
A Omitted Proofs

A.1 Proof of Lemma 3.2

For part 1, we have

kEXEgf(gX)� EXf(X)k2 = sup
kvk21

EgEXhv, f(gX)� EXf(X)i

 sup
kvk21

Egkvk2W1(f(gX), f(X))

= EgW1(f(gX), f(X)),

where the inequality is due to Kantorovich-Rubinstein theorem, i.e., the dual representation of the
W1 metric (see. e.g., [68]).

For part 2, by law of total variance, we have

CovX f̄(X)� CovXf(X) = �EXCovgf(gX) +�1 +�2,

where

�1 = E(X,g)f(gX)f(gX)> � EXf(X)f(X)>

�2 = EXf(X)EXf(X)> � E(X,g)f(gX)E(X,g)f(gX)>

For any non-zero vector v, we have

|v>�1v| =

����EgEX


hv, f(gX)i2 � hv, f(X)i2

�����

 Eg

����EX


hv, f(gX)i2 � hv, f(X)i2

�����.

The Lipschitz constant for the function w 7! hv, wi2, where w 2 Range(f), is bounded above by
2kvk22kfk1. Invoking Kantorovich-Rubinstein theorem again, we have

|v>�1v|  2kvk22kfk1EgW1(f(gX), f(X)).

Similarly, we have

|v>�2v| =

����

✓
EXhv, f(X)i

◆2

�

✓
E(X,g)hv, f(gX)i

◆2����

 2kfk1

����EgEX


hv, f(X)i � hv, f(gX)i

�����

 2kfk1Eg

����EX


hv, f(X)i � hv, f(gX)i

�����

 2kvk22kfk1EgW1(f(gX), f(X)).

Part 2 is then proved by recalling the definition of the Loewner order.

For part 3, we have

EX'(f̄(X))� EX'(f(X)) = EX'(f̄(X))� EX
¯' � f(X) + EgEX' � f(gX)� EX'(f(X)).

We finish the proof by noting that
����EgEX' � f(gX)� EX'(f(X))

����  k'kLipW1(f(gX), f(X)).

A.2 Proof of Proposition 3.3

For notational simplicity, we let f̄ = ✓̂G and f = ✓̂. Then using bias-variance decomposition, we
have

MSE(f̄)� MSE(f) = B + V,
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where

B = kBias(f̄)k22 � kBias(f)k22
V = tr(CovX f̄(X))� tr(CovXf(X)).

We first analyze the bias term. Note that by Lemma 4.2, we have
����kBias(f̄)k2 � kBias(f)k2

����  kEX f̄(X)� EXf(X)k2

 EgW1(f(gX), f(X)).

Hence

|B| 

✓
kBias(f̄)k2 + kBias(f)k2

◆����kBias(f̄)k2 � kBias(f)k2

����



✓
kEX f̄(X)� EXf(X)k2 + 2kBias(f)k2

◆
· kEX f̄(X)� EXf(X)k2



✓
EGW1(f(gX), f(X)) + 2kBias(f)k2

◆
· EgW1(f(gX), f(X)).

The variance term V can be bounded by the following arguments. We have

| tr(�1)| =

����EgEX


kf(gX)k22 � kf(X)k22

�����

 2kfk1Eg

����EX


kf(gX)k2 � kf(X)k2

�����

 2kfk1EgW1(f(gX), f(X)).

Similarly, we have

| tr(�2)| =

����kEXf(X)k22 � kEX,gf(gX)k22

����

 2kfk1

����kEXf(X)k2 � kEX,gf(gX)k2

����

 2kfk1kEXf(X)� EX f̄(X)k2
 2kfk1EgW1(f(gX), f(X)),

where the last inequality is due to Lemma 3.2.

Combining the bound for B and V gives the desired result.

A.3 Proof of Theorem 3.4

We first prove a useful lemma.
Lemma A.1 (Triangle inequality/Tensorization). For two random vectors (X1, ..., Xn), (Y1,
..., Yn) 2 X

n
, we denote the joint laws as µn, ⌫n respectively, and the marginal laws as {µi}

n
1 , {⌫i}

n
1

respectively. We have

Wdn(µn, ⌫n) 
X

i

Wd(µi, ⌫i).

Proof. By Kantorovich duality (see, e.g., [68]), for each coordinate, we can choose optimal couplings
(X⇤

i , Y
⇤
i ) 2 ⇧(µi, ⌫i) s.t. Wd(Xi, Yi) = Ed(X⇤

i , Y
⇤
i ). We then conclude that proof by noting that

({X⇤
i }

n
1 , {Y

⇤
i }

n
1 ) 2 ⇧(µn, ⌫n).

Now we are ready to give the proof. We will do the proof for a general metric d. The desired result is
a special case when d is the Euclidean metric. We start by doing the following decomposition

EL(✓̂G, X)� EL(✓0, X) = I + II + III + IV + V,

15



where

I = EL(✓̂G, X)� EEGL(✓̂G, gX)

II = EEGL(✓̂G, gX)�
1

n

nX

i=1

EGL(✓̂G, gXi)

III =
1

n

nX

i=1

EGL(✓̂G, gXi)�
1

n

nX

i=1

EGL(✓0, gXi)

IV =
1

n

nX

i=1

EGL(✓0, gXi)� EEGL(✓0, gX)

V = EEGL(✓0, gX)� EL(✓0, X).

By construction, we have III  0 and

II  sup
✓2⇥

����
1

n

nX

i=1

EGL(✓, gXi)� EEGL(✓, gX)

����.

Moreover, we have

I + V  2 sup
✓2⇥

����EL(✓, X)� EEGL(✓, gX)

����,

which is equal to zero under exact invariance gX =d X .

The term II + IV is taken care of by essentially the same arguments as the proof for ✓̂n. One uses
concentration to bound IV and uses Rademacher complexity to bound II. These arguments give

II + IV  2Rn(L̄ �⇥) +

r
2 log 2/�

n

w.p. at least 1� �, where

Rn(L̄ �⇥) = E sup
✓2⇥

����
1

n

nX

i=1

"iEGL(✓, gXi)

����.

Now we have

Rn(L̄ �⇥)�Rn(L �⇥)  �+ Eg


E sup

✓2⇥

����
1

n

nX

i=1

"iL(✓, gXi)

����� E sup
✓2⇥

����
1

n

nX

i=1

"iL(✓, Xi)

����

�
,

where we recall

� = E sup
✓

|
1

n

nX

i=1

"iEgL(✓, gXi)|� EEg sup
✓2⇥

|
1

n
"iL(✓, gXi)|  0

by Jensen’s inequality.

By our assumption, for any x, x̃ 2 X , ✓ 2 ⇥, we have

L(✓, x)� L(✓, x̃)  kLkLip · d(x, x̃)

for some constant kLkLip. For a fixed vector ("1, ..., "n), consider the function

h : (x1, ..., xn) 7! sup
✓2⇥

����
1

n

nX

i=1

"iL(✓, xi)

����.

We have

|h(x1, ..., xn)� h(y1, ..., yn)| 
1

n
sup
✓2⇥

����
nX

i=1

"iL(✓, xi)� "iL(✓, yi)

����


1

n
kLkLip ·

X

i

d(xi, yi).
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That is, the function h : Xn
! R is (kLkLip/n)-Lipschitz w.r.t. the l.s.c. metric dn, defined by

dn({xi}
n
1 , {yi}

n
1 ) =

P
i d(xi, yi). Applying the tensorization lemma and Kantorovich-Rubinstein

theorem, for arbitrary random vectors (X1, ..., Xn) and (Y1, ..., Yn), we have

|Eh(X1, ..., Xn)� h(Y1, ..., Yn)| 
1

n
kLkLip · Wdn(µn, ⌫n)


1

n
kLkLip ·

nX

i=1

Wd(Xi, Yi).

Hence we arrive at

Rn(L̄ �⇥)�Rn(L �⇥)  �+ kLkLip ·
1

n

X

i

EgWd(Xi, gXi)

= kLkLip · EgWd(X, gX).

Summarizing the above computations, we have

II + IV  2Rn(L �⇥) + 2kLkLip · EGWd(X, gX) +

r
2 log 2/�

n

w.p. at least 1� �.

We now bound I + V. We have

I + V  2 sup
✓2⇥

����EL(✓, X)� EEGL(✓, gX)

����

 2 sup
✓2⇥

EG

����EL(✓, X)� EL(✓, gX)

����

 2kLkLip · Wd(X, gX).

Combining the bounds for the five terms gives the desired result.

A.3.1 The Redemacher Bound for ✓̂n

The results concerning ✓̂n is classical. We present a proof here for completeness. We recall the
classical approach of decomposing the generalization error into terms that can be bounded via
concentration and Rademacher complexity [7, 60]:

EL(✓̂n, X)� EL(✓0, X) = EL(✓̂n, X)�
1

n

nX

i=1

L(✓̂n, Xi) +
1

n

nX

i=1

L(✓̂n, Xi)� EL(✓0, X).

Hence we arrive at

EL(✓̂n, X)� EL(✓0, X)  EL(✓̂n, X)�
1

n

nX

i=1

L(✓̂n, Xi) +
1

n

nX

i=1

L(✓0, Xi)� EL(✓0, X)

 sup
✓2⇥

����
1

n

nX

i=1

L(✓, Xi)� EL(✓, X)

����+
✓
1

n

nX

i=1

L(✓0, Xi)� EL(✓0, X)

◆
,

where the first inequality is because ✓̂n is a minimizer of the empirical risk. By McDiarmid’s
inequality, we have

P( 1
n

nX

i=1

L(✓0, Xi)� EL(✓0, X) > t)  exp{�2nt2}.

So w.p. at least 1� �/2, we have

1

n

nX

i=1

L(✓0, Xi)� EL(✓0, X) 

r
log 2/�

2n
.
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It remains to control

sup
✓2⇥

����
1

n

nX

i=1

L(✓, Xi)� EL(✓, X)

����.

We bound the above quantity using Rademacher complexity. The arguments are standard and can be
found in many textbooks (see, e.g., [60]). Since we’ve assumed L(✓, x) 2 [0, 1], for two data sets
{Xi}

n
1 and {X̃i}

n
1 which only differ in the i-th coordinate, we have

sup
✓2⇥

����
1

n

nX

i=1

L(✓, Xi)� EL(✓, X)

����� sup
✓2⇥

����
1

n

nX

i=1

L(✓, X̃i)� EL(✓, X)

����


1

n
sup
✓2⇥

|L(✓, Xi)� L(✓, X̃i)| 
1

n
.

By McDiarmid’s inequality, we have

P
✓
sup
✓2⇥

����
1

n

nX

i=1

L(✓, Xi)� EL(✓, X)

����� E

sup
✓2⇥

����
1

n

nX

i=1

L(✓, Xi)� EL(✓, X)

����

�
� t

◆
 exp{�2nt2}.

It follows that w.p. 1� �/2, we have

sup
✓2⇥

����
1

n

nX

i=1

L(✓, Xi)� EL(✓, X)

����� E

sup
✓2⇥

����
1

n

nX

i=1

L(✓, Xi)� EL(✓, X)

����

�


r
log 2/�

2n
.

A standard symmetrization argument then shows that

E

sup
✓2⇥

����
1

n

nX

i=1

L(✓, Xi)� EL(✓, X)

����

�
 2Rn(L �⇥),

where the Rademacher complexity of the function class L �⇥ = {x 7! L(✓, x) : ✓ 2 ⇥} is defined
as

Rn(L �⇥) = E sup
✓2⇥

����
1

n

nX

i=1

"iL(✓, Xi)

����,

where the expectation is taken over both the data and IID Rademacher random variables "i, which are
independent of the data. Summarizing the above computations (along with a union bound) finishes
the proof for ✓̂n.

A.4 Proof of Theorem 3.5

We will do the proof with a general metric d. Recall that

✓G = argmin
✓2⇥

EEgL(✓, gX).

By our assumptions, we can apply Theorem 5.23 of [66] to obtain the Bahadur representation:

p
n(✓̂G � ✓G) =

1
p
n
V �1
G

nX

i=1

rEGL(✓0, gXi) + op(1),

so that we get

p
n(✓̂G � ✓G) ) N

✓
0, V �1

G E

rEGL(✓G, gX)(EGrL(✓G, gX))>

�
V �1
G

◆
.

To simplify notations, we let

C0 = CovX(rL(✓0, X)), CG = CovX(rEgL(✓G, gX)).

By bias-variance decomposition, we have

MSE0 = n�1 tr(V �1
0 C0V

�1
0 )

MSEG = n�1 tr(V �1
G CGV

�1
G ) + k✓G � ✓0k

2.
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We have

tr(V �1
G CGV

�1
G )� tr(V �1

0 C0V
�1
0 ) = hCG, V

�2
G i � hC0, V

�2
0 i

= hCG � C0 + C0, V
�2
G i � hC0, V

�2
0 i

= hCG � C0, V
�2
G i+ hC0, V

�2
G � V �2

0 i.

We let M0(X) = rL(✓0, X)rL(✓0, X)> and MG(X) = rL(✓G, X)rL(✓G, X)>. Then we have

CG � C0 = CG � EXMG(X) + EXMG(X)� C0

=

✓
CG � EXEgMG(gX)

◆
+ EgEX


MG(gX)�MG(X)

�
+ EX


MG(X)�M0(X)

�

= �EXCovg(rL(✓G, gX)) + EGEX


MG(gX)�MG(X)

�
+ EX


MG(X)�M0(X)

�
.

Hence we arrive at

n(MSEG � MSE0) = �

⌧
EXCovG(rL(✓G, gX)), V �2

G

�
+ I + II + III + IV,

where

I = nk✓G � ✓0k
2

II = EGEX

⌧
MG(gX)�MG(X), V �2

G

�

III = EX

⌧
MG(X)�M0(X), V �2

G

�

IV = hC0, V
�2
G � V �2

0 i,

and this is the desired result.

A.5 Proof of Theorem 3.6

We seek to control the misclassification error of the two-layer net at step k. By Markov’s inequality,
for a new sample (X,Y ) from the data distribution, we have

P(Y f(x;Wk, a)  0) = P
✓

1

1 + eY f(X;Wk,a)
�

1

2

◆

 2E

� `0(Y f(X;Wk, a))

�
.

The population quantity in the RHS is decomposed by

E

� `0(Y f(X;Wk, a))

�
= I + II,

where
I =

1

n

X

i2[n]

Eg


� `0(Yifi,g(Wk))

�

and

II = E

� `0(Y f(X;Wk, a))

�
�

1

n

X

i2[n]

Eg


� `0(Yifi,g(Wk))

�

The first term (optimization error) is controlled by calculations based on the Neural Tangent Kernel.
The second term (generalization error) is controlled via Rademacher complexity.

We first control the first term (optimization error). In fact, everything is set up so that we can directly
invoke Theorem 2.2 of [40]. We note that their result holds for any fixed dataset and there is no
independence assumption. This gives the following result:
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Proposition A.2. Given " 2 (0, 1), � 2 (0, 1/3). Let

� =

p
2 log(4n|G|/�) + log(4/")

�/4
, M =

4096�2

�6
.

For any m � M and any constant step size ⌘  1, w.p. 1 � 3� over the random initialization, we

have
1

T

X

t<T

R̄n(Wt)  ", T = d2�2/(n")e.

Moreover, for any 0  t < T and any 1  s  m, we have

kws,t � ws,0k2 
4�

�
p
m
,

where ws,t is the s-th row of the weight matrix at step t.

Proof. This is a direct corollary of Theorem 2.2 in [40].

Assume the above event happens. Since we’ve chosen k to be the best iteration (with the lowest
empirical loss) in the first T steps. Then with the same probability as above, we have R̄n(Wk)  ".
Now, let us note that the logistic loss satisfies the following fundamental self-consistency bound:
�`0  `. This shows that if the loss is small, then the magnitude of the derivative is also small. Thus
on the same event, we have that the term I is also bounded,

I  R̄n(Wk)  ".

We then control the second term (generalization error). The calculations below are similar to the
proof of Theorem 4.4. We begin by decomposing

II = II.1 + II.2,

where

II.1 = E

� `0(Y f(X;Wk, a))

�
� EEg


� `0(Y f(gX;Wk, a))

�

and

II.2 = EEg


� `0(Y f(gX;Wk, a))

�
�

1

n

X

i2[n]

Eg


� `0(Yif(gXi;Wk, a))

�
.

We control term II.1 by exploiting the closedness between the distribution of (X,Y ) and that of
(gX, Y ). Note that the Lipschitz constant of the map x 7! �`0(yf(x;Wk, a)) (w.r.t. the Euclidean
metric on Rd) can be computed by:

|`0(yf(x;Wk, a))� `0(yf(x̃;Wk, a))|


1

4
|f(x;Wk, a)� f(x̃;Wk, a)|

=
1

4

����
1

p
m

X

s2[m]

�(w>
s,kx)�

1
p
m

X

s2[m]

�(w>
s,kx̃)

����


1

4

1
p
m

X

s2[m]

|w>
s,k(x� x̃)|


1

4

1
p
m

X

s2[m]

kws,kk2kx� x̃k2


1

4

1
p
m

X

s2[m]

(kws,0k2 + kws,0 � ws,kk2)kx� x̃k2


1

4

✓
⇢
p
m+

1
p
m

X

s2[m]

kws,0k2

◆
kx� x̃k2,
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where ⇢ = 4�
�
p
m

and the last inequality is by Proposition A.2. Note that each kws,0k2 is 1-subgaussian
as a 1-Lipschitz function of a Gaussian random vector (for example, by Theorem 2.1.12 of [64]), so
that

P
✓

1
p
m

X

s2[m]

kws,0k2 � E


1
p
m

X

s2[m]

kws,0k2

�
� t

◆
 e�t2/2.

Hence w.p. at least 1� �, we have

1
p
m

X

s2[m]

kws,0k2  E


1
p
m

X

s2[m]

kws,0k2

�
+

r
2 log

1

�


1

p
m

X

s2[m]

q
Ekws,0k

2
2 +

r
2 log

1

�

=
p

md+
p

2 log 1/�.

So w.p. at least 1� �, the Lipschitz constant of the map x 7! �`0(yf(x;Wk, a)) is bounded above
by

1

4

✓
4�

�
+
p

md+
p
2 log 1/�

◆
.

Assume the above event happens (along with the previous event, the overall event happens w.p. at
least 1� 4�). This information allows us to exploit the closeness between X|Y and gX|Y . We have

II.1 = EY Eg⇠Q


EX|Y [�`0(Y f(X;Wk, a))]

� EgX|Y [�`0(Y f(gX;Wk, a))]

�

 EY Eg⇠Q


1

4

✓
4�

�
+

p

md+
p

2 log 1/�

◆
· W1(X|Y, gX|Y )

�

=
1

4

✓
4�

�
+
p

md+
p
2 log 1/�

◆
· EY Eg⇠QW1(X|Y, gX|Y ),

where we let X|Y to denote the conditional distribution of X given Y , and the inequality is by the
dual representation of the Wasserstein distance. Note that under exact invariance, II.1 = 0.

The term II.2 is controlled by standard results on Rademacher complexity. Indeed, by the same
arguments as in the proof of Theorem 6.4 of the main manuscript, w.p. at least 1� �, we have

II.2  2R̄n +

r
log 2/�

2n
.

Taking a union bound (now w.p. at least 1� 5�), we have proved the generalization error bound.

Finally, we prove the bound on R̄n�Rn. Under exact invariance, Jensen’s inequality gives R̄n  Rn.
However, under approximate invariance, we have an extra bias term. We have

R̄n �Rn = �+ EEg sup
W2W⇢

����
1

n
"i


� `0(Yifi,g(W ))

������Rn.

where

� = E sup
W2W⇢

����
1

n
"iEg


� `0(Yifi,g(W ))

������ EEg sup
W2W⇢

����
1

n
"i


� `0(Yifi,g(W ))

�����  0

by Jensen’s inequality. Now by the computations when bounding term II.1 and the arguments in the
proof of Theorem 4.4, we have

EEg sup
W2W⇢

����
1

n
"i


� `0(Yifi,g(W ))

������Rn 
1

4

✓
4�

�
+

p

md+
p

2 log 1/�

◆

· EY Eg⇠QW1(X|Y, gX|Y )

w.p. at least 1� �. Combining the above bounds finishes the proof.

21



A.6 Proof of Theorem 4.1

We first present two useful lemmas. The first one can is essentially Lemma 3.2 under exact invariance:
Lemma A.3 (Invariance lemma). In the setting of Lemma 3.2, assume exact invariance holds. Then

1. For any x, f̄(x) is the conditional expectation of f(X), conditional on the orbit: f̄(x) =
E[f(X)|X 2 Gx], where Gx := {gx : g 2 G};

2. Therefore, by the law of total expectation, the mean of f̄(X) and f(X) coincide: EX⇠Pf(X) =
EX⇠Pf̄(X);

3. By the law of total covariance, the covariance of f(X) can be decomposed as CovX⇠Pf(X) =
CovX⇠Pf̄(X) + EX⇠PCovg⇠Qf(gX);

4. Let ' be any real-valued convex function. Then EX⇠P['(f(X))] � EX⇠P['(f̄(X))].

Proof. We first prove part 1. Let x be fixed. Let A = {X 2 Gx}. It suffices to show
Z

A
Egf(gx)dP(X) =

Z

A
f(X)dP(X).

For an arbitrary g 2 G, the RHS above is equal to
Z

A
f(X)dP(X) =

Z
f(gX) {gX 2 Gx}dP(X) =

Z
f(gX) {X 2 Gx}dP(X),

where the first equality is by the exact invariance, and the second equality is by the definition of the
orbit. Taking expectation w.r.t. Q, we get

Z

A
f(X)dP(X) =

Z

G

Z
f(gX) {X 2 Gx}dP(X)dQ(g).

On the event A, there exists g⇤X , potentially depending on X , s.t. X = g⇤Xx. Hence, we have
Z

A
f(X)dP(X) =

Z

G

Z
f(g � g⇤Xx) {X 2 Gx}dP(X)dQ(g)

=

Z Z

G
f(g � g⇤Xx)dQ(g) {X 2 Gx}dP(X)

=

Z Z

G
f(gx)dQ(g) {X 2 Gx}dP(X)

=

Z

A
Egf(gx)dP(X),

where the second equality is by Fubini’s theorem, and the third inequality is due to the translation
invariant property of the Haar measure.

Part 2 follows by law of total expectation along with the above point.

Part 3 follows directly from part 1 and the law of the total covariance applied to the random variable
f(gX), where g ⇠ Q, X ⇠ P.

Part 4 follows from Jensen’s inequality.

The next lemma says that if Assumptions A and B hold for the pair (✓0, L), then they also hold for
the pair (✓G, L̄) under exact invariance:
Lemma A.4 (Regularity of the augmented loss). For each ✓, assume the map (X, g) 7! L(✓, gX) is

in L1(P⇥Q). Assume exact invariance holds. If the pair (✓0, L) satisfies Assumption A and B, then

the two assumptions also hold for the pair (✓G, L̄).

Proof. By exact invariance and Fubuni’s theorem, it is clear that EL̄(✓, X) = EL(✓, X) for any
✓ 2 ⇥. Hence ✓G = ✓0 and Assumption A is verified for (✓G, L̄). We now verify the five parts of
Assumption B.
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For part 1, we have

sup
✓2⇥

����
1

n

nX

i=1

EL̄(✓, Xi)� EL̄(✓, X)

���� = sup
✓2⇥

����Eg[
1

n

nX

i=1

L(✓, gXi)� EL(✓, gX)]

����

 sup
✓2⇥

Eg

����
1

n

nX

i=1

L(✓, gXi)� EL(✓, gX)

����

 Eg sup
✓2⇥

����
1

n

nX

i=1

L(✓, gXi)� EL(✓, gX)

����

= op(1),

where the two inequalities is by Jensen’s inequality, and the convergence statement is true because of
the exact invariance and the fact that the original loss satisfies part 1 of Assumption B.

Part 2 is true because we have assumed that the action x 7! gx is continuous.

For part 3, since (✓0, L) satisfies this assumption, we know that on an event with full probability, we
have

lim
�!0

����L(✓0 + �, gX)� L(✓0, gX)� �>rL(✓0, gX)

����
k�k

= 0.

Now we have
����EgL(✓0 + �, gX)� EgL(✓0, gX)� �>EgrL(✓0, gX)

����
k�k



Eg

����L(✓0 + �, gX)� L(✓0, gX)� �>rL(✓0, gX)

����
k�k

 Eg[L̇(gX) + krL(✓0, gX)k],

where the first inequality is by Jensen’s inequality, and the second inequality is by part 4 applied to
(✓0, L). We have assumed that E[L̇(X)2] < 1, and hence so does E[L̇(X)]. By exact invariance,
we have

EXEg[L̇(gX)] = EgEX [L̇(gX)] = E[L̇(X)] < 1,

which implies Eg[L̇(gx)] < 1 for P-a.e. x. On the other hand, part 5 applied to (✓0, L) im-
plies the existence of ErL(✓0, X)rL(✓0, X)>, and hence EkrL(✓0, X)k2 < 1 and so does
EkrL(✓0, X)k. Now a similar argument shows that under exact invariance, we have

EgkrL(✓0, gx)k < 1.

for P-a.e. x. Hence we can apply dominated convergence theorem to conclude that

lim
�!0

����EgL(✓0 + �, gX)� EgL(✓0, gX)� �>EgrL(✓0, gX)

����
k�k

 Eg lim
�!0

����L(✓0 + �, gX)� L(✓0, gX)� �>rL(✓0, gX)

����
k�k

= 0,

which implies that ✓ 7! L̄(✓, x) is indeed differentiable at ✓0.

For part 4, by assumption, we have

|L(✓1, gx)� L(✓2, gx)|  L̇(gx)k✓1 � ✓2k
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for almost every x and every ✓1, ✓2 in a neighborhood of ✓0 = ✓G. Taking expectation w.r.t. g ⇠ Q,
we get

|L̄(✓1, x)� L̄(✓2, x)|  Eg|L(✓1, gx)� L(✓2, gx)|

 EgL̇(gx)k✓1 � ✓2k.

Now it suffices to show x 7! EgL̇(gx) is in L2(P). This is true by an application of Jensen’s
inequality and exact invariance:

EX [(EgL̇(gX))2]  EXEg[(L̇(gX))2]

= EgEX [(L̇(gX))2]

= EgEL̇2

= EL̇2

< 1.

Part 5 is true because under exact invariance, we have EL(✓, X) = EL̄(✓, X).

We now present the proof of Theorem 4.1.

Proof of Theorem 4.1. The results concerning ✓̂n is classical (see, e.g., Theorem 5.23 of [66]). By
Lemma 3.4, we can apply Theorem 5.23 of [66] to the pair (✓G = ✓0, L̄) to conclude that

p
n(✓̂nG � ✓0) =

1
p
n
V �1
✓0

nX

i=1

rL̄(✓0, Xi) + op(1).

Hence the asymptotic normality of ✓̂n,G follows and we have

⌃G = V �1
✓0

E[L̄(✓0, X)L̄(✓0, X)>]V �1
✓0

.

The final representation of ⌃G follows from part 3 of Lemma A.3.

A.7 Proof of Theorem 4.2

For notational simplicity, we will use W and ✓ interchangeably when there is no ambiguity. Recall
the regression function is f(W,X) = 1>�(WX). Let ✓0 be the ground truth weight matrix. The
population risk is

EL(✓, X, Y ) = E(Y � f(✓0, X) + f(✓0, X)� f(✓, X))2

= E(f(✓0, X)� f(✓, X))2 + �2.

Under current assumptions, the minimizer Ŵn of W 7! n�1
Pn

i=1 L(W,Xi, Yi) is consistent (see,
e.g., Example 5.27 of [66]). Meanwhile, under current assumptions, we have the following second-
order expansion:

EL(✓, X, Y ) = EL(✓0, X, Y ) +
1

2
E

(✓ � ✓0)

>
✓
2rf(✓0, X)rf(✓0, X)>

◆
(✓ � ✓0)

�

+ o(k✓ � ✓0k
2),

where EL(✓0, X, Y ) = �2 and rf(✓, X) is the gradient w.r.t. ✓. This suggests that we
can apply Theorem 3.5 with V✓0 = 2Erf(✓0, X)rf(✓0, X)> and rL(✓0, X, Y ) = �2(Y �

f(✓0, X))rf(✓0, X) = �2"rf(✓0, X), which gives (with the Fisher information I✓ =
Erf(✓, X)rf(✓, X)>)

p
n(✓̂ERM � ✓0) ) N

✓
0, V �1

✓0
E

4"2rf(✓0, X)rf(✓0, X)>

�
V �1
✓0

◆

=d N

✓
0,�2I�1

✓0

◆
.
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On the other hand, the augmented ERM estimator is the minimizer Wn,G of W 7!
Pn

i=1
EgL(W, gXi, Yi). Now applying Theorem 3.5 gives

p
n(Wn,G � ✓0) ) N (0,⌃G),

with the asymptotic covariance being

⌃G = �2I�1
✓0

� V �1
✓0

E


CovgrL(✓0, gX, Y )

�
V �1
✓0

= �2I�1
✓0

� I�1
✓0

E


Covg(Y � f(✓0, gX))rf(✓0, gX)

�
I�1
✓0

= �2I�1
✓0

� I�1
✓0

E

"2Covgrf(✓0, gX)

�
I�1
✓0

= �2
·

✓
I�1
✓0

� I�1
✓0

E


Covgrf(✓0, gX)

�
I�1
✓0

◆
,

where we used f(✓0, gx) = f(✓0, x) (which is due to exact invariance) in the second to last line.
Using Lemma 3.1, we can also write

⌃G

= �2I�1
✓0

✓
I✓0 � E


Covgrf(✓0, gX)

�◆
I�1
✓0

= �2I�1
✓0

✓
CovXrf(✓0, X)� E


Covgrf(✓0, gX)

�◆
I�1
✓0

= �2I�1
✓0

Ī✓0I
�1
✓0

,

where Ī✓0 is the “averaged Fisher information”, defined as

Ī✓0 = CovX [Egrf(✓0, gX)]

= EX

✓
Egrf(✓0, gX)

◆✓
Egrf(✓0, gX)

◆>�
.

This finishes the proof for the asymptotic normality result.

We now prove the expressions for IW and ĪW . We have

rf(W,x) = �0(Wx) · x>
2 Rm⇥d.

We can think of the Fisher information matrix I✓ = Erf(✓, X)rf(✓, X)> as a d⇥d⇥d⇥d tensor,
i.e,

IW = E(�0(WX) ·X>)⌦ (�0(WX) ·X>)

= E(�0(WX)⌦ �0(WX)) · (X ⌦X)>.

The (i, j, i0, j0)-th entries of this tensor is

IW (i, j, i0, j0) = E�0(W>
i X)�0(W>

i0 X) ·XjXj0 .

For a quadratic activation function, �(x) = x2/2, we have

IW = E(WXX>)⌦ (WXX>)

= (W ⌦W ) · E(XX>
⌦XX>).

The group acts by gx = Tgx, where Tg is an operator that shifts a vector circularly by g units.
We can then write the neural network f(W,x) =

Pp
i=1 h(Wi;x) as a sum, where h(a;x) =

�(a>x). Therefore, the invariant function corresponding to fW can also be written in terms of the
corresponding invariant functions corresponding to the h-s:

f̄(W,x) =
1

d

dX

g=1

f(W,Tgx) =
pX

i=1

h̄(Wi;x).
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where h̄(a;x) = 1
d

Pd
g=1 h(a;Tgx). We can use this representation to calculate the gradient. We

first notice rh(a;x) = �0(a>x)x. Thus,

rh̄(a;x) =
1

d

dX

g=1

rh(a;Tgx)

=
1

d

dX

g=1

�0(a>Tgx)Tgx

=
1

d
Cx · �0(C>

x a).

Here Cx is the circulant matrix

Cx = [x, T1x, . . . , Td�1x] =

2

64

x1, xd, . . . , xd�1

x2, x1, . . . , xd

. . .
xd, xd�1, . . . , x1

3

75 .

Hence the gradient of the invariant neural network f̄(W,x) can be written as a matrix-vector product

rf̄(W,x) =

2

4
rh̄(W1;x)>

. . .
rh̄(Wp;x)>

3

5

=
1

d

2

4
�0(W>

1 Cx) · C>
x

. . .
�0(W>

p Cx) · C>
x

3

5

=
1

d
�0(WCx) · C

>
x .

So the Fisher information can also expressed in terms of matrix products

ĪW = E(�0(WCX) · C>
X)⌦ (�0(WCX) · C>

X)

= E(�0(WCX)⌦ �0(WCX)) · (CX ⌦ CX)>.

For quadratic activation functions, we have

ĪW =
1

d2
E(WCXC>

X)⌦ (WCXC>
X)

= (W ⌦W ) ·
1

d2
E(CXC>

X ⌦ CXC>
X)

= (W ⌦W ) ·
1

d2
E(CX ⌦ CX) · (CX ⌦ CX)>.

This finishes the proof for the expression of Fisher information matrices.

Finally, we prove expressions for the expected Fisher information matrices under the assumption of
X ⇠ N (0, Id). The (i, j, i0, j0)-th entry of E[XX>

⌦XX>] is given by

XiXjXi0Xj0 ,

whose expectation is easy to compute by the fact that EXi = 0,EX2
i = 1,EX3

i = 0 and EX4
i = 3.

On the other hand, we can express ĪW in a simpler form using the discrete Fourier transform. Let F
be the d⇥ d Discrete Fourier Transform (DFT) matrix, with entries Fj,k = d�1/2 exp(�2⇡i/d · (j�
1)(k � 1)). Then Fx is called the DFT of the vector x, and F�1y = F ⇤y is called the inverse DFT.
The DFT matrix is a unitary matrix with FF ⇤ = F ⇤F = Id. Thus F�1 = F ⇤. It is also a symmetric
matrix with F> = F . Then the circular matrix can be diagonalized as

1
p
d
Cx = F ⇤ diag(Fx)F.
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The eigenvalues of d�1/2Cx are the entries of Fx, with eigenvectors the corresponding columns of
F . So we can write, with D := diag(FX),

d�1CX ⌦ CX = F ⇤DF ⌦ F ⇤DF

= (F ⌦ F )⇤ · (D ⌦D) · (F ⌦ F )

= F ⇤
2D2F2,

where F2 = F ⌦ F , and D2 = D ⌦D is a diagonal matrix. So

E(CX ⌦ CX) · (CX ⌦ CX)>

d2
= EF ⇤

2D2F2 · (F
⇤
2D2F2)

>

= EF ⇤
2D2F2 · F

>
2 D2F

⇤,T
2

= F ⇤
2 · ED2F

2
2D2 · F

⇤
2 .

Here we used that F = F>, hence F>
2 = (F ⌦ F )> = F>

⌦ F> = F2. Now, D2 can be viewed
as a d2 ⇥ d2 matrix, with diagonal entries D2(i, j, i, j) = DiDj = F>

i X · F>
j X , where Fi are the

rows (which are also equal to the columns) of the DFT. Thus the inner expectation can be written as
an elementwise product (also known as Hadamard or odot product)

ED2F
2
2D2 = F 2

2 � ED2D
>
2 .

So we only need to calculate the 4th order moment tensor M of the Fourier transform FX ,

Miji0j0 = EF>
i X · F>

j X · F>
i0 X · F>

j0 X.

Let us write r := FX . Then by Wick’s formula,

Efifjfi0fj0 = Efifj · Efi0fj0 + Efifj0 · Efi0fj + Efifi0 · Efifj0 .
Now

Efifj = EF>
i X · F>

j X = F>
i · EXX>

· Fj = F>
i Fj .

Hence

Miji0j0 = F>
i Fj · F

>
i0 Fj0 + F>

i Fj0 · F
>
i0 Fj + F>

i Fi0 · F
>
i Fj0 .

This leads to a completely explicit expression for the average information. Recall F2 = F ⌦ F , and
M is the d2 ⇥ d2 tensor with entries given above. Then

ĪW = (W ⌦W ) · F ⇤
2 · (F 2

2 �M) · F ⇤
2 ,

completing the proof of this theorem.

B Data Augmentation with General Estimators: Linear Regression

In this section, we present a tight analysis of the augmented estimator ✓̂G(X) = Eg⇠Q✓̂(gX)
introduced in Proposition 3.3, under the linear regression setup.

We consider the classical linear regression model

Y = X>� + ", � 2 Rp.

Let �2 = E"2. We will assume that the action is linear, so that g can be represented as a p⇥ p matrix.
If we augment by a single fixed g, we get

argmin ky �Xg>�k22 = ((Xg>)>Xg>)�1(Xg>)>y.

Following the ideas on augmentation distribution, we can then average the above estimator over
g ⇠ Q to obtain

�̂aDIST = Eg⇠Q


((Xg>)>Xg>)�1(Xg>)>y

�
.

On the other hand, let us consider the estimator arising from constrained ERM. Under exact invariance,
we have

x>� = (gx)>�
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for PX -a.e. x and Q-a.e. g. This is a set of linear constraints on the regression coefficient �.
Formally, supposing that x can take any value (i.e., PX has mass on the entire Rp), we conclude that
� is constrained to be in the invariant parameter subspace ⇥G, which is a linear subspace defined by

⇥G = {v : g>v = v, 8g 2 G}.

If x can only take values in a smaller subset of Rp, then we get fewer constraints. So the constrained
ERM, defined as

�̂cERM = argmin
�

ky �X�k22 s.t. (g> � Ip)� = 0 8g 2 G,

can in principle, be solved via convex optimization.

Intuitively, we expect both �̂aDIST and �̂cERM to be better than the vanilla ERM

�̂ERM = argmin
�

ky �X�k22,

Let rERM, raDIST, rcERM be the mean squared errors of the three estimators. We summarize the
relationship between the three estimators in the following proposition:
Proposition B.1 (Comparison between ERM, aDIST and cERM in linear regression). Let the action

of G be linear. Then:

1. Denote vj 2 Rp
as the j-th eigenvector of XTX and d2j as the corresponding eigenvalue.

We have

rERM = �2 tr[X>X]�1 = �2
pX

j=1

d�2
j , raDIST = �2

pX

j=1

d�2
j kG

>vjk
2
2,

where G = Eg⇠Q[g].

2. If G acts orthogonally, then raDIST  rERM.

3. If G is the permutation group over {1, ..., p}, then

raDIST = �2p�11>p (X
>X)�11p, rcERM = �2p(1>p X

>X1p)
�1.

Furthermore, if X is an orthogonal design so that X>X = Ip, we have

rERM = p�2, raDIST = rcERM = �2.

Proof. For part 1, we have

�̂aDIST = Eg


((Xg>)>Xg>)�1(Xg>)>y

�

= Eg


(gX>Xg>)�1gX>(Xg>� + ")

�

= � + Eg


(gX>Xg>)�1gX>"

�

= � + Eg


g�1(X>X)�1g�1gX>"

�

= � + Eg[g
�1](X>X)�1X>"

= � + G
>(X>X)�1X>".

Let X = UDV > be a SVD of X , where V 2 Rp⇥p is unitary. Note that �̂aDIST is unbiased, so its `2
risk is

raDIST = �2 tr(Var(�̂aDIST)) = �2 tr(G>(X>X)�1
G)

= �2 tr(G>V D�2V >
G) = �2 tr(D�2V >

GG
>V )

= �2
pX

j=1

d�2
j e>j V

>
GG

>V ej = �2
pX

j=1

d�2
j kG

>vjk
2
2,
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where vj 2 Rp is j-th eigenvector of X>X and d2j is j-th eigenvalue of X>X . As a comparison, for
the usual ERM, we have

�̂ERM = (X>X)�1X>y = � + (X>X)�1X>",

so its `2 risk is

rERM = �2 tr((X>X)�1) = �2
pX

j=1

d�2
j .

So part 1 is proved.

We now prove part 2. For raDIST  rERM we need to show

tr((X>X)�1
GG

>)  tr((X>X)�1).

A sufficient condition is that, in the partial ordering of positive semidefinite matrices,

GG
>
 Ip.

This is equivalent to the claim that for all v kEgg>vk2  kvk2. However, by Jensen’s inequality,
kEgg>vk2  EGkg>vk2. Since G is a subgroup of the orthogonal group, we have kg>vk2 = kvk2,
which finishes the proof for part 2.

We finally prove part 3. We assume G is the permutation group. This group is clearly a subgroup of
the orthogonal group. Note that invariance w.r.t. G implies that the true parameter is a multiple of the
all ones vector: � = 1pb. So we have

�̂cERM = 1pb̂, b̂ = argmin ky �X1pbk
2
2.

Solving the least-squares equation gives

b̂ =
1>X>y

1>p X
>X1p

.

The risk of estimating b is then �2(1>p X
>X1p)�1, so that the risk of estimating � by 1pb̂ is

rcERM = �2p(1>p X
>X1p)

�1.

Finally, we have

raDIST =
�2

p2
tr(1p1

>
p (X

>X)�11p1
>
p ) =

�2

p
1>p (X

>X)�11p,

which is equal to rcERM if X>X = Ip.

In general, constrained ERM can be even more efficient than the estimator obtained by the augmenta-
tion distribution. However, by the third point in the above proposition, in the special case where G
is the permutation group, we have raDIST = rcERM ⌧ rERM when the dimension p is large. A direct
extension of the above proposition shows that such a phenomenon occurs when G is the permutation
group on a subset of {1, . . . , p}. There are several other subgroups of interest of the permutation
group, including the group of cyclic permutations and the group that contains the identity and the
operation that “flips" or reverses each vector.

We note briefly that the above results apply mutatis mutandis to logistic regression. There, the
outcome Y 2 {�1, 1} is binary, and P (Y = 1|X = x) = �(x>�), where �(z) = 1/(1+ exp(�x))
is the sigmoid function. The invariance condition reduces to the same as for linear regression. We
omit the details.

C More Examples on Augmented ERM

In this section, we give several examples of models where exact invariance occurs. We characterize
how much efficiency we can gain by doing data augmentation and compare it with various other
estimators. Some examples are simple enough to give a finite-sample characterization, whereas others
are calculated according to the asymptotic theory developed in the previous section.
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Figure 2: Plots of the increase in efficiency achieved by data augmentation in a flip symmetry model.

C.1 Exponential families

We start with exponential families, which are a fundamental class of models in statistics [e.g., 46, 47].
Suppose X ⇠ P✓ is distributed according to an exponential family, so that the log-likelihood can be
written as

`✓(X) = ✓>T (X)�A(✓),

where T (X) is the sufficient statistic, ✓ is the natural parameter, A(✓) is the log-partition function.
The densities of P✓ are assumed to exist with respect to some common dominating �-finite measure.
Then the score function and the Fisher information is given by

r`✓(X) = T (X)�rA(✓), I✓ = Cov [T (X)] = r
2A(✓).

Given invariance with respect to a group G, by Theorem 3.5, the asymptotic covariance matrix of
the augmented maximum likelihood estimator, ✓̂aMLE (which is a special case of ERM with the loss
function being the log-likelihood function), equals I�1

✓ J✓I
�1
✓ , where J✓ is the covariance of the

orbit-averaged sufficient statistic J✓ = CovXEgT (gX).

Moreover, the augmented MLE can be expressed as the solution of the following optimization
problem, where we replace the sufficient statistic T (x) by T̄ (x) = EgT (gx):

✓̂aMLE 2 argmax
✓

✓>EgT (gX)�A(✓).

We then have ✓̂aMLE = [rA]�1EgT (gX).

An alternative strategy, which also exploits the invariance structure, is constrained optimization.
Indeed, let p✓ be the density of X . If we assume the action of G on the sample space is linear, then
by a change of variable formula, the invariance relation gX =d X is equivalent to the following
equation:

p✓(x) = p✓(g
�1x)/| det(g)|.

The above equation translates to the following constraint on ✓:

`✓(gx) + log | det(g)| = `✓(x) 8g 2 G, x 2 X .

Let ⇥G ✓ ⇥ be the invariant subspace of the original parameter space, consisting of all ✓’s that
satisfy the above equation. For exponential families, ⇥G consists of all ✓’s s.t.

✓>[T (gx)� T (x)] + v(g) = 0 8g 2 G, x 2 X . (14)

where v(g) = log | det g| is the log-determinant. This is a set of linear equations in ✓. Moreover,
the log-likelihood is concave, and hence, we can in principle compute the following constrained

maximum likelihood estimator:

✓̂cMLE 2 argmax
✓

✓>T (X)�A(✓)

s.t. ✓>[T (gx)� T (x)] + v(g) = 0 8g 2 G, x 2 X .
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Assume that ⇥ = Rp, so that the exponential family is well defined for all natural parameters, and
that rA is invertible on the range of EgT (gX). The KKT conditions of the above convex program is
given by

✓̂cMLE 2 [rA]�1(T (X) + span{T (gz)� T (z) : z 2 Rd, g 2 G})

s.t. ✓>[T (gx)� T (x)] + v(g) = 0 8g 2 G, x 2 X .

C.1.1 Gaussian Mean Estimation

Consider now the important special case of Gaussian mean estimation. Suppose that X is a standard
Gaussian random variable, so that A(✓) = k✓k2/2, and T (x) = x.

Assume for simplicity that G acts orthogonally. Then the constraints in Equation (14) is simplified to
g>✓ = ✓ for any g 2 G. Recall that maximizing the Gaussian likelihood is equivalent to minimizing
the distance k✓ � Xk

2
2. Hence, the constrained MLE, by definition of the projection, takes the

following form:
✓̂cMLE = PGX,

where we PG is the orthogonal projection operator onto the tangent space of ⇥G at ✓. However, since
⇥G is a linear space in our case, PG is simply the orthogonal projection operator onto ⇥G. On the
other hand, we have

✓̂aMLE = Eg⇠Q[g]X.

In fact, under the current setup, the augmented MLE equals the constrained MLE:
Proposition C.1. Assume G acts linearly and orthogonally. If X is d-dimensional standard Gaussian,

then PG = Eg⇠Q[g], so that both the aMLE and cMLE are equal to the projection onto the invariant

subspace ⇥G. In particular, their risk equals dim⇥G.

Proof. Let C = Eg⇠Q[g]. By orthogonality, for each g we have that g> = g�1 is also in G. Hence,
the matrix C is symmetric. Then for any v 2 ⇥G, we have Cv = Eg⇠Q[gv] = Eg⇠Q[v] = v.
Moreover, for any w 2 ⇥?

G, we have Cw = Eg⇠Q[gw] = Eg⇠Q[0] = 0. Hence, C is exactly the
orthogonal projection into the subspace ⇥G, which finishes the proof.

For instance, suppose G = {1,�1} is the reflection group (acting by multiplication). Then it is clear
that ⇥G = {0}, and so both the cMLE and aMLE are identically equal to zero.

C.1.2 Some Numerical Results

We present some numerical results to support our theory for exponential family models.

In Figure 2, we show the results of two experiments. On the left figure, we show the histograms of the
mean squared errors (normalized by dimension) of the MLE and the augmented MLE on a d = 100
dimensional Gaussian problem. We repeat the experiment nMC = 100 times. We see that the MLE
has average MSE roughly equal to unity, while the augmented MLE has average MSE roughly equal
to one half. Thus, data augmentation reduces the MSE two-fold.

On the right figure, we change the model to each coordinate Xi of X being sampled independently as
Xi ⇠ Poisson(�). We show that the relative efficiency (the relative decrease in MSE) of the MLE
and the augmented MLE is roughly equal to two regardless of �.

C.2 Parametric Classification Models

Consider a random sample {(X1, Y1), ..., (Xn, Yn)} ✓ Rd
⇥ {0, 1} from the law of a random vector

(X,Y ), which follows the model:

P(Y = 1 | X) = �(f(✓0, X)),

where ✓0 2 Rp. Here, � : R ! [0, 1] is an increasing activation function, and f(✓0, ·) is a real-valued
function. For example, the sigmoid �(x) = 1/(1 + e�x) gives the logistic regression model, using
features extracted by f(✓0, ·).

We have a group G acting on Rd
⇥ {0, 1} via

g(X,Y ) = (gX, Y ),
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and the invariance is
(gX, Y ) =d (X,Y ).

The interpretation of the invariance relation is two-fold. On the one hand, we have gX =d X . On the
other hand, for almost every (w.r.t. the law of X) x, we have

P(Y = 1 | gX = x) = P(Y = 1 | X = x).

The LHS is �(f(✓0, g�1x)), whereas the RHS is �(f(✓0, x)). This shows that for any (non-random)
g 2 G and x, we have

�(f(✓0, gx)) = �(f(✓0, x)).

For image classification, the invariance relation says that the class probabilities stay the same if we
transform the image by the group action. Moreover, since we assume � is monotonically strictly
increasing, applying its inverse gives

f(✓0, gx) = f(✓0, x).

We consider using the least square loss to train the classifier:

L(✓, X, Y ) = (Y � �(f(✓, X)))2.

Though this is not the most popular loss, in some cases it can be empirically superior to the de-
fault choices, e.g., logistic loss and hinge loss [72, 55]. The loss function has a bias-variance
decomposition:

EL(✓, X, Y )

= E[Y � �(f(✓0, X)) + �(f(✓0, X))� �(f(✓, X))]2

= E[Y � �(f(✓0, X))]2| {z }
EL(✓0,X,Y )

+E[�(f(✓0, X))� �(f(✓, X))]2,

where the cross-term vanishes because �(f(✓0, X)) = E[Y |X]. Note that

E[Y � �(f(✓0, X))]2 = E[(Y � E[Y |X])2]

= E

E[(Y � E[Y |X])2 | X]

�

= EVar(Y |X)

= E


Var
✓

Bernoulli(�(f(✓0, X)))

◆�

= E�(f(✓0, X))(1� �(f(✓0, X))).

Meanwhile, since r�(f(✓, X)) = �0(f(✓, X))rf(✓, X), for sufficiently smooth �, we have a
second-order expansion of the population risk:

EL(✓, X, Y ) = EL(✓0, X, Y ) +
1

2
(✓ � ✓0)

>E[2�0(f(✓0, X))2rf(✓0, X)rf(✓0, X)>](✓ � ✓0)

+ o(k✓ � ✓0k
2).

This suggests that we can apply Theorem 3.5 with

V✓0 = E[2�0(f(✓0, X))2rf(✓0, X)rf(✓0, X)>]

and
rL(✓, X, Y ) = �2(Y � �(f(✓, X)))�0(f(✓, X))rf(✓, X),

which gives
p
n(✓̂n � ✓0) ) N (0,⌃0),

where the asymptotic covariance is

⌃0 = E[U✓0(X)]�1E[v✓0(X)U✓0(X)]E[U✓0(X)]�1

v✓0(X) = �(f(✓0, X)) · (1� �(f(✓0, X)))

U✓0(X) = �0(f(✓0, X))2rf(✓0, X)rf(✓0, X)>.
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Here v✓0(X) can be viewed as the noise level, which corresponds E"2 in the regression case. Also,
U✓0(X) is the information, which corresponds to Erf(✓0, X)rf(✓0, X)> in the regression case.
The classification problem is a bit more involved, because the noise and the information do not
decouple (they both depend on X). In a sense, the asymptotics of classification correspond to a
regression problem with heteroskedastic noise, whose variance depends on the mean signal level.

In contrast, applying Theorem 3.5 for the augmented loss gives
p
n(✓̂n,G � ✓0) ) N (0,⌃G),

where
⌃0 � ⌃G = V �1

✓0
ECovGrL(✓0, gX)V �1

✓0
.

We now compute the gain in efficiency:

ECovgrL(✓0, gX) = ECovg

✓
2(Y � �(f(✓0, gX)))�0(f(✓0, gX))rf(✓0, gX)

◆

= 4E

(Y � �(f(✓0, X)))2Covg

✓
�0(f(✓0, gX))rf(✓0, gX)

◆�

= 4E

v✓0(X)Covg

✓
�0(f(✓0, gX))rf(✓0, gX)

◆�
.

In summary, the covariance of ERM is larger than the covariance of augmented ERM by

⌃0 � ⌃G = E[U✓0(X)]�1
· E


v✓0(X)Covg

✓
�0(f(✓0, gX))rf(✓0, gX)

◆�
· E[U✓0(X)]�1.

In fact, one can get analogous results for under-parameterized two-layer nets, like those in Theorem
4.2. Since the calculations are essentially identical to the proof of Theorem 4.2, we omit the details.

D Experiment Details

Our experiment to generate Figure 1(a) (from the main paper) is standard: We train ResNet18
[33] on CIFAR10 [43] for 200 epochs, based on the code of https://github.com/kuangliu/
pytorch-cifar. The CIFAR10 dataset is standard and can be downloaded from https://www.cs.
toronto.edu/~kriz/cifar.html. We use the default settings from that code, including the SGD
optimizer with a learning rate of 0.1, momentum 0.9, weight decay 5 · 10�4, and batch size of 128.
We train three models: (1) without data augmentation, (2) horizontally flipping the image with 0.5
probability, and (3) a composition of randomly cropping a 32⇥ 32 portion of the image and random
horizontal flip; besides the data augmentation, all other hyperparameters and settings are kept the
same. We repeat this experiment 15 times and plot the average test accuracy for each training epoch.
This experiment was done on a p3.2xlarge (GPU) instance on Amazon Web Services (AWS).

33

https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

	Introduction
	Our Contributions
	Prior Work

	Preliminaries and General Framework
	Data Augmentation Under Approximate Invariance
	General Estimators and A Prototypical Invariance-Variance Tradeoff 
	Effect of Loss-Averaging
	Effect of Gradient-Averaging
	A Case Study on Over-Parameterized Two-Layer Nets

	Data Augmentation Under Exact Invariance
	The Circular Shift Model

	Discussion
	Omitted Proofs
	Proof of Lemma 3.2
	Proof of Proposition 3.3
	Proof of Theorem 3.4
	The Redemacher Bound for theta-hat

	Proof of Theorem 3.5
	Proof of Theorem 3.6
	Proof of Theorem 4.1
	Proof of Theorem 4.2

	Data Augmentation with General Estimators: Linear Regression
	More Examples on Augmented ERM
	Exponential families
	Gaussian Mean Estimation
	Some Numerical Results

	Parametric Classification Models

	Experiment Details

