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The Sp regularized objective function defined over X and the factorized objective functions defined
over matrices U and V are given next,

L(X) = l(Y,X) + λ‖X‖pSp (1)

L1(U,V) = l(Y,UV>) + λ

d∑
i=1

‖ui‖p2‖vi‖
p
2 (2)

L2(U,V) = l(Y,UV>) +
λ

2p

d∑
i=1

(‖ui‖22 + ‖vi‖22)p. (3)

1 Technical background and proofs of Lemma 1 and Theorem 3

First we provide definitions and the technical lemmas which are necessary for deriving: a) the regular
subgradients of the Schatten-p raised to p quasi-norm for p ∈ (0, 1) and b) the dual relationship
between subderivatives and regular subgradients. Both are key ingredients of the proof of Theorem 3.
Definition 2 ( [1]). A function is called as a singular value function if it is extended real-valued,
defined on Rm×n of the form f ◦ σ : Rm×n → R, where f : Rq → [−∞,+∞], q ≤ min(m,n), is
absolutely symmetric i.e., it is invariant to permutations and changes of the signs of its arguments.

Based on Definition 1, we can say that Schatten-p quasi-norm of matrix X is a singular value function
arising from the `p quasi-norm, which is absolutely symmetric and is applied on the vector of the
singular values of X.

Next we provide the following notions of general, regular and horizon subgradients, which generalize
traditional subgradients of convex functions to the case of nonconvex ones.
Definition 3 ( [2]). Let f : Rn → R̄ and a point x̄ with f(x̄) finite. A vector u ∈ Rn is:

• a regular subgradient of f at x̄ i.e., u ∈ ∂̂f(x), if

f(x) ≥ f(x̄) + 〈u,x− x̄〉+ O(‖x− x̄‖) (4)

• a general subgradient of f at x̄ i.e., u ∈ ∂f(x), if there exist sequences xν →
f

x̄ (i.e.,

xν → x̄ with f(xν)→ f(x̄)) and uν ∈ ∂̂f(xν), with uν → u.
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• a horizon subgradient of f at x̄ i.e., u ∈ ∂∞f(x̄) for some sequence λν ↘ 0, there exist a
sequence of uν ∈ ∂̂f(xν) such that λνuν → u.

The sets ∂̂f(x̄), ∂f(x̄), ∂∞f(x̄) are called regular, general and horizon subdifferential of f at x̂,
respectively.

The above definitions implicitly assume that subgradients define hyperplanes that locally bound the
function from below. Hence, they are also called as lower subgradients.

The following lemma (Theorem 7.1 of [1]) relates the set of general subgradients i.e., the general
subdifferential, of an absolutely symmetric function f with that of the corresponding singular value
function.
Lemma 2 (Theorem 7.1. of [1]). Let X = UΣV> where U ∈ Rm×r,Σ ∈ Rr×r and V ∈ Rn×r,
denote the singular value decomposition of X ∈ Rm×n. The general subdifferential of a singular
value function f ◦ σ at X is given by the formula

∂(f ◦ σ)(X) = U diag(∂f(σ(X))V> (5)

where ∂f(σ(X)) is the general subdifferential of f(σ(X)). The regular and horizon subdifferential
of (f ◦ σ)(X) i.e., ∂̂(f ◦ σ)(X) and ∂∞(f ◦ σ)(X) can be similarly derived.

Subderivatives generalize the notion of one-sided directional derivatives and are defined as follows
Definition 4. Let f : Rq → R̄ where R̄ = R ∪ {−∞,+∞} and a point x̄ where f(x̄) is finite. The
subderivative of f at x̄ is defined as

dfx̄(w̄) = lim
τ↘0
w→w̄

inf
f(x̄ + τw)− f(x̄)

τ
(6)

A critical property that ensures the dual relationship between regular subgradients and subderivatives
is the so-called subdifferential regularity. The following lemma can be utilized for examining whether
a function is subdifferentially regular or not.
Lemma 3. ( [2]) Let a function f : Rq → R̄ and a point x̄ with f(x̄) finite and ∂f(x̄) 6= ∅. f is
subdifferentially regular at x̄ if and only if f is locally lower semi-continuous at x̄ with

∂f(x̄) = ∂̂f(x̄) ∂∞f(x̄) = ∂̂f(x̄)∞ (7)

where ∂̂f(X̄)∞ denotes the horizon set of the set of the general subgradients of f .

By Definition 3 we have that a vector u ∈ Rq is a regular subgradient of f(x) at x̄ i.e., u ∈ ∂̂f(x̄) if

lim
x→x̄

inf
f(x)− f(x̄)− 〈u, x− x̄〉

|x− x̄|
≥ 0 (8)

Clearly the regular subgradient of fi(xi) = |xi|p for xi ∈ (−∞, 0) ∪ (0,+∞) boils down to the
gradients thereof hence the corresponding regular subdiferrential sets are singletons and coincide
with the general ones. At x̄ = 0, the regular subdiferrential of fi is the interval (−∞,+∞). That
being said, we have

∂̂fi =


−p 1

(−xi)1−p , x ∈ (−∞, 0)

(−∞,+∞) xi = 0

p
1

(xi)1−p , x ∈ (0,∞)

(9)

The regular subdifferential of ‖x‖pp can thus be obtained as ∂‖x‖pp =
[∂f1(x1), ∂f2(x2), . . . , ∂fn(xn)].

Lemma 3 is next used for proving subdifferential regularity of the `p quasi-norm with p ∈ (0, 1).
Lemma 4. The `p quasi-norm raised to the power of p defined as ‖x‖p =

∑q
i=1 |xi|p where x ∈ Rq ,

is subdifferentially regular.
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Proof. Let us define the function fi(xi) = |xi|p. `p quasi-norm can be written as ‖x‖pp =∑q
i=1 fi(xi). Since the `p quasi-norm is separable, regular, general and horizon subgradient can be

taken by cartesian products of the subgradients of fis, for i = 1, 2, . . . , q. Moreover, ‖x‖pp is regular
at x when fis are regular at xis for all is. Hence, we focus on fi(xi) = |xi|p. fi(xi) is smooth and
thus regular in R− {0}. At 0, fi(0) is nondifferentiable and ∂̂fi(0) = (−∞,+∞). Evidently, the
set of regular subgradients is closed and coincides with ∂fi(0) (see Definition 3). Moreover, for
the set of horizon subgradients at 0 we have ∂∞fi(0) = {−∞,+∞} ≡ ∂̂fi(0)∞. Hence, due to
Lemma 3 we can conclude the proof.

Having shown that the `p quasi-norm for p ∈ (0, 1) is a subdifferentially regular, we can now show
that the singular value function arising by the `p quasi-norm, i.e., the Schatten-p quasi-norm is also
subdifferentially regular.

Lemma 5. The Schatten-p quasi-norm with p ∈ (0, 1) is a subdifferentially regular function.

Proof. See Corollary 7.5 of [1].

Lemma 3 is critical in the proof of the Theorem 3 since it allows us to use the dual relationship
between subderivatives and the regular subgradients of the Schatten-p quasi-norm. The following
theorem provides a dual correspondence between the general subgradients of a subdifferentially
regular function and its subderivatives.

Theorem 4 (Theorem 8.30 of [2]). If a function f is subdifferentially regular at X̄ then one has
∂f(X̄) 6= ∅ ↔ df(X̄) 6= −∞ and

dfX̄(W) = sup{〈Q,W〉|Q ∈ ∂f(X̄)} (10)

with ∂f(X̄) closed and convex.

Next, the proof of Lemma 1, which gives the expressions for the regular subgradients of Sp quasi-norm
raised to p is provided.

Proof of Lemma 1

Proof. From Lemma 2 we have that a matrix Y lies in ∂̂(f ◦σ)(X) if and only if σ(Y) ∈ ∂̂f(σ(X))
and there exists a simultaneous singular value decomposition of the form X = Ū diag(σ(X))V̄>

and Y = Ū diag(σ(Y))V̄>. Note that we herein assume the full singular value decomposition i.e.,
matrices Ū, V̄ are orthogonal of size m×m and n×n, respectively. By representing Ū = [U U⊥]
and V̄ = [V V⊥] where U⊥ ∈ Rm×m−r, V⊥ ∈ Rn×n−r, Σ+ = diag(σ+(X)) and colsp(U) ⊥
colsp(U⊥), colsp(V) ⊥ colsp(V⊥), we rewrite the singular value decomposition of X in the form

X = [U U⊥]

[
Σ+ 0
0 0

] [
V

V⊥

]
(11)

Note that since U⊥ and V⊥ correspond to zero singular values of X, they are not uniquely defined.
Next, going back to the form of a regular subgradient Y of ‖X‖pSp and based on the above-defined
expression of the full singular value decomposition of X we have,

Y = [U U⊥]

[
∂̂‖Σ+(X)‖pp 0

0 D

] [
V

V⊥

]
(12)

where D contain elements in (−∞,+∞) on its main diagonal and zeros elsewhere. eq. (12)
can be written in a more compact form as Y = U∂̂‖Σ+(X)‖ppV> + U⊥DV>⊥ and by setting
W = U⊥DV>⊥, we get the expression for the regular subdifferential of ‖X‖pSp .

Lemma 6. Let (Û, V̂) with Û = UΣ
1
2 and V̂ = VΣ

1
2 be a stationary point of (3), where non all-

zero columns of matrices U ∈ Rm×d and V ∈ Rn×d are orthonormal, and Σ is a d× d real-valued
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diagonal matrix. The pair (Û, V̂) satisfies the following equations

∇l(Y, ÛV̂>)V̂ + Û∂‖Σ‖pSp 3 0 (13)

∇l(Y, Û>V̂>)>Û + V̂∂‖Σ‖pSp 3 0 (14)

Proof. Since (Û, V̂) is a local minimum of the objective defined in (3), it is also a stationary point
of it.

Moreover, by defining fi(x) = xpi we can get

∂ui

d∑
i=1

fi

(
1

2
(‖ui‖22 + ‖vi‖22)

)
= ui∂fi

(
1

2
(‖ui‖22 + ‖vi‖22)

)
(15)

Hence, by using the chain product rule w.r.t. to U we can get

∂U

d∑
i=1

fi

(
1

2
(‖ui‖22 + ‖vi‖22)

)
= U diag

[
∂fi

(
1

2
(‖ui‖22 + ‖vi‖22)

)]
i=1,2...,d

(16)

(16) estimated at (Û, V̂) becomes

∂U

d∑
i=1

fi

(
1

2
(‖ui‖22 + ‖vi‖22)

)∣∣∣∣∣
(Û,V̂)

= Û diag[∂fi(σi)]i=1,2,...,d ≡ Û∂‖Σ‖pSp (17)

In addition to eq. (16), we have

∇Ul(Y,UV>) = ∇l(Y,UV>)V (18)

Eq. (17) and (18) give rise to the following condition for the stationary point (Û, V̂) of (3)

∇l(Y, ÛV̂>)V̂ + Û∂‖Σ‖pSp 3 0 (19)

Following a similar process for partial gradients w.r.t V we get the second stationary point condition
for L2

∇l(Y, Û>V̂>)>Û + V̂∂‖Σ‖pSp 3 0 (20)

Next we move on the proof of Theorem 3. The proof builds upon and significantly extends the
results presented in Theorem 2 of [3]. In particular, contrary to the latter which applies to a specific
regularizer characterized by some convenient properties (e.g. weak convexity), in our case by using
the dual correspondence between subderivatives and regular subgradients, we can get similar results
for any concave singular value penalty function as long as it is subdifferentially regular. Note that
subdifferential regularity is a quite general condition and ensures that the set regular subgradients
coincides with the set of the general ones. Moreover, Theorem 3 can be considered as an enhanced
version of Theorem 2 of [3], since it that local minima of the variational Sp regularized problem
correspond to local minima of the original problem defined over X. That said, it goes one step further
form Theorem 2 of [3] which shows that directional derivatives are nonnegative w.r.t. low-rank
perturbations.

Proof of Theorem 3

Proof. Since (Û, V̂) is a local minimizer of L1(U,V) and L2(U,V) defined in (2) and (3), respec-
tively, we can define a small perturbation of (Û, V̂) i.e, (Ut,Vt)

UtV
>
t = ÛV̂> + tŨṼ> (21)
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with Ũ ∈ Rm×m, Ṽ ∈ Rn×m assuming that m ≤ n, such that

Li(Ut,Vt)− Li(Û, V̂) ≥ 0, (22)

for i = 1, 2 and t↘ 0.

Moreover, since Û and V̂ are defined as Û = UΣ
1
2 and VΣ

1
2 where U,V are of size m×m and

n×m, respectively, contain orthonormal columns, and Σ is a diagonal m×m matrix, we have

L1(Û, V̂) = L2(Û, V̂) = L(X̂) (23)

Let us define

X̂ + tX̃ = UtV
>
t (24)

where the product ŨṼ> of (21) has been replaced by X̃.

Our goal is to show that X̂ is local minimum of L(X) i.e., L(X̂ + tX̃)− L(X̂) ≥ 0 for t↘ 0. Due
to (22) and (23) the result immediately arises if we show that L(X̂ + tX̃) = Li(Ut,Vt) for i = 1, 2.

L(X) consists of the sum of a differentiable loss function denoted as l(Y,X) and the nonconvex
matrix function ‖X‖pSp and its subderivatives at X̂ w.r.t X̃ are defined as

dLX̃(X̂) = lim
t↘0

Z→X̃

inf
L(X̂ + tZ)− L(X̂)

t
(25)

From the above definition and due to the continuity of L(X) it becomes evident that nonnegative
subderivatives imply L(X̂ + tX̃)− L(X̂) ≥ 0 for t↘ 0.

Next, without loss of generality we assume, that the columns of Ũ (and Ṽ) belong to the subspace
formed by the direct sum of the columnspace of Û (resp. V̂) and the columnspace of a matrix
Û⊥ ∈ Rm×(m−r) (resp. V̂⊥ ∈ Rn×(n−r)) with rank(Û⊥) ≤ (m− r) (resp. rank(V̂⊥) ≤ (n− r))
such that colsp(Û) ⊥ colsp(Û⊥) (resp. colsp(V̂) ⊥ colsp(V̂⊥) ). That said we get

Ũ = ÛA + Û⊥B (26)

Ṽ = V̂C + V̂⊥D (27)

Since matrices A,C of size m×m and B,D of sizes (m− r)×m and (n− r)×m respectively,
are arbitrary, there is no loss of generality by expressing Ũ, Ṽ as in (26) and (27). By (26) and (27)
we hence have

ŨṼ> = Û AC>︸ ︷︷ ︸
K1

V̂> + Û AD>︸ ︷︷ ︸
K2

V̂>⊥ + Û⊥BC>︸ ︷︷ ︸
K3

V̂> + Û⊥BD>︸ ︷︷ ︸
K4

V̂>⊥ (28)

= ÛK1V̂
> + ÛK2V̂

>
⊥ + Û⊥K3V̂

> + Û⊥K4V̂
>
⊥ (29)

By using Theorem 4, we can employ the dual relationship between the subderivatives of L(X) defined
in (25) and the regular subgradients thereof,

dLX̃(X̂) = sup{〈Q, X̃〉|Q ∈ ∂‖X̂‖pSp}+ 〈∇l(Y, X̂), X̃〉 (30)

In the following, we will show that the values of the subderivatives in (30), remain unaffected if we
assume that K1 is a diagonal matrix and matrices K2,K3 vanish. In doing so, both matrices Ũ and
Ṽ are conveniently expressed in a desirable and simplified form.

Focusing on the first term of (30) and by using the form for the subgradients of ‖X‖pSp given in

Lemma 1 at X̂ where X̂ = UXΣ+VX, with UX ∈ Rm×r,VX ∈ Rn×r and Σ+ ∈ Rr×r+ denotes
the singular value decomposition of X̂ we have,

〈UX∂‖Σ+‖ppV>X + W, ŨṼ>〉 = 〈UX∂‖Σ+‖ppV>X, ŨṼ>〉+ 〈W, ŨṼ>〉 (31)

By using (29), the first term of (31) is rewritten as

〈UX∂‖Σ+‖ppV>X, ŨṼ>〉 = 〈UX∂‖Σ+‖ppV>X, ÛK1V̂
> + ÛK2V̂

>
⊥ + Û⊥K3V̂

> + Û⊥K4V̂
>
⊥〉

= 〈UX∂‖Σ+‖ppV>X, ÛK1V̂
>〉 = 〈∂‖Σ+‖pp,U>XÛK1V̂

>VX〉 (32)
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We have U>XÛ = [Σ
1
2
+ 0m−r] and V>XV̂ = [Σ

1
2
+ 0m−r] where 0m−r denote m− r zero columns,

and next we define with a slight abuse of notation Σ̃
1
2 = [Σ

1
2
+ 0m−r]. From (32) we have

〈UX∂‖Σ+‖ppV>X, ŨṼ>〉 = 〈∂‖Σ+‖pp, Σ̃
1
2 K1Σ̃

T, 12 〉 (33)

Based on the above analysis, it becomes evident that (33) is invariant to the values of non-diagonal
elements of K1. Finally, for the second term of (31), we have

〈W, ŨṼ>〉 = 〈W, ÛK1V̂
> + ÛK2V̂

>
⊥ + Û⊥K3V̂

> + Û⊥K4V̂
>
⊥〉 = 〈W, Û⊥K4V̂

>
⊥〉

= 〈D,K4〉 (34)

where the last equality by definition of W according to Lemma 1. Recall that D ∈ R(m−r)×(n−r)

contains elements in the interval (−∞,+∞) on its main diagonal and zeros elsewhere and hence the
term D,K4, is also invariant to non-diagonal elements of K4.

Let us now focus on the second term of the subderivative defined in (30) i.e., 〈∇l(Y, X̂), X̃〉. We
have

〈∇l(Y, ÛV̂>), ŨṼ>〉 = 〈∇l(Y, ÛV̂>), ÛK1V̂
> + ÛK2V̂

>
⊥ + Û⊥K3V̂

> + Û⊥K4V̂
>
⊥〉
(35)

= 〈∇l(Y, ÛV̂>), ÛK1V̂
>〉+ 〈∇l(Y, ÛV̂>), ÛK2V̂

>
⊥〉

+ 〈∇l(Y, ÛV̂>), Û⊥K3V̂
>〉+ 〈∇l(Y, ÛV̂>), Û⊥K4V̂

>
⊥〉 (36)

Focusing on the first term of (36) we get

〈∇l(Y, ÛV̂>), ÛK1V̂
>〉 = 〈∇l(Y, V̂>)V̂, ÛK1V̂〉 (37)

(37) due to Lemma 6 takes the form

〈∇l(Y, V̂>)V̂, ÛK1V̂〉 = −〈Û∂‖Σ‖pSp , ÛK1〉 = −〈∂‖Σ‖pSp ,ΣK1〉 (38)

Following a similar analysis as above we can easily see that (38) is likewise invariant to non-diagonal
elements of K1. For the second term of (37) and again due to Lemma 6 we have

〈∇l(Y, ÛV̂>), ÛK2V̂
>
⊥〉 = −〈V̂∂‖Σ‖pSp ,K2V̂

>
⊥〉 = 0 (39)

It can be easily noticed that the same holds for the third term of (36) involving K3. Hence we have
shown that the values of the subderivatives defined in (25) for the given X̃ = ŨṼ> where ŨṼ>

takes the form given in (29), are not affected by K2,K3 and non-diagonal elements of K1.

That being said we can now simplify the expression of X̃ = ŨṼ> without loosing generality as

ŨṼ> = UXTV>X + UX,⊥PVT
X,⊥ (40)

where UX,⊥PVT
X,⊥ arises by the singular value decomposition of Û⊥K4V̂

>
⊥. Note that T,P are

r× r and m− r×m− r diagonal matrices containing the r nonzero diagonal elements of K1Σ and
the singular values of Û>⊥K4V̂

>
⊥, respectively. With the simplified form of (40) we now go back to

the expression of UtV
>
t in (24) assuming t→ 0,

UtV
>
t = ÛV̂> + tŨṼ> (41)

= UXΣ+V>X + t(UXTV>X + UX,⊥PV>X,⊥) (42)

= [UX UX,⊥]

[
Σ+ + tT 0

0 tP

] [
VX

VX,⊥

]
(43)

(43) can be viewed as the singular value decomposition of matrix X̂ + tX̃.

By setting Ut = [UX UX,⊥]

[
(Σ+ + tT)

1
2 0

0 (tP)
1
2

]
and Vt = [VX VX,⊥]

[
(Σ+ + tT)

1
2 0

0 (tP)
1
2

]
it becomes evident that L(X̂ + tX̃) = Li(Ut,Vt)

for i = 1, 2, which concludes the proof.
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2 Proof of Proposition 1

Proof. If we first consider the case with δ = 0, then since ‖u‖2 = 1 and ‖v‖2 = 1 we need to solve
the following

arg min
τ≥0,u,v

{
f(τ,u,v) = −τ2〈A∗(R),uv>〉+ 1

2τ
4 + λτ2p

}
s.t. ‖u‖2 = 1, ‖v‖2 = 1 (44)

Note that for any non-negative τ the solution to the above w.r.t. (u,v) is given by the largest singular
vector pair of A∗(R). Substituting this into the above equation gives the following problem:

arg min
τ≥0

−τ2σ(A∗(R)) + 1
2τ

4 + λτ2p (45)

Clearly for τ = 0 the above equation is equal to 0, so we are left to test whether ∃τ > 0 such that the
above is strictly less than 0. For p ∈ (0, 1), τ > 0, this results in the following:

−τ2σ(A∗(R)) + 1
2τ

4 + λτ2p < 0 ⇐⇒ λ− τ2−2pσ(A∗(R) + 1
2τ

4−2p < 0 (46)

Finding the critical points of the above w.r.t. τ we get:

−(2− 2p)τ1−2pσ(A∗(R)) + 4−2p
2 τ3−2p = 0 ⇐⇒ (47)

−(2− 2p)σ(A∗(R)) + (2− p)τ2 = 0 ⇐⇒ (48)

τ = ±
√

2− 2p

2− p
σ(A∗(R)) (49)

Since only the positive root is feasible we can substitute it into (46) to test whether the minimum is
strictly negative.

To see the result with δ > 0, note that result is given follow the same approach, with the exception
that the objective in (44) is no longer the exact objective we need minimize, but rather we need to
minimize:

f̃(τ,u,v) = −τ2〈A∗(R),uv>〉+ 1
2τ

4‖A(uv>)‖2F + λτ2p (50)
The result is then completed by noting that for ‖u‖2 = ‖v‖2 = 1 and any τ ≥ 0 the following bound
is provided by restricted isometry:

|f̃(τ,u,v)− f(τ,u,v)| = | 12τ
4‖A(uv>)‖2F − 1

2τ
4| ≤ 1

2δτ
4 (51)

3 The proposed Variational Schatten-p matrix completion algorithm

In this section we present the matrix completion minimization algorithm for variational Sp regularized
objective function.

Recall that the factorized Sp regularized objective function is given as,

min
U,V

L(U,V), where (52)

L(U,V) =
1

2
‖PZ(Y −UVT )‖2F + λ

d∑
i=1

(‖ui‖22 + ‖vi‖22)p. (53)

The proposed Variational Schatten-p algorithm is based on the ideas stemming from the block
successive minimization framework (BSUM), [4, 5]. That is, it assumes local tight upper-bounds
of the objective (53), for updating the matrix factors U and V. More specifically, following the
relevant low-rank matrix factorization based matrix completion algorithm of [6], matrices U and V
are updated by minimizing approximate second order Taylor expansions of (53), i.e.,

Ut+1 = min
U

g(U|Ut,Vt) (54)

and

Vt+1 = min
V

q(V|Ut+1,Vt) (55)
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where the superscript t denotes the iteration number and g(U|Ut,Vt) and q(V|Ut+1,Vt) have the
following form

g(U|Ut,Vt) = L(Ut,Vt) + trace{(U−Ut)>∇UL(Ut,Vt)}

+
1

2
vec(U−Ut)>H̄Utvec(U−Ut) (56)

q(V|Ut+1,Vt) = L(Ut+1,Vt) + trace{(V −Vt)>∇VL(Ut+1,Vt)}

+
1

2
vec(V −Vt)>H̄Vtvec(V −Vt) (57)

The approximate Hessian matrices H̄Ut and H̄Vt are of block diagonal form of sizes md×md and
nd× nd, respectively, and are defined as follows

H̄Ut = Im ⊗ H̃Ut (58)

H̄Vt = In ⊗ H̃Vt (59)

where ⊗ denotes the Kronecker product,

H̃Ut = Vt,>Vt + λW(Ut,Vt) (60)

H̃Vt = Ut+1,>Ut+1 + λW(Ut+1,Vt) (61)

and W(Ut,Vt) = diag([p(‖ui‖22 +‖vi‖22)p−1]i=1,2,...,d). Since the objective function is non-smooth
at the origin for p ≤ 1, a pruning process is followed i.e., columns of matrix factors U and V
whose energy is below a threshold are deleted. In doing so, division by zero is always avoided in the
computation of W(Ut,Vt).

Moreover, it can be easily shown that both g(U|Ut,Vt) and q(V|Ut+1,V) are local tight upper-
bounds of the original objective function since the difference of the approximate Hessian matrices
from the true ones result to a positive semi-definite matrix (see [6] for details). Finally, convergence
to stationary points of the original objective function can be established since all criteria required
according to the BSUM framework, are satisfied, [4]. The outline of the algorithm is given in
Algorithm 1. Note that the rank-one update strategy described in Section 4.2 (see Proposition 1)
of the main paper is also adopted after the convergence of the algorithm to a stationary point for
escaping potential poor local minima. The algorithm is assumed to converge when the relative error of
successive reconstructions of matrix X defined as ‖U

t+1Vt+1−UtVt‖F
‖UtVt‖F becomes less than a threshold

(denoted as tol in Algorithm 1) or the maximum iteration number is reached.

Algorithm 1 The proposed Variational Schatten-p matrix completion algorithm
Inputs: PZ(Y), λ, thres = 10−5,MaxIter = 1000, tol = 10−4

Initialize U0 ∈ Rm×d,V0 ∈ Rn×d
t = 0
for t = 1 : MaxIter do

Ut+1 = Uk −∇UL(Ut,Vk)H̃−1
Ut

Vt+1 = Vk −∇VL(Ut+1,Vk)H̃−1
Vt

Column Pruning:
if ‖ui‖2 ≤ thres or ‖vi‖2 ≤ thres, then

Delete ui and vi, (i = 1, 2, . . . , d).
end if
t = t+ 1
if converged and rank-one update condition is satisfied then

Add rank-one matrix for escaping poor local minima (see Proposition 1).
end if

end for
Output: Ut+1,Vt+1
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