
We thank the reviewers for their careful consideration and their feedback. We provide our responses below.1

Response regarding numerical results. -“Adversarial robustness gained by FedRobust compared to distributed2

PGD and FGM methods:” (R1, R3) As noted by the reviewers, FedRobust achieved a similar (or superior) adversarial3

robustness to the standard PGD training. This observation can be explained by analyzing the generalization properties4

of these algorithms. We note that FedRobust’s improved robustness was obtained over the test samples. On the other5

hand, PGD consistently outperformed FedRobust on the training samples, achieving a near perfect training accuracy.6

However, FedRobust generalized better to the test samples and could overall outperform PGD on the test set. We will7

include the training performance scores in the final version for clarification. Also, the similar performance of FGM and8

PGD can be explained via the random Gaussian perturbations used for simulating the heterogeneity across clients and9

the results of Wong et al. (ICLR 2020) indicating FGM initialized at random perturbations performs as well as PGD.10

-“Effect of network size n and # of local updates τ ; other datasets:” (R1, R2) We have11

performed several new experiments to study the effect of larger n and τ and will add the new12

results. Here, we report some preliminary results for n=100 (top) and τ=5 (bottom). Both13

results indicate that FedRobust still offers a significant robustness gain over FedAvg. We14

will also conduct experiments using the suggested LEAF framework (FEMNIST dataset).15

-“Computation and communication times in speed comparisons:” (R1, R2) The time16

comparison made in the main body is in terms of the computation time for the same number17

of training iterations. We note that in our experiments the methods will share the same18

communication time as they have been trained for the same 10, 000 iterations (and rounds).19

-“Step-size of PGD and FGM:” (R3) For PGD training, we used the standard rule of thumb20

to choose step-size 2
k εpgd for each of k = 10 PGD steps. For FGM training, the effective21

step-size is the same as εfgm, since FGM normalizes the single-step perturbation.22

Response regarding theoretical results. -“Summary of contributions, technical advances23

and Theorems 1-4 in tandem:” (R3) We first consider a heterogeneity model where the data24

distribution at each node is an affine transformation of a mother distribution. Using this25

model, we formulate a robust federated optimization problem in eq. (3). To solve this minimax problem, we propose26

a communication-computation efficient optimization algorithm (FedRobust) and show its convergence (Theorems27

1, 2). This paper is the first work that integrates proof techniques from local SGD, minimax optimization, federated28

optimization, and provides provable robust federated methods. Other existing results in distributed minimax optimization29

and non-robust federated learning can be retrieved as special cases of our results. Then in Theorem 3, we ensure that30

when a new client with unseen data joins the federated network, the model learned by solving (3) is properly generalized.31

Finally, in Theorem 4 we connect our proposed minimax formulation (3) to distributionally robust optimization by32

showing that it indeed optimizes a lower-bound on the distributionally robust problem with Wasserstein cost in (7).33

-“Theorem 2 vs. prior results in distributed minimax optimization, effect of τ :” (R1, R2) Theorems 1, 2 characterize the34

convergence rates of FedRobust in which, each of the clients runs τ local updates in each round. General distributed35

minimax optimization algorithms can be viewed as special cases for τ = 1. The effect of running more than one local36

update (τ > 1) in the convergence rates are demonstrated in both theorems by the terms containing (τ − 1). Analysing37

the effect of τ > 1 is indeed a technical challenge in our convergence analysis (R2). At a high-level, τ controls the38

computation-communication trade-off as larger τ implies less communication at the expense of more computation (R1).39

-“Technical novelty of Theorem 3:” (R2, R3) We note that the distribution shift considered in this paper is device-40

dependent, i.e. all the samples stored at node i undergo the same transformation Λix+ δi. This is unlike the prior works41

in adversarial training such as Farnia et al. (2018), where each data sample is affected by a different transformation.42

Moreover, the affine shift considered in our paper is specified with two variable Λ, δ, generalizing over the prior works43

considering only δ. These two challenges distinguish Theorem 3 (R2). We also note that our proof of Theorem 3 uses44

the PAC-Bayes framework (McAllester, 1999), while Bartlett et al. (2017) analyzes the Rademacher complexity (R3).45

-“Discussion on learning rates:” (R3) The conditions on η1, η2 in Theorem 1 can be rewritten as linear constraints and46

are always feasible. Rewriting the last condition as linear in η1, η2: η1L̂+40(3η1L
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E.g.: η1 =c1 ln(T )/T, η2 =c2 ln(T )/T where c2 =[160κnL]−1 and c1 =min{[(482κ+ 6)τL]−1, [1440κ3nL]−1}.48

-“Practicality of the affine model in FL; nonparametric regime; effect of matrices Λ” (R4) The affine model considered49

in this paper is particularly practical for image classification tasks in FL as also elaborated in the introduction,50

where each camera’s imperfections affect its pictures (Robey et al., 2020). While this model provides significant51

robustness compared to additive-only perturbation models (i.e. Λ = I), it lays out potential new directions to study52

more complicated (non-affine) models such as neural network transformations. The nonparametric regime is another53

interesting generalization of this work, however in this case, nodes might need to solve a maximization problem at54

each iteration which can be problematic due to limited computation in federated settings. Diagonal Λ is also another55

interesting special case, however it may also fall short in capturing different filtering functions, e.g. rotation of images.56


