
Task ε
Scheduler

Without Learning Rate Resets With Periodic Learning Rate Resets

Clean Error
(%)

Robust Error (%) Clean Error
(%)

Robust Error (%)

PGD100 APGD100
CE

APGD100
DLR Square5K PGD100 APGD100

CE
APGD100

DLR Square5K

MNIST
LeNet
ε = 0.4

Const 1.56(17) 10.86(143) 15.18(155) 14.70(136) 19.58(45)
-Cosine 1.08(2) 8.46(82) 14.36(134) 13.46(129) 16.78(25)

Linear 1.06(6) 8.79(116) 13.91(150) 13.17(120) 17.05(47)
CIFAR10

VGG
ε = 8/255

Const 28.25(47) 56.19(32) 58.18(46) 58.65(69) 54.37(29) 28.33(81) 54.16(26) 55.45(26) 56.56(4) 52.85(18)
Cosine 25.06(19) 56.00(42) 57.83(45) 58.88(16) 53.95(15) 23.91(21) 53.10(18) 54.44(16) 55.80(24) 51.41(37)
Linear 23.56(95) 55.88(5) 57.74(16) 58.39(18) 53.66(24) 21.88(33) 52.97(17) 54.32(17) 55.63(17) 51.28(4)

CIFAR10
ResNet18
ε = 8/255

Const 18.62(6) 54.97(9) 57.26(13) 56.60(25) 50.59(19) 21.00(5) 48.87(25) 50.29(27) 50.98(6) 46.84(9)
Cosine 18.43(26) 53.85(21) 56.16(18) 55.77(24) 49.60(18) 19.90(18) 48.49(27) 49.71(22) 50.54(9) 46.19(11)
Linear 18.55(14) 53.41(10) 55.69(17) 55.45(22) 49.66(28) 20.26(28) 48.52(13) 49.73(9) 50.68(11) 46.47(26)

Table 1: Clean and robust error on the test set under various adversarial attacks. The numbers between the brackets indicate the
standard deviation across different runs. Specifically, for example, 28.25(47) stands for 28.25± 0.47.
We thank the reviewers for their constructive comments. Below, we first address the concerns raised by several reviewers1

regarding the experimental evaluation, and then provide point-to-point responses to each reviewer.2

The table above shows that our PAS strategy still yields better performance under stronger attacks. As suggested3

by reviewer 1, we first evaluate our models using 100-iteration PGD with 10 restarts (PGD100). To solve the issue4

of suboptimal step size, we also evaluate our models using the state-of-the-art AutoPGD attack [Croce ICML20],5

which searches for the optimal step size. We run AutoPGD for 100 iterations, based on either the cross-entropy loss6

(APGD100-CE) or the difference of logit ratio loss (APGD100-DLR). For black-box attacks, we run the state-of-the-art7

SquareAttack [Andriushchenko ECCV20] for 5000 iterations (Square5K).8
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Furthermore, we would like to emphasize that the main focus of our work is optimiza-9

tion. In this regard, one main advantage of PAS is to avoid convergence failure and10

make the optimization less sensitive to the learning rate, as shown in Figure 4. The11

figure on the right shows the same observation with l2 attacks. Specifically, under an12

l2 adversarial budget ε=4 on MNIST (as in [Madry ICLR18]), adversarial training with13

a constant ε fails to converge when using a high learning rate in Adam, e.g., 10−3. By14

contrast, a linear/cosine scheduler is more robust to the choice of learning rate and15

yields consistently better performance.16

Reviewer #1: The requested additional experiments are presented above. ReLU networks: We discuss ReLU networks17

in detail in Appendix A.3. Corollary 1 shows that gradient scattering is more severe under larger ε for ReLU networks.18

Gradient scattering is measured as the first-order gradient difference, i.e., ‖OθLε(θ1)−OθLε(θ2)‖, whose upper bound19

increases with ε for any activation function. Experimental settings: The step size of PGD follows [Ye ICCV19] and is20

the same as in the seminal work [Madry ICLR18]. Comparison with challenges: Both challenges are leaderboards for21

attacks, not defenses. The architecture of our MNIST models are the same as the ones in the challenge. When ε = 0.3,22

our model has better robust accuracy than the standard defense model provided in this challenge: our model yields a23

robust accuracy of 95.08% / 93.01% under PGD100 / PGD100 with 50 restarts, whereas the corresponding accuracy for24

the provided model is 92.52% / 89.62%. We will release our trained model for public testing.25

Reviewer #2: More experiments are provided in the general response. Error definition: Yes, they are 1-accuracy.26

Proposition 1: Following the definition in Equation 1, gε(x,W) is the adversarial loss of the point x under the27

adversarial budget Sε(x). We will revise the proof to make it clearer. Vε and Tε in binary cases: Thanks for pointing28

this out. We realized that this claim is incorrect and will remove it. However, this does not affect our other claims.29

Assumption on page 4: Precisely, our assumption is Oθg(x1, θ) 6= Oθg(x2, θ) when x1 6= x2. This assumption is30

based on the clean loss function g and is true in general for deep neural networks. By contrast, the conclusion31

involves the adversarial loss, and refers to the discontinuity of the parameter gradients, not the fact of having different32

parameter gradients for different inputs. Tightness of Proposition 2’s bound: We will move this claim to the main text.33

Linear model experiments: We will add this to validate the theorem. IBP-based local Lipschitz constant: IBP or convex34

relaxation calculate the upper bound Uε and the lower bound Iε of the adversarial loss: Iε(x, θ)≤gε(x, θ)≤Uε(x, θ).35

These bounds are computed based on the adversarial budget defined in the input space, whereas the Lipschitz constant36

is defined in the parameter space. Therefore, the curvature of these bounds, i.e., O2
θIε and O2

θUε, does not provide37

a bound for O2
θgε. We believe that calculating a tight guaranteed bound of the Hessian eigenvalues is non-trivial.38

Clarity: Thanks, we will revise as suggested. Related work: Note that we cite [Wong ICLR20], but their method differs39

from vanilla FGSM [Goodfellow ICLR14] by using a random starting point, while FGSM uses a fixed one. Regarding40

over-regularization, we agree that adversarially-trained models have considerably lower clean accuracy than the ones41

trained using the clean data. However, as observed in [Zhang ICLR20], the models trained by some provably-robust42

methods, such as convex relaxations, have even lower clean accuracy than those trained by PGD. We will clarify this.43

Reviewer #3: We have included more results in the general response. We choose datasets commonly used in the44

literature to facilitate comparisons. We are not aware of any work reporting adversarial training results on ImageNet.45

Reviewer #4: More experimental results are provided in the general response. We cite [Li NIPS17] and visualize the46

loss landscape in Figure 12 of Appendix C.2.2. In contrast to [Li NIPS17], however, we explore the neighborhood in the47

directions of the top two Hessian eigenvalues, which more clearly shows the sharpness of the loss landscape.48


