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Abstract

In this appendix we provide proofs for the theorems and lemmas in the paper
"Personalized Federated Learning with Moreau Envelopes", as well as additional
experimental settings and results.

A Proof of the Results

In this section, we first provide some existing results useful for following proofs. We then present the
proofs of Lemma T[] Lemma 2] Theorem|I] and Theorem 2|

A.1 Review of useful existing results

Proposition 2. [|I| Theorems 2.1.5 and 2.1.10] If a function F;(-) is Lgp-smooth and pp-strongly
convex, Yw, w', we have the following useful inequalities, in respective order,
IVEFi(w) = VE)|? < 2Lp (Fi(w) — Fi(w') = (VE(w),w — ')
prlw —w'|| < [[VFi(w) = VE;(w)].
where w* is the solution to problem min,,cga F;(w), i.e., VEF;(w*) = 0.

Proposition 3. For any vector x; € R%, i = 1,..., M, by Jensen’s inequality, we have
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A.2 Proof of Lemmal[ll

Proof. We first prove case (a). Let h;(0;;w!,) == fi(0;) + 5116; — w!,.|[%. Then h;(6;;w?,) is
(A + p)-strongly convex with its unique solution éz(wfr) Then, by Proposition we have
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where the second inequality is by Proposition B] Taking expectation to both sides, we have

B (16t~ 0t )] = 5 (i L e, B [ V06 = V1G] + )
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where the first equality is due to E [||z:i=1 X, —E [X1]||2] = Zf\il E[|X; — E[X;][]? with M

independent random variables X; and the unbiased estimate [E [V ﬁ (91-; 52)} =V/; (éi), and the last
inequality is due to Assumption[2].

The proof of case (b) follows similarly, considering that £;(6;; wj ,.) is (A — L)-strongly convex. [

A.3 Proof of Lemma[2

Proof. We first prove case (a).

N N
ZHVF )2 < Z(\VF — VE()|? + [ VF ("))

<ALp(F(w) - ZHVF 1%,

where the first and the second inequalities are due to Propos1t1ons |§| and [2] respectively.
‘We next prove case (b):
IVEF;(w) = VF(w)l|?
A 1 N A 2
AMw = 0;(w)) ~ w2 /\(w—Hj(w))H

_ Hsz(éz(w)) -5 Z . ij(éj(w))H2

2
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where the second inequality is due to the first-order condition V f; (6; (w)) — AMw — él(w)) =0, and
the last one is due to Proposition 3] Taking the average over the number of clients, we have
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where (@) is due to Assumptlon [] and Proposmon [l which is also used for (TI)), is due to
L-smoothness of f;(), (I2) is due to Pr0p0s1t10n (T3) is by the fact that E[[|X[]?| = E[||X —

E[X]||?] + E[||X|]]? for any vector of random variable X . Finally, by re-arranging the terms of (I3),
we obtain

1 o 2 2)2 82 9
NZHVFi(w)—VF(w)H < m0§+m||vp(w)” .

A.4 Proof of Theorem[Il

We first define additional notations for the ease of analysis. We next provide supporting lemmas, and
finally we will combine them to complete the proof of Theorem I}

A.4.1 Additional notations
We re-write the local update as follows

wf r+1 — ’LU -1 )‘( ir Z(w'f,r»

which implies
R-1

R-1 -
t o t t ot t t
772 — 09”—2 , O(wir_wir+1)_wio_wi,R_wt_wi,R7

where g! . can be considered as the biased estimate of VF;(w! ) since E [gf | # VF;(w!,). We
also re-write the global update as follows

wip1 = (1= Blwe + gziey Wi R
B
=w—g Ziest wy — wf r)
=W BR SR ZZESt Zr 0 gl m

=9t
where 1) and g, can be interpreted as the step size and approximate stochastic gradient, respectively,
of the global update.

A.4.2 Supporting lemmas
Lemma 3 (One-step global update). Let Assumption[I[b) hold. We have

E [lhwes —wI?) < (1= 0)E [, —w??) — (2~ 6Lp7)E [F () — F(w")]

VF;(w:) — VF(wy)
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Proof. Denote the expectation conditioning on all randomness prior to round ¢ by E,. We have
Et [[[wipr — w*|?] = By [[lws — iige — w*||]
= [lwe — w*|* = 27 E¢ [{ge, we — w*)] + 7B [[le]?] - (14)
We first take expectation of the second term of (T4)) w.r.t client sampling

_]ESt [<gta Wy — ’U)*>] = _<E5t [gt], W — U}*>
1 N,R

= _ﬁ , (<gf,7‘ - VFl(wt)a Wt — w*> + <VF1(U)75), wy — w*>), (15)
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where Ziﬂ, is used as an alternative for ) ._ | > ",
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Where the second equality is obtained by having Es,[¢] = Es,[<5 ZS gt

o ZZ 2ot Es, [Les,] = 7z ZN " g; »» where I is the indicator function of an event A and
thus Es, []IZG St] S/N due to uniform sampling. We then bound two terms of (T3)) as follows

N
Z VE (i), wy —w") < F(w") = F(w) - %Fllwt —w*|? (16)
9 N,R -
t ) )
N 2 = V() NRZ(Hg”— Fiw) | + 52 o, — )
(17

where the first and second inequalities are due to pp-strongly convex F;(-) and the Peter Paul
inequality, respectively.

We next take expectation of the last term of (I4) w.r.t client sampling

1 S'R 2
Est [Hgfnz] = Est ﬁ;gf,r
S'R | 2 1 2
< 3Es, [ 37 ng,r — VEF;(w)|| + HS Z; VE;i(w) — VF(wy)| + ||VF(u)t)2}
1€S8" ,
NR Z |gz r wt) JF 3Es, || Z VEFi(w) — VF(w)|| + 6LF(F(wt) - F("U*))a

zESt
(18)

where the first inequality is by Proposition 3] and the second inequality is by Proposition [2]and
. 1 S'R 2 1 S'R 9
</ |57 < gmms 2 }

t
Zg;r - VFl(wt) gf,r - VFZ(wt)
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| MR
- == ZHg;T — VF;(wy)||.

By substituting (T6), (I7), and (I8) into (T4), and take expectation with all history, we finish the
proof. O

Lemma 4 (Bounded diversity of F; w.r.t client sampling).

2

LS

%Z VF;(w;) — VF(wy) TZNHVF (we) — VF(wy)|*.

i€S?t

Proof. We use similar proof arguments in [2, Lemma 5] as follows
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N
_ SLNZHVFi(wt) - VF<wt>||2+;M<VFi(wt) = VE (), VE;(w) = VE(wr))

1 2
=y (1- )ZHVF wy) — VE(w)|
N/S—1<n 1 2
=1 > NHVFi(wt) —VF(w)|,
i=1
where the third equality is due to Eg,[Lics,] = P(i€S;) = % and Eg,[Lies,Ljes,] =
P(i,j € St) = ﬁ for all ¢ ;é 7, and the fourth equahty is by ZZ 1HVF (wy) — VF(wt)H2 +

Lemma 5 (Bounded client drift error). If 7 < 5 5 &n <
N,R

1
VR ZE (gt — VFi(w,)|?] < 2A26% +

2RL , we have

16L2.772 b 2)282
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Proof.
E[llg!, — VE(w)[?] < 2E gl — VE(w! )| + [VEi(ut,) — VEi(w,)|]
< 2(NE [||fi(wt,) — it ||°] + LB [|[ut,. —wi*])
< 2<)\252 + LZE [||wfr - wt||2]), (19)

where the first and second inequalities are due to Propositions [3|and 2] respectively. We next bound
the drift of local update of client ¢ from global model war — thz as follows

E [lwl, —wl’] =E [|w!,_1 — we — ngt,_1]%]
<2E [||w],_y —wi = )V Ey(we)|* +n?(lgf 1 — VEi(we)[|]
1
< 2(1 n 2R> [lw! 1 —wel|?] +2(1 + 2R)7°E [||VFi(wy)|1?]
+ 42 (w + L3 (||, — wi|’])

=21t 5+ 2P L3 JE ol s~ wilP] + 201+ 2RPE [IVF (| + 4732

2R
<21t g B oty — wilP] + 200+ 2RPE [ITF (P + 4732 0)
~ R—1 T
672 9 472 \262
< (S NvR@I + T5) o1+ e
62R 52R r=0
8 22262
<G <3E [IVE )] + =% ) (22)
where (20) is by having 2n?L% = 2L% 6;12%2 < 5pz < % when 772 < L2 , for all R > 1. 2I) is

2
due to unrolling (20) recursively, and 2(1 + 2R)n? = 2(1 + 2R) =% ﬁQRZ § 3= because 2R <3

when R > 1. We have (22) because Zf:ol(l +1/R)" = % < i/é < 2R, by using the

facts that 3"} ' = £ =L and (1 + £)" < ¢” forany z € R,n € N. Substituting 22) to (T9), we
obtain

16172L2

t ’ 2 252 4 20757
E [llgi, — VEi(w)[I*] <206 + 3E [IVE: (wo)|*] + =5~ ). (23)

By taking average over N and R, we finish the proof.



A4.3 Completing the proof of Theorem [l]

Proof. Before proving the main theorem, we derive the first auxiliary result:

|5 2.0 TR0 - Ve[ < S Z SE(IVE @)~ VEw)?] @4
< % (4LFE [F(w) — F(w™)] + 20%’1), (25)

where (24) is by Lemma [ and 23)) is by Lemma 2] (a).

The second auxiliary result is as follows
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<7 Z + (3 [IvR @) + ZX) 26)
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<17 ; - VE;(w* ;
<X T Z 3 (6 [19Fw) - 9r )] + & [19m )] + 23
(27)
166202 7 128L% < 2(3Ro%., + 62)\2)>
<7 + 12LpE [F(w,) — F(w*)] + : 28
ST E FE[F(w;) — F(w")] = (28)
1662)2 72 7 256(3Ro%, | + 622
i + L 768k p LpE [F(w;) — F(w*)] + (BR7E Jror (29)

< K
=1 T8 ? R

where we have (26) by using Lemmal5|and 37) + 2/pp < 8/pp when i) < 2/pp. (27) is by the fact
that E[|| X||?] = E[||X — E[X]||?] + E[|| X|]* for any vector of random variable X. (28) is due
to Lemmaland |VF(w)||* < 2Lp (F(w;) — F(w*)) by Lp-smoothness of F(-). (29) is due to

ﬂ _ Lr
7 < and Kp : =

By substltuting (25) and (28) into Lemmal[3] we have
E [Jlwesr — w*|P] <
>1 when 7 satisfied @)
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N/S 1

where we have (30) by using the fact that < 1 for the following inequality

~ N/S*l 768/@}7‘ - 128%}7‘
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1
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We note that 77 < mm{i %} withf > 1and Ly > pp.



Let A; = |jwy — w*|?.

where Az := 327" a, then we have
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where we have (32) because in order for telescoping, we choose (1 — 7”2‘F ) ot = oy_1, and thus

. —(t+1)
ap = ( 1- ’”‘7‘”) by recursive update. Regarding to (33)), we have

B T—1 77,UF —(t+1)
Ar = Zt 0 (1 N 2 )
_mr T*I( _ M)t
(1 2 ) Zt:o 1 2
_ T
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2a7_
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NHF nur

b
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where the first inequality is due to the fact that (1 — WTF) < exp(—nurT/2) <exp(—1) <1/2

_\T
by setting T > u% and the second inequality is due to 1 — (1 — W#) < 1; thus we have
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(1-me)" < ppe-mrt2,

ar_y LE
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Due to the convexity of F'(-), (33) implies

- - 'u—F —iinrT/2
E{F<Zt—o Athﬂ F(w) + D) E[A7] < upAge™ HF _|_

which implies

52 C’3 +1nCy +C1 (34)

} =9
E[F(wr) — F(w*)] < ppAoe~MrT/2 4 %03 +iiCh + . (35)
Next, using the techniques in [|3H5]], we consider following cases:

2In(p3A0T/2C2)

o If 9y > max{ T S eT

} =: 1/, then we choose 7 = 7’; thus, having
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Combining two cases, we obtain
E[F(ar) - F(w")] < O(E[F(wr) — F(w")]) :=

A —iiprT/2 9
O(Bopre >+O< W TN R(TBur)?

which finishes the proof of part (a). We next prove part (b) as follows

B (197 er) ]
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where the last inequality is due to smoothness of F; with Ly = X according to Proposition|[I] Take

the average over N clients, we have
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w'|[*] < 9E [Jwr — w7 )] + 6; + 362

< NLFO(E [F(wr) — F(w*)]) + O(GF’I + 62>,

where the last inequality is by using (33) and (36)), we can easily obtain
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A.5 Theorem[2
Proof. We first prove part (a). Due to the L p-smoothness of F'(-), we have
E[F(wis1) — F(we)]
L
<E [<VF(wt)7wt+1 - 'wt>] + TF]E [||wt+1 — wt”z}
. i°Lr 2
= —qE [(VF(w;), g:)] + 5 E [llg:[1%]
~2L
= B [|VF(w)[?) ~ 7 [(VF(w). g0~ VF(w)] + TELE [
7 gl L= L
< —iE [|[VF(w)|*] + §E [IVF(we)|I?] + iE HNR ng,r — VFi(w)|| + "E [lgel?]
| (36)
RY 2
< _41«: IV F@wo)|l?] + 2222 ]EHE o VEi(w) —VF(wt)H
1+ 3Lp7) 1 wa 372L
$2LEBLr) 1 sny (llst, = VE@|| + Z5EE [IVF ()] (37)

2 NR <
i,7

N

< 20D (17w ) + 2T EL S LB (19 ) - @]

N-1

> 9 :
i=1



(1 4 3Lei) 1677 Ly (200 al
2N P F( Z [[IVE;(w;) = VF(wy)|]?] + 3E [HVF(wt)Hz])
(38)
A(1 — 3Lp7) 3Lpn N/S — ) 8L? )
< —fE[HVF( wy)|1?] + ﬁ oret o g2 L2 E [[[VF(w)]?]
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== E[IVF(w)|P] +ﬁ2LF<)\2—8L2 N1t poe s )E[HVF(wt)HQ]

(L abe) =+ ok 5y

i 8(BRoF, +26°N) ., , (3Lp N/S—1
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where is due to Cauchy-Swartz and AM-GM inequalities, (38) is by decomposing ||g;||? into
three terms according to (I8), and (39) is by using Lemmas a and the fact that E[|| X [|?] =
E[|X — E[X]|[?] + E[|| X||]? for any vector of random variable X. We have [@0) by Lemma
and (#I) by re-arranging the terms, and @2) by having 1 + 3Lp7 < 1+ % < 3B whenn < 57—
according to Lemmal 5|and 8 > 1. Finally, we have (@3) by using the condition A\*> — 8L2 > 1 and
the fact that N/ S 1 < 1 for the following

3 12L2 N/S—1 362 L L
Lp < + / + > < (3 Fo4L? 4+ 72)\2) < Zr (75/\2)

2 X2 _—8L2 N—-1 ' X —8L2 2
to get
3 121> N/S -1 362 T50LpA% 1
1—7Lp| = >1 - =7 s 2
”F<2+A2—8L2 N -1 )\2—8L2)_ 2 2
with the condition
1
n< — =:9 43
NS F5poa (43)

which also implies 1 + 3Lpf] < 1+ 5257 < 2.

We note that 7 < % with 3 > 1. By re-arranging the terms of {3)) and telescoping, we have

1= E [F(w°) — F(wr)
5T ;E IVE(w)|?] < [ T T] 6204+n05 + Cs. (44)

Defining Ar := F(w®) — F*, and following the techniques used by [3H5]], we consider two cases:

1 1
) 1 1
o If 75 > ’@TSF orf3 > Tc , then we choose 7} = mln{ (ﬂTéf) ’ (ﬁCFS) : }; thus, having
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1 (Ap)23C,Y?  (ApCs)Y/?
— N E[|VFE 2] < .
o7 ?:1 [IVF(w,)|?] < (T + = +Co




o If 3 < BA7 and 7 <

TC’ , then we choose 7 = 7). We have

T-1 . . 1/2
1 Ap | (Ap)P(C)'3 | (AFCs)
— Y E[|VF 1< Cé.
77 2 B IVFEI) < g+ = —+ g %
Combining two cases, and with t* uniformly sampled from {0,...,7 — 1, } we have

T—
T ; [IVE(w)|?] = E[|[VF(we)]?] < O(IE [HVF(wt*)||2]) —

1 1

A Ap)3(Roy, +220%)°  (ApLpo,(N/S—1))?

O<AF+( F)(4F,122 ) +( FFF,Z( / )) +)\252)
2T B3R3Ts VIN

which proves the first part of Theorem [2]

We next prove part (b) as follows

N N
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<9821 2 e L S AL
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where the first inequality is due to Proposition (3)) and the third inequality is by using the fact that
E[|X|?] = E[||X — E[X]||*] + E[||X||]? for any vector of random variable X, we have

N

=2

1 1
+ SSE(VE@)IP] = 3 - (E[IVFi(w) - VF@) ] +E [IVF(w)]?])
i=1 i=1
<o} X E[|VF 2
S Opg+ N _8L2 [IVE(wy)|?] -
Summing (??) from ¢ = 0to T, we get
T-1 N T-1 202,
t 2y
Z}%;E[w —will?] < 5 SLQTZE IVF (wn)|P] +26° + =32,
and with ¢t* uniformly sampled from {0, ...,T — 1}, we finish the proof. O

B Additional Experimental Settings And Results

B.1 Additional Experimental Environment Settings
We implemented pFedMe, FedAvg, and Per-FedAvg using PyTorch [|6] and run the experiments on

multiple computers using the Intel Core i7-9700K CPU and 32GB of RAM. Each experiment is run
at least 10 times for statistical reports.

B.2 Effect of hyperparameters

in both p-strongly convex and nonconvex settings, we conduct various experiments on MNIST dataset
with n = 0.005 and S = 5.

Effects of local computation rounds R: When the communication is relatively costly, the server
tends to allow users to have more local computations, which can lead to less global model updates
and thus faster convergence. Therefore, we monitor the behavior of pFedMe using a number of

10
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Figure 1: Effect of R on the convergence of pFedMe in p-strongly convex and nonconvex settings on
MNIST (|D| =20, A =15, K =5, 8 = 1).
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Figure 2: Effect of |D| on the convergence of pFedMe in p-strongly convex and nonconvex settings
on MNIST (A =15, R =20, K =5, 5 =1).
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Figure 3: Effect of A on the convergence of pFedMe in p-strongly convex and nonconvex settings on
MNIST (|]D| =20, R=20,K =5,8=1).

values of R, which results in Fig.[T] The results show that larger values of R have a benefit on
the convergence of both the personalized and the global models. There is, nevertheless, a trade-off
between the computations and communications: while larger R requires more computations at local
users, smaller ? needs more global communication rounds to converge. To balance this trade-off, we
fix R = 20 and evaluate the effect of other hyperparameters accordingly.

Effects of Mini-Batch size |D|: As mentioned in the Lemmall] |D| is one of the parameters which
can be controlled to adjust the value of 6. In Fig. 3] when the size of the mini-batch is increased,
pFedMe has the higher convergence rate. However, very large |D| will not only slow the convergence
of pFedMe but also requires higher computations at the local users. During the experiments, the value
of |D| is configured as a constant value equal to 20.

Effects of regularization \: Fig. [dshows the convergence rate of pFedMe with different values of \.
In all settings, larger A allows for faster convergence; however, we also observe that the significantly
large A\ will hurt the performance of pFedMe by making pFedMe diverge. Therefore, A should be
tuned carefully depending on the dataset. We fix A = 15 for all scenarios with MNIST.
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