (9)]]., < CoR*M* exp < ) .
S I I, TINE

In addition, when E(X X T) = o21 holds for some o > 0, there exists m > 0 determined by M and
o such that inf|\7\|223/m ||VL)\(’7)||2 > m and ian’YHzZ?)/m ||VL§(’7)||2 > m.

Proof. See Appendix [E2} O

On the one hand, Lemma implies that inf|y,>3/m [[VLA(7y)|l2 > m for some constant m > 0.
Suppose that

h

e <m 3)
and define r = 3/<". Then
IVLi)lz > i vz 2 )
Moreover, we can take a to be sufficiently large such that
S VL1 () = VLT (0) ||, < &"/2. (5)
2<r

On the other hand, from Theorem@ we know that

IVLR (M2 > " if  dist(y, St US) > 8" (©6)
Taking @), (B) and (6) collectively gives
IVIA()Iz 2 /2 if - dist(y, Sf U S7) = 6" )

Hence {v : VLx(y) = 0} C {v : dist(y,S" U SE) < §"} and it yields a decomposition
{v: VLx(v) =0} = 51 U Sy, where

Sj C{vy: dist(y,5)) <"}, Vji=1,2 (®)
Consequently, for 7 = 1,2 we have

{7 dist(v,5;) <20"} C {v: dist(y,5]) <36"} C {v: |lvll2 < 30" +  fnax 7112}
vy 1 Y92
9)

Now we work on the first proposition in Theorem 1] by characterizing 5.

Lemma 3. Consider the model in (1) with pg = 0 and X = 1. Suppose that f € C*(R) is even,
lim, 400 zf'(x) = +00 and f'(0) < 0. Define

Ly(a,B) =Ef(a+8"X) + %aQ, Va e R, B e R



1. There exists some ¢ > 0 determined by ||p||2, the function f, and the distribution of Z, such that
(0, £cp) are critical points of Ly;

2. In addition, if " is piecewise differentible and |f"' (x)| < F3 < co almost everywhere, we can
find co > 0 determined by ||||2, f"(0), F5 and M such that ¢ > cy.

Proof. See Appendix [E.3] O

Lemmaasserts the existence of two critical points =v* = (0, =¢/3") of L1, for some ¢ bounded
from below by a constant ¢y > 0. If

0" < col|B"[12/4, (10)
then the property of S% forces
dist(£7", 55) 2 7" ||z = ¢llB" |2 = col|B"[|2 > 46" > 35", (11)
It is easily seen from (9) with j = 2 that dist(£~*, S5) > 26" and £4* ¢ S. Then {v : VL;(v) =
0} = S U S, forces
v, =} C 5 (12)

Let us investigate the curvature near S;. Lemma[2]and (9) with j = 1 allow us to take a to be
sufficiently large such that

sup HVZLA (v) — VLA () H2 <n"/2. (13)
dist(~,8;)<26m

Theorem 4] asserts that VL% (v) = 0" I if dist(, S) < 36". By this, (9) with j = 1 and (13),

VZLa(y) = (f"/2)1 it dist(y, 1) < 20" (14)
Hence L; is strongly convex in {7 : dist(y,S;) < 26"}. Combined with , it leads to
S1 = {£+*}, and both points therein are local minima.
Let v" = (0, 8"). The fact S? = {4-~"} and (8) yields

le= 111182 = 7" = ¥"ll2 = dist(v*, S7) < 5". (15)
When

ot < 118" 2/2 (16)

we have 1/2 < ¢ < 3 ﬁls claimed. The global optimality of +~* is obvious. Without loss of

generality, in Theorem 4] we can always take 6" < ||3" || min{co/3,1/2} and then find e" < m. In
that case, (3), (I0) and (I6) imply the first proposition in Theorem I}

Next, we study the second proposition in Theorem (I} Let S = S%. Given S; = {++"} and
Sy = {&~*}, from (15) we know that dist(~, {v*} U S) > 26" implies dist(~, S} U S¥) > 26",
This combined with (7)) immediately gives
IVLa()|l2 > /2 if  dist(y, {£v*} U S) > 20"

Hence the second proposition in Theorem I] holds if

e=¢c"/2  and 5 =25" (17)
Finally, we study the third proposition in Theorem [I} By (14), the first part of that proposition
holds when

n=n"/2 and  §=26" (18)
It remains to prove the second part. Lemma[2]and (9) with j = 2 allow us to take a to be sufficiently
large such that

sup  ||V2La (v) = V2LA () ||, < 0"/2. (19)
dist(v,5)<38"

Theorem [4] asserts that w V2L% (y)u < —n" for u = (0, /| p|2) if dist(~, S) < 35". By this,
©) with j = 2 and (19),

V2LA(y) < —nh/2  if  dist(y, S) < 36" (20)
Hence (I7) suffice for the second part of the third proposition to hold.

According to and (18)), Theoremholds with e = e"/2, § = 26" and n = n" /2.



E.1 Proof of Theorem [

E.1.1 Part 1: Characterization of stationary points

Note that

VLR (a,8) =E [( ;) h(a+ BTX)] + (3)

= (FCFEIN ¢ (et g x0m) * (mizres 57x))

Now we will expand individual expected values in this sum. For the first term,
En'(a+B"X)=E(a+ B 'uY +8"2Z)* ~E(a+8"nY +8'2)
=’ +3aE(B uY)? 4+ 30E(BTZ) +EB Y +8'2)° —a
— ala? +3(87 )2 + 318113 - 1],

where the first line follows since h/(z) = 2® — x, the other two follows from E(ZZ ") = I plus the
fact that Y and Z are independent, with zero odd moments due to their symmetry.

Using similar arguments,
EYHW(a+B"X)=E[Y(a+B"uY +872)*| —~E[Y(a+ 8" nY + 8" Z)]
=30°E[Y(B8'uY +B'Z)| +E[Y(B8'nY +B72)°| -8 n
=308 p+EY (8" uY)’] + 3E[Y (B pY)E[(B" 2)*] - B
= [30% + (BT ?*EY* + 383 — 1] 87 .
To work on E[Zh/ (a+ BT X)] = E[Z}W (a+ BT pY + 87 Z)], we define 3 = 3/||B||2 for B # 0

and 3 = 0 otherwise. Observe that (Y, 88" Z,(I - 387)Z) and (Y,B38" Z,—(I — B37)Z) have
exactly the same joint distribution. As a result,

E[(I-BB")ZNW (a+B"X)| =E[I—-BB")Zh (a+B"uY +8"Z)] =0.
Hence,

E[ZW (BT X)]| =E[BB" Zh (a+ 8" X)| =E[B" Zh (o + B pY + 8" 2)|3
=E[B"Z(a+B'nY +B'2)"|B-EB' Z(a+ B 'nY +8'2)3
=3a’E[BTZ(B ' uY +B"Z)B+EB"Z(B uY +8"2)°|B -8
= (3 - 1)B+3E(B'nY)’B+E[B' Z(B" 2)°8
= [3a” +3(p' B)” + M| 8|5 — 118,

where besides the arguments we have been using we also employed identities ||3]|23 = 3 and
E(y"Z)* = My for any unit-norm ~. Combining all these together, we get

VaoLk(a,B) = a(@® +3(8"pw)? +3|8|I> + A - 1), 1)
VeLi(a,B) = [3¢® + (BTp)* + 3|8113 — (1" B)u+ [3¢® + 3(n' B)* + Mz||B5 — 1](%2)

Taking second derivatives,
VaaLh(e,8) =30 +3(8" 1) + 38l + A — 1, (23)
VaaLi(a,B) = 6a[(B8" p)p + B, (24)
Vaslh(o,8) =38 )" + (30” +3(18]15 — Dpp’ +6pp’ 887
+[30® +3(u" B)* + Mz|Bl3 — UL + Bl6(n B)u +2MzB"]
= [30® +3(p' B)% + Mz||Bl5 — I + [30* +3(8" 1) + 3183 — Dpp "
+6(p' B) (BT +Bur") +2M2B8". (25)

Now that we have derived the gradient and Hessian in closed form, we will characterize the lanscape.
Let (<, 3) be an arbitrary stationary point, we start by proving that it must satisfy o = 0.



Claim 1. If A > 1 then o = 0 holds for any critical point (o, 3).

Proof. Seeking a contradiction assume that «« # 0. We start by assuming 3 = cu for some ¢ € R,
then the optimality condition Vo L% (e, 8) = 0 gives 0 < o + 3¢?|| )3 (||l +1) =1 -1 <0,
yielding a contraction.

Now, let us assume that ¢ and (3 are linearly independent, this assumption together with ZT)) and
(22)) imply that
a® +3(8"p)? + 3Bl + 1 —1=0,
30 + (8" w)* +3]18]3 — "B =0,
302 +3(p' B)% + Mz||B|3 — 1= 0. (26)
There are only two possible cases:

Case 1. If BT pu = 0, then the optimality condition for « gives o + 3||3[|3 = 1 — A < 0, which is
a contradiction.

Case 2. 1f BT # 0, then 3a% + (BT )2 + 3||B]|2 — 1 = 0 and by substracting it from ([26)) we
get 0 < 2(BT )2 + (Mz — 3)||B]|3 = 0, yielding a contradiction again.

This completes the proof of the claim. O

This claim directly implies that the Hessian V2 L?, evaluated at any critical point, is a block diagonal
matrix with V2 aL&(a, 3) = 0. Furthermore its first block is positive if 3 # 0, as

VaaLX (@, 8) =3(8"p)* +3[IBI3 +A —1> A -1>0.

To prove the results regarding second order information at the critical points, it suffices to look at
\Y% ﬁBL})f (Oz7 5 )

Following a similar strategy to the one we used for the claim, let us start by assuming that 3 and p
are linearly independent. Then, (22) yields

[(BTw)? + 3185 — (k" B) =0, 27)
3(u'B)+ Mz||B|3 - 1=0. (28)
Consider two cases:
Case 1. If 7 3 = 0, then (28) yields ||3||3 = 1/Mz and (0, B) € Sh.

Case 2. If " 3 # 0, then (27) forces (3" u)? + 3||3||2 — 1 = 0. Since M > 3, this equation
and force 3 = 0 and pu' B = 0, which leads to contradiction.

Therefore, S4\{0} is the collection of all critical points that are linearly independent of (0, y). For
any (0, 3) € Sh\ {0}, we have

VisLa(0,8) = BIBIE — Dun’ +2Mz887,
1 VagLh(0,8)p = BBIE — Dlulz = —(1 - 3/Mz)|pl:z,
w! VL0, B)u < —(1 = 3/Mz)| 3 <0, (29)
where u = (0, /|| pt||2). Hence the points in S2\{0} are strict saddles.
Now, suppose that 3 = cp and VL (0, 8) = 0. By (22),
VLY(0,8) = [(cllull3)® + Be?||pll3 — DellpliZlie + [Blellull2)® + Mze?|[plz - Len
= []|pllS + Be[[pll3 = Dllpll + 3¢ pllz + Mzc®|pl3 — Lep
= [(Ilellz + 6llell3 + Mz)llpell3e* = (I3 + Dlepe.
It is easily seen that VLY (0) = 0. If ¢ # 0, then
(lpell2 + 6]l pell3 + Mz)llel|3e* = [|all3 + 1. (30)
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Hence S} U {0} is the collection of critical points that live in span{(0, )}, and S} U S} contains
all critical points of L.

We first investigate {0}. On the one hand,
VaLh(0)=—(I+pp') <0. (31)
On the other hand,

A 1 A
L, 0) = h(a) + 5042 = 1(012 —1)% + Eon,
Volh(a,0) =0 + (A= Da=a(a? +X—1).
It follows from A > 1 that 0 is a local minimum of L} (-, 0). Thus 0 is a saddle point of L} whose
Hessian has negative eigenvalues.

Next, for (0, 3) € S, we derive from that
VipLA(0,8) = [3(cllull3)* + Mz ||pl3 — 1T + [3(cllull3)* + 3¢ pl3 — peps
+6c|pll3 - 2epp’ +2MpEpp”
= [Blleell3 + Mz)e||pll3 — UL + [(3llpllz + 15]|pl]3 + 2Mz)e® — ppe "
From (30) we see that

(3llall3 + Mz) (|13 + 1) 2|l + (Mz = 3)l|pll3

Bllelz + Mz)|plz -1 = —1= >0,
? ? 22 + 6l all3 + Mz a3 + 6l all3 + M
2 2+1
Bllill + 1513 + 2042)c* ~ 12 2l + ol + Moy -1 = 2B ED _y,
2

Hence both points in S; are local minima because

2/ pell3 + (Mz = 3)|| el

lp2ll3 + 61213 + Mz

which immediately implies global optimality and finishes the proof.

E.1.2 Part 2: Quantitative properties of the landscape

1. Lemmaimplies that we can choose a sufficiently small constant €% > 0 and a constant R > 0
correspondingly such that || VL% (v)||2 > e when ||| > R. Without loss of generality, we can
always take 6" < land R > 1+ max.egnygh [|7||2- In doing so, we have

S={v: vl <R, dist(v,Sf US}) > "} # @.
We now establish a lower bound for inf.ecs ||[VLE(7)||2. Define

SB:span{((),u),(0,,6),(1,0)}08, Vﬁl—u,
o=l [VZL ),

By symmetry, g is the same for all 3 | p. Denote this quantity by e%. Since S = Us1uSa,
inf ||VLE = inf inf |[VL} = inf eg = €.
I [IVIX()]l2 Jnf inf IVIX(l2 = jnf 2p = &3

Take any 3 L p. On the one hand, the nonnegative function ||[VL%(-)|2 is continuous and
its zeros are all in S} U SL. On the other hand, Sg is compact and non-empty. Hence ¢} =
eg > 0 and it only depends on the function L restricted to a three-dimensional subspace, i.e.
span {(0, ), (0, 3), (1,0)}. It is then straightforward to check using the quartic expression of L}
and symmetry that ¥ is completely determined by ||t||2, Mz, A and 6". From now on we write
el (8") to emphasize its dependence on 6", whose value remains to be determined.

To sum up, when 6" < 1 and e" < min{e’, e#(5")}, we have the desired result in the first claim.
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2. Given properties (29), (31) and (32) of Hessians at all critical points, it suffices to show that
IV2LY () = V2LA(2)ll2 < €'l = ell2, ¥, 72 € B(0, R) (33)
holds for some constant C’ determined by || ]|z and R. In that case, we can take sufficiently small

8" and 1" to ﬁnish the proof.
Based on ( . 24) and (25)), we first decompose V2L" () into the sum of two matrices I(+) and

_ (302 +3(8Tn)" +31IBI5+ A —1 6a[(8Tu)u+B]"
VLA () ( a(BTu)p+ 8] 302 (I+ pp') >

0 or
0 V2500 (v) = 302 (T + pp™)
=I(y)+J ().
For any v1 = (a1, 81),72 = (a2, B2) € B(0, R), we have
1 () = T (2) < [303 +3(8] ) + 31181113 — 303~ 3(8] )" — 311823

+2||6ay [(B) 1) p+ B1] — 602 [(Bs 1) 1+ B2] ],

+[3 (af — ad) (I +pp")|,-
Let A = |41 — 722 and note that [aF — a3| < 2RA, [[|B1[|5 — [|B2[l5] < 2RA, |(8] p)* -

(B3 w)?| < 2R pl3A, [la1Br — a2 < 2RA and |aq (B p) — a2(B p)| < 2R||p[24, we
immediately have

(1) = I(v2)ll2 S (L + aslly + el3) Rl = allo-

According to , J (7) depends on 3 but not . Moreover, we have the following decomposition
for its bottom right block:

[3 (178)" + Mz |B)% - 1} I+ [3 (BT1)" + (3 18II5 - 1)} pp

J1(B) J2(B)
6(p"B) (rB" +B p)+2MBBT .
J3(B) J4(B)

Similar argument gives [|J1(81) — Ji(B2)|| < ([lmll3 + Mz)RA, || J2(B1) — J2(B2)|l2 <
(lell3 + [[2ll3)RA, | J5(B1) — J3(Ba)ll2 S l3RA and [|J4(81) — Ju(B2)[l2 S MzRA. As
a result, we have

2 4
[T (1) = T (v2)ll2 S ([ellz + [lellz + Mz) Rlvi = 722
Hence we finally get (33).

E.2 Proof of Lemmalf2

By definition, VL) (v) = VLY () = E (X [f' (v"X) — &' (v" X)]). From Lemmawe obtain
that | f'(x) — h/(z)] < |2*1{jz>a} When b > 2a and a is sufficiently large. When |||z < R, we
have

IVLy () = VLY () ||, = sup E (u" X [f' (v X) =1/ (v" X)])

uesd
sup E (Ju X1y " X[ Ly x120))

ueS?

A

INE

sup E1/3|uTX’3E1/3|’7TX‘9]P’1/3(|'7TX| > a)
uesd

Cra?
sup HuTXszH'yTXHi2 exp <1 5 )
uesS? |

7T XL,
(iii) C a2
374 1
< R°M"exp (_R2 2)

LNE
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for some constant C; > 0. Here (i) uses Holder’s inequality, (ii) comes from sub-Gaussian property
(Vershynin, 2010), and (iii) uses ||[v " X ||y, < [[vl2]| X [l¢, = V]2 M, Vo € RIFL.

To study the Hessian, we start from V2Ly(y) — V2Li(%) =
E(XXT[f"(v"X)—-h"(v"X)]). Again from Lemmawe know that |f(x) — h"(z)] <
221 {z)>q}- When ||y[]2 < R, we have

[V2LA () = VLY (V) ||, = swp w ' E (XX T [f"(v"X) = 0" (v X)]) w

uesd

< sup B (JuT Xy X 17120 )
ues?

< sup ]E1/3|uTX|6E1/3|7TX|GIF’1/3(|7TX’ > a)

uesd

2
< TX 2 TX 2 . C’la
= 2l Xl Kl ( I xI?,

Cya?

29 74 1

< R“*M~ exp <_R2 2)
for some constant C; > 0.

We finally work on the lower bound for |[VLy ()| 2. From b > 2a > 4 we get f(z) = h(z) for
|z| <a; f'(z) > 0and f”(x) > 0 forall z > 1. Since f’ is odd,

- "(z) = i "(z) = i "(x) = i t o2 > -

inf zf(x) nf zf (2) nf zh (x) l;l‘ﬂgfl{w a7t > -1,

inf f(x)sn(@) = inf /(@) > £1(2) = H(2) =2 ~2=6.

Taking @ = 2, b = 1 and ¢ = 6 in Lemmal§] we get

) 12+1 13 13
ILA()ll2 > 6 inf Elu'X]| > 60 ([ X [, Amin[E(X X 1)) = 7= > 6p(M, 0%) —

uesd 712 712 712
for v # 0. Here ¢ is the function in Lemma @ If we let m = o(M,o?),
then infjy,>3/m [La(¥)[l2 > m. Follow a similar argument, we can show that

inf |, >3/m [|IL2(7)]|l2 = m also holds for the same m.

E.3 Proof of Lemma[3

o, the function

To prove the first part, we define ft = /|| pt]|2 and seek for ¢ > 0 determined by ||t
f, and the distribution of Z such that VL, (0, +cf1) = 0.

By the chain rule, for any («, 3,t) € R x R? x R we have

Ef'(a+BTX)+ Aa . Ef'(tp" X
vives = (YA vmoan = (o510

Since f is even, f’ is odd and tfi' X has symmetric distribution with respect to 0, we have
Ef'(tia" X) = 0. It follows from (I — iz ") X = (I — juja" ) Z that

(I - pa EXf'(tp" X)] =E[(I — pa")Z [ (tp" X)) =E[(I — pia ) Zf (t|p]2Y +ta' Z)).

Thanks to the independence between Y and Z as well as the spherical symmetry of Z, (Y, i" Z, (I —
e )Z)and (Y, a" Z,—(I — jaja" ) Z) share the same distribution. Then

(I-pp EXf(tp'X) =0 and  E[Xf'(tp'X)]=pp EX [/ (tp" X)].

As a result,

VLAO.t) = Bl X/ 1 X0 ()
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Define W = ﬁTX pell2Y + uTZ and ¢(t) = E[W f/(tW)] for t € R. The fact that f is even
yields f'(0) = ©(0) = E[W f'(0)] = 0. On the one hand, f”(0) < 0 forces

¢'(0) = E[W?f"(tW)]le=0 = f"(OEW? = f"(0) (|l + 1) <O0. (34)

Hence there exists ¢; > 0 such that ¢(¢1) < 0. On the other hand, lim,_, ; - 2 f'(z) = 400 leads
to lim¢—, 4 oo zp(x) = E[tW f/(tW)] = +o0. Then there exists ¢ > 0 such that ¢(t2) > 0. By the
continuity of ¢, we can find some ¢ > 0 such that ¢(¢) = 0. Consequently,

VL1 (0, cii) = p(c) (2) _o.

In addition, from

p(—c) =E[W f'(—=cW)] = —E[W f"(cW)] = —p(c) = 0

we get VL(0, —cpr) = 0. It is easily seen that ¢1, ¢2 and c are purely determined by properties of f
and W, where the latter only depends on || i4||2 and the distribution of Z. This finishes the first part.

To prove the second part, we first observe that
" (8)| = [EW3 £ (tW)]| < BEW[® = F3(372EV3|W%)? . 332 < 3%2F3M,  vVteR.
Let co = —f"(0)(||ull3 + 1)/(3*/2 F3M). In view of (34),

©'(t) < ¢'(0) + tsup " ()] < F7O)(lll3 + 1) + 32 FsMt <0, Vit € [0,¢0).

Thus ¢(t) < ¢(0) = 0 in the same interval, forcing ¢ > cg.

F Proof of Theorem 2

It suffices to prove the bound on the exceptional probability for each claim.

1. Claim 1 can be derived from Lemmad] TheoremT|and concentration of gradients within a ball
(cf. Lemmal).

Lemmad. Let { X;}" | bei.i.d. randomvectors in R with || X; ||y, < 1and B(X;X,") = oI
for some o > 0, f be defined in (8) with b > 2a > 4, and

= IS x4 STy
i=1
1

with i = - Z?zl X; and A > 0. There exist positive constants C, C1,Csy, R and €1 determined
by o such that when n/d > C,

IP’( inf  |[VLx(Y)|2 > 51> > 1 —Cy(d/n)°.

lvllz=R

Proof. See Appendix O
Let R and ¢ be the constants stated in Lemma[4] and Theorem [I] respectively. Lemma 6] asserts that
. 2 € Cad
P sup HVL,\ () — VL, (’)/)H2 < 5 >1—Cy(d/n)
~€B(0,R)

for some constant Cy, Cy > 0, provided that n/d is large enough. From Theorem we know that
IVLA(7)|l2 > ¢ if dist(y, {£y*} U S) > 4. The triangle inequality immediately gives

inf VL >¢e/2) < 1—C(d/n)%,
<72 dist(%;iw}us)zé\\ AWz > e/ ) "(d/n)
for some constants C} and C%.

2. We invoke the following Lemmal5]to prove Claim 2.
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3.

Lemma 5. Let {X;}" | be i.i.d. random vectors in R™1 with || X; ||y, < 1; u € S¢ be determin-
istic; R > 0 be a constant. Let f be defined in (@) with constants b > 2a > 4, and

- 1 & AT
Li(v) = - Z Fy X)) + 5(7TN)2
i=1
with 1 = % Z?Zl X, and A > 0. Suppose that n/d > e. There exist positive constants C1,Cs, C
and N such that whenn > N,

ia(m) -~ VL
P sup VD) =VEls (Y 5y,

Y1#Y2 ”71 *72”2

2], Ve
IP’( sup v Amz Zz*(”)'b < cmax{1,dlog(n/d)/¢ﬁ}) S 1= Oy (dfn)Cd,
Y1FY2

P s TV — VALa(lul < OVAoB/an ) > 1= Cafa/n)4 — Cre€on'"
[vll2<R

Proof. See Appendix[F2] O

From Theorem we know that u" V2L (y)u < —n if dist(v, S) < 6. Lernma (after proper
rescaling) asserts that

IP’( sup |u'[V2La(v) = VPLa(9)u| < 727) >1— Cy(d/n)®% — Cye=on'”
Ivllz<R

provided that n/d is sufficiently large. Then Claim 2 follows from the triangle’s inequality.

Claim 3 follows from Lemma 5| with proper rescaling.

F.1 Proof of Lemmad

It is shown in Lemma [2| that when b > 2a > 4, we have inf,cgzf'(z) > —1 and
inf|;>2 f'(x) sgn(x) > 6. Using an empirical version of Lemma

. 1 & 13
VL > inf — w' X;| — ——, Y~ € R%
)\(7) wesd nlz:;| Z| H'YH2 Y

Define S, (u) = 2 " | (ju” X;| — Elu' X;|) for u € S%. By the triangle inequality,

. 13
La(y) > inf Elu" X1|— sup |Sp(uw)| — 7——

Y~ € R%.
ues? ueSd [vll2’

According to Lemma@, inf,cqa E|u” X;| > ¢ for some constant ¢ > 0 determined by . Then it
suffices to prove

sup [S, (w)] = Oz(y/dlog(n/d)/n; dlog(n/d)). (35)

ueSe

We will use Theorem 1 in Wang|(2019)) to get there.

1. Since || X;||y, < 1, the Hoeffding-type inequality in Proposition 5.10 of [Vershynin| (2010) asserts

the existence of a constant ¢ > 0 such that

P(|Su(u)| > 1) <e-e~, Vi >0.

Then {S,,(u) }yesa = Op(+/dlog(n/d)/n; dlog(n/d)).

2. Lete, = +/d/n. According to Lemma 5.2 in|Vershynin| (2010), there exists an &,-net N,, of

S? with cardinality at most (1 + 2R/z,,)?. When n/d is large, log |N,,| = dlog(1 + \/n/d) <
dlog(n/d).
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3. Define M,, = Sup,,csi pesd upol|Sn(w) — Sn(v)|/[lu — vl|2}. By Cauchy-Schwarz inequality,

n n n /2
1 T 1 1 T T 2 !
- X - - <2 o)X < o)X,
EPIEIRE SIS T B S IR §j| v) X
/2
< luw—wv|2 sup ( E \wTX |2>

= |lu—vlz2- OP(L n),

where the last equality follows from Lemma[T1] Similarly,
[ElaT X1 |~ Elo” X1| < [lu — oflo[EXXT) o S llu — vl
Hence M,, = Op(1; n).

Then Theorem 1 inWang| (2019) yields (33).

F.2 Proof of Lemmal3

It follows from Example 6 in[Wang| (2019) that [[n = >"" | X; — poll2 = Op(1; n). As a result
[n=t >, X;|l2 = Op(1; n). This combined with Lemma and Lemma [11gives

IVLA () = VLA(y2) 2

sup = Op(1; n),
Y1FY2 H'Vl - '72”2
T 27 _ 27
sup [w' [V2La(v1) = VELA(y2)lul _ Ow(1; n'/3),
Y1FY2 H’Yl - '72”2
27 _ 27
sup W20 = VELsO)lla _ o a1, dlog(n/d)/v/m): dlog(n/d))
Y1FY2 ||'71 - 72||2

given F» < 3a? < 1and F3 < 6a < 1, provided that n/d is sufficiently large. It is easily
seen that there exist universal constants (c1,ca, N) € (0,+00)® and a non-decreasing function
f [e2,+00) = (0, +00) with lim,,o f(z) = oo, such that

]P)< ||VL)\(71) — VL)\(PYQ)”Q > t) < Clefnf(t)’ (36)
Y1FV2 71 —2ll2
P( wp [P La0) = VLl t) Bp—y -
Y1FV2 71 —2ll2 - o
27 _v2?j,
]P’( [VZLx(71) = V2 Lx(2)ll2 > tmax{l,dlog(n/d)/ﬁ}) < ¢re—dloe(m/dFE) — cl(d/n)df(t)
~YEY ”'71 - '72”2

(38)

as long as n > Ny and t > c¢o. We prove the first two inequalities in Lemma 5| by (36), (38) and
choosing proper constants.

Let

Xu(v) = w' [V2La(y) = V2La(y)]u = u ' [V2L(7) = V2L(7)]u,
S, = B(0,R) and m = log(n/d). We will invoke Theorem 1 in Wang| (2019) to control
Sup,es, |Xn(7v)| and prove the remaining claim.

1. By definition, X,,(vy) = 2 Y7 {(u X,)2f"(vT X;) — B[(u” X)? f”('yTXi)]} and
(" X" (v Xi)llwy < Foll(uw’ Xi)* oy S Follu’ X3, <

By the Bernstein-type inequality in Proposition 5.16 of [Vershynin|(2010), there is a constant ¢/
such that

P(|X,(7)| >t) <2 "My >0, v e RY
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When t = s\/md/n for s > 1, we have nt? = s>md > smd. Since n/d > e, we have
m = log(n/d) =log[l + (n/d—1)] <n/d—-1<n/d,
n > md and nt = sv/nmd > smd. This gives
P(|Xn(7)| = sv/md/n) < 2e~¢™ Vs> 1, v e R

Hence {X,,(7)}yes, = Op(/md/n; md).

2. Leteg,, = 2R\/d/7n. According to Lemma 5.2 in |Vershynin| (2010), there exists an ,,-net AV,
of S, with cardinality at most (1 + 2R/e,,)%. Since n/d > e, log |N,| = dlog(1 + \/n/d) <
dlog(n/d) = md.

3. I”);,(ﬁrﬁe M, = supy, 2o, {1 Xn (1) — Xo(92)|/ll71 — 72ll2}. Observe that by Lemma and

illws <1,

[u" [VZLA(71) — V2L (72)]ul < [V2L(71) = V’L(72)ll2
172 71 —2ll2 Ty [v1 —2ll2
< Fysup Elu' X° < (V3)’F; S 1.
ueSd

From this and (37) we obtain that M,, = Op(1; n'/3).
Based on these, Theorem 1|Wang|(2019) implies that

sup | X, ()] = Op(v/md/n + €,; md An'/?) = Op(y/log(n/d)d/n; dlog(n/d) An'/3).
YESn

As a result, there exist absolute constants (¢}, ch, N7) € (0, +00)3 and a non-decreasing function
g: [ch, +00) = (0,400) such that

P( Sélé) |Xn('7)| >t log(n/d)d/n> < Cllef(md/\nl/s)g(t) < Cll(efmdg(t) + e,nl/ag(t))
YEOon
< dy(d/n)?9® 4+ c'le_”l/Sg(t), Vn > Nj, t > ch.

The proof is finished by taking ¢t = ¢} and re-naming some constants above.

G Proof of Corollary I]

From Claim 1 in the second item of Theorem [2| we know that |[VLi(v)||s < & implies
dist(, {£7*} U S) < 4. On the other side, since Amin[V2L1 ()] > —7, we have v V2L; (y)v >
—n for any unit vector v. Then in view of Claim 2 of Theorem [2| we know that dist(-y, S) > 4.
Therefore we arrive at dist(y, {£v*}) < J. According to Theorem V2L1(v'") = nI so long as
dist(v/,.51) < 4. This and VL1 (v*) = 0 lead to

, a1 . 1
min sy ="l < 2 I1VE (9) = VI ()2 = 2 IV L ()]l
1, - 1,
< L IVE e+ 2V E () = VI (3)ll2- (39)

All of these hold with probability exceeding 1 — Oy (d/n)¢2? — Cy exp(—Cyn!/3).
The desired result is a product of (39) and Lemmal 6] below.
Lemma 6. For any constant R > 0, there exists a constant C' > 0 such that when n > Cd for all n,

. d n n
Vii(y)-VL =Op [\l ) dlog( 0
II'YSIEI;RH 1(7) 1 (Ml =0 ( n Og(d) Og(d)) @0
Proof. See Appendix [G.T] =
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G.1 Proof of Lemmald

Lety = (a,8), L(v) = £ i, fa+B" X)), L(y) = Ef(a+ BT X), R(v) = (o + B 1)
and R(y) = (a-+B7 po)?. Since |f(0)] = 0, sup, e | F*(2)] = I (a)+(b—a)h"(a) < 3a%b S 1
and || Xy, < M < 1, from Theorem 2 in Wang| (2019) we get

s 1920 = 71l = 0r s ()5 s (7))

Then it boils down to proving uniform convergence of |VR(y) — VR(7y)|. Let X; = (1, X,),
fro = (1, 237" X;) and fzo = (1, po). By definition,

VR(v)=(v"ho) o and  VR(y) = (v fio) fio,
Since || X; — 2oy S 1 Xilly, S 1, we know that || fig — fio ||y, < 1/4/n. In view of Example 6

~ ~

Wang| (2019) and ||po||2 < 1, we know that || 1o — poll2 = Op(y/d/nlog(n/d); dlog(n/d)) and
l&oll2 = Op(1; dlog(n/d)). As aresult,

sup ||VR (v) = VR(v) HQ < sup {|v" (o — o) | |Bolly + |7 o] 10 — foll, }
[vll2<R lvll2<R

< R|lfo — faolly ([l ftoll5 + |2oll,)
d n n
= Or ( o log () diog (d>> :

H Proof of Theorem

To prove Theorem 3] we invoke the convergence guarantees for perturbed gradiend descent in Jin
et al.[(2017).

Theorem 5 (Theorem 3 of Jin et al.{(2017)). Assume that F(-) is {-smooth and p-Hessian Lipschitz.
Then there exists an absolute constant cyax such that, for any dpga > 0, epga < 02/p, Apga >
F(vpga) —infycpa+1 F () and constant cpgq < Cmax, With probability exceeding 1—03,gq, Algorithm
[l terminates within

T
~ 22

< K[F (Ypga) — infyerats F('Y)] log? ( dlApga )
ped

2
Epgdapgd
iterations and the output v" satisfies

IVE(Y")|l, <epga  and  Amin(VPF (7)) > —/Pepga.

Let A denote this event where all of the geometric properties in Theorem 2| holds. When A happens,
L+ is ¢-smooth and p-Hessian Lipschitz with

EZMl and p—M1<1\/d10g(n/d)>

vn

Let ypga = 0 and Apgq = 1/4. Since inf.cp «ga Ly (v) > 0, we have

Apga = ffl (Yped) > [:1 (Ypga) — inf ffl () -
~YERXRE

In addition, we take 6784 = n—11 and let

©log (B) S AL A
Epgd =4/ —log (5 )] AN — A — Ae.

ped n g d p P

Here ¢ and ) are the constants defined in Theorem [2]

Recall that Mq,7,¢ =< 1. Conditioned on the event A, Theorem [5] asserts that with probability
exceeding 1 — n~'0, Algorithm E] with parameters Ypgd, £, p; Epgd, Cped, Oped» and Apgq terminates

within P2 2
n n ~(n
TS| —=——=+—log?{=) ] log* = -+ —
~ (dlog(n/d) * n 8 (d)) og (nd) O(d + n)
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iterations, and the output 4 satisfies

~ d N
IVEL D, S epea < /S log (5) and Auin(V2L1(5)) = =P = 1.

Then the desired result follows directly from P(A) > 1 — Cy(d/n) 2% — C} exp(—Cyn!/3) in
Theorem 21

I Proof of Corollary |I]

Throughout the proof we suppose that the high-probability event

2 ayes d
min s — evP ], < 1/ D1og (%)

in Theoremhappens. Write 4 = (&, 3) and v* = (a*, B*) = cyB*¥es. Without loss of generality,
assume that pg = 0, X = Iz, argmin,—.1 |9 —v*||]2 = 1 and 3" > 0. Let F be the cumulative
distribution function of Z = e{ Z.

For any v = (o, 3) with 37 > 0, we use X = uY + Z and the symmetry of Z to derive that
1 1
R(y) = 5IP’(aJrﬁT(quZ) <0) +§IED(04+ET (—p+Z)>0)

= %IF’ B'Z<—-a-B"p)+ %P (B'Z>—-a+8"p)

= 2 (<o 181~ B/ 1812)" 1) + 5 (a/ 18I, — (8/181,)" ) .

Define o = (ag, Bo) with ag = &/||Bl|2 and By = B/]|Bl2s 1 = (a1,B1) with @y = 0 and
B1 = /| p]|2- Recall that vBa¥es = ¢(0, u) for some constant ¢ > 0. We have

1 1 1 1
LP (o0 A1)~ SR~ o0 811) + 1P (00— 831) - Ll ).

R (3)-R (5% =

B Es

Using Taylor’s Theorem, ||p’|lcc < 1and ||p]l2 < 1, one can arrive at
T 2
‘E1 —p(—a1— B p) (a1 — ag + (81 — Bo) N)‘ Slvo—llzs
T
’Ez —p(ar — B p) (ag — a1 + (81 — Bo) H)‘ <o —mlla,

From a; = 0, 81 = p/||p||2 and ||p]|ec < 1 we obtain that

~

R(A) =R (v%2) < Ip(—B1 p)[~ao + (B1 — Bo) " Bl + (=B w)lao + (Br — Bo) " k| + |0 — 3

T 2
S 1B =Bo) Bl + v —mllz-
Since By and 3; are unit vectors,

181 — Boll3 = l1Boll3 — 280 B1 + 181113 = 2(1 — By B1) = 2(B1 — Bo) ' Bu,
R(F) — R (Y*%) <181 — Boll3 + o — 7113 S lvo — I3 (41)

Note that |3 — 8*|l2 < | — v*|l2 < v/d/nlog(n/d) and ||3*|2 = 1. When n/d is sufficiently

large, we have || 3|2 = 1 and

181 = Bolly = [|8/118ll2 = B/ 18|, < [[18*1l 8 — 1818,
<181l = I812/[18]l, + 18112]|8 = 8|, < 1B - B*,-
In addition, we also have |ag — 1| = || = |@|/||Bll2 < |&] = |&—a*|. Asaresult, ||vo —1l2 <

& —a*|+ |81 — Boll2 S |9 — *||2- Plugging these bounds into (1), we get

R3) - RO S5-I < S1os (1),

n
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J Technical lemmas

Lemma 7. Let X be a random vector in R4T! with B|| X ||3 < co. Then

sup E(ju' X|?lv" X|) = sup Elu' X°.
ues?

w,veSd

Proof. Itis easily seen that sup,, ,cge E(Ju X[?|v" X|) > sup,cs EluT X|3. To prove the other
direction, we first use Cauchy-Schwarz inequality to get

E(lu XPlo" X)) = E[lu" X2 (lu X|?0 T X)) < EV2[u” X*-EV2(ju" X| - [0 X?).
By taking suprema we prove the claim. O
Lemma 8. Let X be a random vector in R and f € C*(R). Suppose that E|| X||3 < o,
sup,cp | [ (x)| = F» < oo and f" is Fs-Lipschitz. Define i = EX. Then

La(y) =Ef(v"X) + Ay )*/2
exists for all v € R and X\ > 0, and

L - VL
sup IVE20) = VINR)ll2 gy oy g X2 4 A,
Y1FV2 H’Yl —72ll2 ues?

T 2L _ 2L
Sup |U [v )\(’71) v )\(’72)]“| g F3 Sup ]E[(UTX)2|/UTX|]7 vu 6 Sd—l’
Y1#Y2 H’Yl - 72”2 vesd
2L — V2L
IVLa() = L)l _ xS
Y1FY2 ||’Yl - '72”2 u€eSd

In addition, if there exist nonnegative numbers a,b and ¢ such that inf,cg xf' () > —b and
inf|, >, f'(2) sgn(z) > c, then

ac+b
[[vll2
Proof. Let L(v) = Ef(y"X) and R(v) = (y"@)?/2. Since Ly = L + AR, V?L(y) =
EXXTf"(v"X)]and V’R(v) = ppa ',

[IVLA(1) = VLa(y2)]l2

IVEA()lz > ¢ inf Blu” X[ - 220 vy 20,
u€eS?

= sup |[|[V2La(y)|la= sup sup u' VZLy(7)u

Y1F#Y2 ”71 - 72 HQ ~yERA+1 ~YERI+L 484
< Fy sup E(u” X)? + Mal
uesS?

For any u € sS4,
[u [V2La(m1) = V2La(y2)]ul = [E[(u X)?f" (v, X)] — E[(u X)?f" (5 X)|
<E[(u” X)?|f" (v X) = f"(72 X)]]
< FE[(u' X)?|(v1 —72) " X
< Fsllvi — 2ll2 sup E[(u" X))o X|].

As a result,
sup IV2La(h) = V2Ea(yo)ll2 _ o SWPuesa (4 [V2La(y1) = V2La(72)]ul
Y1FY2 ”71 - 72”2 Y1#Y2 H'71 - 72”2
Tro2 2
V=L — V<L
v s [TV L) = VL ()l
uES? y1#£72 ||71 - '72”2
< sup {F3 sup E[(u' X)?[v" X[]} = F3 sup Elu’ X%,
ueSd vese u€esd
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where the last equality follows from Lemmal[7}
We finally come to the lower bound on ||V Ly (y)||2. Note that |V Lx(7)|l2llvll2 > (v, VLA(7)).

VL(y) = E[Xf'(XT~)] and VR(y) = (y" ). The condition inf|,>, f'(z)sgn(z) > ¢
implies that 2 f’(x) > c|z| when |z| > a. By this and inf,cg x f'(z) > —b,
(v, VL(7)) = E[X "7 f (X)) = EIX Ty f" (X )1 x 720} + EX T (X TY)1(1x7 4 <a)]
> E(1X "Y1 x7a)) — b= cEIX T = E(|X T[1{x7~|<a}) — b
> E|X Ty| — (ac+b) > ||v]2c inSde|uTX\ — (ac+0).
ue

In addition, we also have (v, VR(v)) = (v j1)? > 0. Then the lower bound directly follows. [

Lemma 9. There exists a continuous function ¢ : (0, +00)? — (0, +00) that is non-increasing in the
first argument and non-decreasing in the second argument, such that for any nonzero sub-Gaussian
random variable X, E|X| > o(|| X | y,, EX?).

Proof. Foranyt > 0,
EIX| > E(IX[1{x<sy) <tT'E(X*Lyxj<py) =t [EX? — E(X?1qx)0)]-

By Cauchy-Schwarz inequality and the sub-Gaussian property (Vershynin,2010), there exist constants
C4,Cy > 0 such that

E(X?1gx>n) <EYV2XT PV2(X| > t) < 01||X||3b2e*02t2/|\><\|‘:‘02.

By taking o(|| X ||y,, EX?) = sup,» ot H(EX? — C) \\X||i26_02t2/”X”5’2) we finish the proof, as
the required monotonicity is obvious. O

Lemma 10. Let {X,;i},>1,icn) be an array of random variables where for any n, {X,i}i_,
are i.i.d. sub-Gaussian random variables with || X 1]y, < 1. Fix some constant a > 2, define
Sy =150 | Xni|® and let {r,,}32, be a deterministic sequence satisfying logn < r, < n. We
have

Sp — B[ Xp1|* = Op(r® D72 ) \/n: 1),
Sp = Op(max{1, Tﬁla_l)/z/\/ﬁ}; ).

Proof. Define R,,; = t\/r,, and S, = %Z?:l | Xnil“1qx,,) <Ry} fOrn,t > 1. Forany p > 1, we
have 2p > 2 > 1 and (2p) ~/2EY(P)|X,,;|?P < || X, |4, < 1. Hence

E(| X il LX< e })” = (X0 L1500 < e y) = E(X0i| 1 X0il 2P x,0 < R y)
< B Xni PRVP < [(20)Y2)| X il P RGP < (2pR2;2)P

and || Xi |11 x,,1< Rt lor < 2R, By the Bernstein-type inequality in Proposition 5.16 of
Vershynin|(2010), there exists a constant ¢ such that

82 S

I
— —2
S

IP’(|Snt—ESm28)§2exp{—cn( )}, Vvt >0, s> 0. (42)

Take t > 1and s = t* 17"~ /2 / /n. We have

tafl 7(1‘1_1)/2
s r //n _y Tn/m

C TR

52 s t2r,, A t\/Tn > try,

N = ,
R2la—2) " pa-2 n vn n

nt

where the last inequality is due to r,, /n < 1 < t. By (42),
P(|Spt — ESy| > to (e~ D/2 ) /n) < 2e7c™t Wt > 1. (43)
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0 < ESp —ESn = E(IX1 "L x stvimy) < EV2 X1 22 PY2(| X0 | > ty/Fn) < Cre= @20
holds for all ¢ > 0. Since 7, > logn, there exists a constant C' > 0 such that Cre=C2t'rn <
t“ilrgla_l)/z/\/ﬁ as long as t > C. Hence forces
P(|Spt — ES,,| > 2t 1r@=D/2 1 /) < P(|Spy — ESni| 4 [ESyy — ES,| > 26471 (e=D/2 ) /)

< P(|Sny — ESpy| > t¢7ra=D/2 ) /p) < 2¢7cnt Wt > C.

By Cauchy-Schwarz inequality and || X1 ||, < 1, there exist Cy,C2 > 0 such that

Note that
P(|S,, — ES,| > 2t~ 1r{e=1/2/\/n) (44)
<P(ISy — ES,| > 2t~ /i, S, = Spy) +P(Sn # Sne)
< P(|Snt — BSn| > 2qt* v~ D/2 /\/n) + P(S, # Sne)

< 2t 4 P (mf?)]c | X ni| > tﬁ) , vt > C. (45)
i€n

Since || Xy, < 1, there exist constants C7, C4 > 0 such that
P(| X, >t) < Cle %, Yn>1i€[n], t>0.
By union bounds,
P (m[a}]( |an| S ¢ T’n) < nC{e_C§t2T” _ Cielogn—c’étzrﬂ’ vt > 0.
i€n
When t > /2/C%, we have C4t?r,, > 2r,, > 2logn and thus logn — C4t%r,, < —C4tr,, /2. Then

(@3) leads to

P(|S, — ES,| > 2t 1r(e=1/2 ) /) < 2=t 4 Cle=Cernt®/2 gt > OV 4 /2/Ch.

This shows S,, — E|X,,;]* = S, — ES, = O]p(r%a_l)ﬂ/\/ﬁ; 7). The proof is finished by
E‘an‘a g 1. O

Lemma 11. Suppose that {X;}?_,; C R are independent random vectors, max;e ) || Xy, < 1
and n > md > logn for some m > 1. We have

T
sup — Y Ju X;|* = Op(1; n),
uesd 1 i—1

1 n
sup — E (v X;)?u" X, = Op(1; nt/3), vu € §%

an
u€eS i=1

sup 1 Z lu" X; > = Op (max{1, md/y/n}; md).

an
ues i=1

Proof. From 271/2EY2(4 " X)? < ||u" X||y, < 1, Vu € S? we get E(XXT) < 2I. Since
n > d + 1, Remark 5.40 in|Vershynin| (2010)) asserts that

sup 1 i |'uTXi|2 = HTIL inXlT
i=1

an
u€eS i=1

<
2

1 n
~Y XiX[-E(XXT)| +[E(XX )|l = Os(1; n).
i=1 2

For any u, v € S¢, the Cauchy-Schwarz inequality forces

L~ T g2 T Lq~, Ty V21
= X Xi| <= X -
ST X < (3w x) (]

i=1

n

1/2
(’U,TXZ‘)Q) s

i=1

K2

n 1/2
sup lZ(vTXi)Q\uTXiI < <:L (vTXi)4> Os(1; n).

n
an
u€es i=1 =

1
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Since {v'X;}? , are ii.d. sub-Gaussian random Varlables and [[v" Xy, < 1, Lemma
with @ = 4 and r, = n'/3 yields 23" (v7X;)* = Op(1l; n'/3). Hence
SUPyesd %Z?:l(UTXi)zmTXA = Op(1; n'/?).

To prove the last equation in Lemma define Z; = X; —EX;. From || Z; ||y, = | Xi —EXi||y, <
2| Xy, < 2we getsupyesa = iy [u' Zi|? = Op(1; n). Foru € ¢,

" XiP = [uT Zi? + (Ju” Xi| = [u" Zi|)(Ju" X + [u” Xl - [ Zi] + |u” Zi]?)
<lu' Zif + [u' (X = Zo)|(lu" X + [u" Xl - Ju' Z] + Ju" Z,?)
. 3 3
<[ Zi + [ EXG| - Sl X 4wl Z) < ful ZiP 4 Sl X+ ul Z)),
where the last inequality is due to |u "EX;| < |[EX;|l2 < || Xy, < 1. Hence

sup — Z lu’ X, < sup — Z lu' Z;> + Op(1; n). (46)
ues?

n
uest T

Define S(u

)=+ 3" |uT Z;]? for u € S%. We will invoke Theorem 1 inWang|(2019) to control
SUP,esa S(u).

1. Forany u € S%, {u'Z;}? ; arei.i.d. and |[u' Z;|4, < 1. Lemmawith a=3andr, =md
yields

{S(u)}uese = Op(max{1,md/v/n}; md).

2. According to Lemma 5.2 in [Vershynin| (2010), for ¢ = 1/6 there exists an e-net N of S with
cardinality at most (1 4 2/¢)¢ = 13%. Hence log | V| < md.

3. Forany z,y € R, we have ||z| — |y|| < |z —y

3
[l2” = Iyl < [l = [yll & + |2y| +9*) < Slo = yl(@® + 7).

Hence for any u, v € S¢,

1 n
St~ S)] < 3" W72 - T2 < ;- Zl Z|(ju" Z: + |o" Z:)
=1
1 n
<Blu—vl s L3l Z] - fw] Zi = _u - ol sup S(w).
wi, w2 €S n’i:l weSd

where the last inequality follows from ¢ = 1/6 and Lemma

Theorem 1 inWang|(2019) then asserts that sup,,cg« S(u) = Op(max{1, md//n}; md). We finish
the proof using (@0). O
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