- We thank the reviewers for their feedback. In particular, (R1, R3, R5) asked many specific and thoughtful questions,
- with (R1) marking questions by priority. Thank you.
- 3 We're glad that all reviewers agree that the paper is well-written and that side effect avoidance is an important AI safety
- 4 problem. We are excited that (R1) thinks this work is ground-breaking, novel, and will spur further research, that (R3)
- 5 is excited by our scaling of AUP, and that our results are considered strong (R1, R5) and significant (R1, R3).
- **Experiments.** (R1): using multiple auxiliary reward functions performed the same or worse than $|\mathcal{R}| = 1$. (R1, R5)
- ask for more comparisons. We will include results for DQN and for additional auxiliary reward functions. At (R1)'s
- 8 suggestion, we tried using the primary reward function as the auxiliary reward function. This condition achieved return
- and side effects comparable to PPO's, as its attainable utility shifts did not correlate with side effects.
- (R5) asks why we didn't compare to state reachability preservation [14] or to AUP with uniformly randomly drawn auxiliary reward functions over observations (like [25]). Unfortunately, neither approach is remotely viable in SafeLife.
- We estimate that there are billions of reachable states in any given SafeLife level. Accordingly, we're aware of a team
- we estimate that there are officially reaching against his any given sate life level. Accordingly, we re aware of a teach
- trying to train reachability-preserving agents, but even the append-still-easy task was far too hard. If we generated
- reward functions by uniformly randomly drawing a reward for every state, the corresponding Q-functions would have
- extremely high sample complexity in an environment like SafeLife. We used a VAE because the encoder provided
- sufficient structure for quickly learning the auxiliary Q-function.
- (R2, R4, R5) ask what distinguishes our work from [25]. The original AUP paper suggested that state reachability
- preservation avoids the same breadth of side effects as AUP in [25]'s toy environments. We show that unlike reachability
- preservation, AUP scales to SafeLife; as acknowledged by (R1, R3), we are the first to demonstrate compelling results
- 20 on any complex side-effect avoidance environment. Furthermore, we showed that AUP competitively accrues reward
- while avoiding side effects, while equipped with a single auxiliary reward function which was learned unsupervised,
- 22 whereas [25] drew several dozen auxiliary reward functions from the uniform distribution.
- 23 (R3, R4) wonder about scaling AUP to even more complex environments. We share their interest in this prospect.
- 24 Realistic settings might have too many side effect opportunities for a supervised penalty to work well. We believe that
- 25 the efficacy of AUP's unsupervised penalty term bodes well for even more challenging domains. (R3): we will add
- more discussion of the challenges AUP may face when scaling further, such as our assumption of a no-op action.
- 27 (R4) asks what the side effect score (defined lines 115-117) means. Roughly, if AUP halves PPO's side effect score, then
- ²⁸ AUP disturbed half as many green cells. Disturbing a patch of green cells corresponds to about 4 additional side effect
- 29 score. For a qualitative demonstration of the significance of a 46% side effect score reduction, we refer (R4) to the
- 30 attached GIF files for append-spawn.
- Training details. (R1): agents were evaluated on their N_{env} training environments. AUP had no data advantage it
- trained for the standard 5M total steps. While AUP_{proj} skips the 100K VAE exploration steps, it still learns its auxiliary
- 33 Q-function for the first 1M steps. Given more training time, AUP does not overfit and increase side effects. To the
- contrary, when running three seeds from 5M steps (the paper's time limit) to 15M steps, AUP's side effect score changed
- as follows: append-still-easy: -24%, append-still: -53%, append-spawn: +17%, prune-still-easy:
- -12%. We performed hyperparameter search for append-still-easy, and then applied the method successfully to
- 37 the other three tasks without further tuning. "Random exploration" refers to a uniformly random exploration policy.
- (R2): the hyperparameter sweep shows the average side effect score and episodic return for the *last* episode, while
- Figure 3's charts show a rolling average. The discrepancy was unintentional; we agree it is confusing and will fix it.
- 40 (R5): we used curriculum training (following the original SafeLife paper, [27]) because PPO fails to learn with just
- one environment. "Learning R_{AUP} " refers to the process of training the agent with respect to the AUP reward function
- defined in equation 1. Note that when training with respect to R_{AUP} , the auxiliary Q-functions are fixed, as they have
- 43 already been trained. We will clarify the difference between auxiliary and AUP training in camera-ready.
- 44 Novelty. (R2) finds our work lacks novelty because we "take an existing technique and apply it to an existing
- environment". This misses our main contribution: demonstrating AUP's scalability, which is a crucial consideration in
- 46 AI safety. As acknowledged by (R1, R3, R5), our work provides the *first* strong empirical evidence that AUP (and side
- effect measures more generally) can scale to any kind of complex environment.
- 48 Clarity. The prior work section and the SafeLife task explanations will be improved until they are as clear as the rest
- 49 of the paper, and we will incorporate (R1, R5)'s suggested citations, (R2): we will make all code available. We are
- 50 committed to providing the clearest possible camera-ready paper and look forward to refining the paper to (R1, R2, R3,
- R4, R5)'s satisfaction.