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1 Proof for Theorem 1

Theorem 1. Suppose that X̂j = HRjT> for j = 1, 2, . . . , |R|, where H,T,Rj are real matrices
and Rj is diagonal. Then, the following equation holds

min
X̂j=HRjT>

1√
|R|

|R|∑
j=1

(‖HRj‖2F + ‖T‖2F + ‖TR>j ‖2F + ‖H‖2F ) = ‖X̂ ‖∗.

The equation holds if and only if ‖h:d‖2‖r:d‖2 =
√
|R|‖t:d‖2 and ‖t:d‖2‖r:d‖2 =

√
|R|‖h:d‖2, for

all d ∈ {1, 2, . . . , D}, where h:d, r:d, and t:d are the d-th columns of H, R̃, and T, respectively.

Proof. We have that

|R|∑
j=1

(
‖HRj‖2F + ‖T‖2F

)
=

|R|∑
j=1

(
I∑

i=1

‖hi ◦ rj‖2F +

D∑
d=1

‖t:d‖2F

)

=

|R|∑
j=1

(
D∑

d=1

‖t:d‖2F +
I∑

i=1

D∑
d=1

h2
idr2jd

)

=

|R|∑
j=1

D∑
d=1

‖t:d‖22 +

D∑
d=1

‖h:d‖22‖r:d‖22

=

D∑
d=1

(‖h:d‖22‖r:d‖22 + |R|‖t:d‖22)

≥
D∑

d=1

2
√
|R|‖h:d‖2‖r:d‖2‖t:d‖2

=2
√
|R|

D∑
d=1

‖h:d‖2‖r:d‖2‖t:d‖2.
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The equality holds if and only if ‖h:d‖22‖r:d‖22 = |R|‖t:d‖22, i.e., ‖h:d‖2‖r:d‖2 =
√
|R|‖t:d‖2.

For all CP decomposition X̂ =
∑D

d=1 h:d ⊗ r:d ⊗ t:d, we can always let h′:d = h:d, r′:d =√
‖td‖2
√
|R|

‖h:d‖2‖r:d‖2 r:d and t′:d =

√
‖h:d‖2‖r:d‖2
‖t:d‖2

√
|R|

t:d such that

‖h′:d‖2‖r′:d‖2 =
√
|R|‖t′:d‖2,

and meanwhile ensure that X̂ =
∑D

d=1 h′:d ⊗ r′:d ⊗ t′:d. Therefore, we know that

1√
|R|

|R|∑
j=1

‖X̂j‖∗ =
1

2
√
|R|

|R|∑
j=1

min
X̂j=HRjT>

(‖HRj‖2F + ‖T‖2F )

≤ 1

2
√
|R|

min
X̂j=HRjT>

|R|∑
j=1

(‖HRj‖2F + ‖T‖2F )

= min
X̂=

∑D
d=1 h:d⊗r:d⊗t:d

D∑
d=1

‖h:d‖2‖r:d‖2‖t:d‖2

= ‖X̂ ‖∗.

In the same manner, we know that

1

2
√
|R|

min
X̂j=HRjT>

|R|∑
j=1

(‖TR>j ‖2F + ‖H‖2F ) = ‖X̂ ‖∗.

The equality holds if and only if ‖t:d‖2‖r:d‖2 =
√
|R|‖h:d‖2.

Therefore, the conclusion holds if and only if ‖h:d‖2‖r:d‖2 =
√
|R|‖t:d‖2 and ‖t:d‖2‖r:d‖2 =√

|R|‖h:d‖2, ∀ d ∈ {1, 2, . . . , D}.

Therefore, for DURA, we know that

min
X̂j=HRjT>

1√
|R|

g(X̂ ) = ‖X̂ ‖∗,

which completes the proof.

Table 1: Comparison to Reg p1. “R”: RESCAL. “C”: ComplEx.

WN18RR FB15k-237
MRR H@1 H@10 MRR H@1 H@10

R-Reg p1 .281 .220 .394 .310 .228 .338
C-Reg p1 .409 .393 .439 .316 .229 .487

R-DURA .498 .455 .577 .368 .276 .550
C-DURA .491 .449 .571 .371 .276 .560

2 The optimal value of p

In DB models, the commonly used p is either 1 or 2. When p = 2, DURA takes the form as
the one in Equation (8) in the main text. If p = 1, we cannot expand the squared score function
of the associated DB models as in Equation (4). Thus, the induced regularizer takes the form of∑

(hi,rj ,tk)∈S ‖hiR̄j − tk‖1 + ‖tkR>j − hi‖1. The above regularizer with p = 1 (Reg p1) does not
gives an upper bound on the tensor nuclear-2 norm as in Theorem 1. Table 1 shows that, DURA
significantly outperforms Reg p1 on WN18RR and FB15k-237. Therefore, we choose p = 2.
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Table 2: Hyperparameters found by grid search. k is the embedding size, b is the batch size, λ is the
regularization coefficients, and λ1 and λ2 are weights for different parts of the regularizer.

WN18RR FB15k-237 YAGO3-10
k b λ λ1 λ2 k b λ λ1 λ2 k b λ λ1 λ2

CP 2000 100 1e-1 0.5 1.5 2000 100 5e-2 0.5 1.5 1000 1000 5e-3 0.5 1.5
ComplEx 2000 100 1e-1 0.5 1.5 2000 100 5e-2 0.5 1.5 1000 1000 5e-2 0.5 1.5
RESCAL 512 1024 1e-1 1.0 1.0 512 512 1e-1 2.0 1.5 512 1024 5e-2 1.0 1.0

3 Computational Complexity

Suppose that k is the number of triplets known to be true in the knowledge graph, n is the embedding
dimension of entities. Then, for CP and ComplEx, the complexity of DURA isO(kn); for RESCAL,
the complexity of DURA is O(kn2). That is to say, the computational complexity of weighted
DURA is the same as the weighted squared Frobenius norm regularizer.

4 More Details About Experiments

In this section, we introduce the training protocol and the evaluation protocol.

4.1 Training Protocol

We adopt the cross entropy loss function for all considered models as suggested in Ruffinelli
et al. [5]. We adopt the “reciprocal” setting that creates a new triplet (ek, r

−1
j , ei) for each triplet

(ei, rj , ek) [4, 3]. We use Adagrad [2] as the optimizer, and use grid search to find the best hyper-
parameters based on the performance on the validation datasets. Specifically, we search learning
rates in {0.1, 0.01}, regularization coefficients in {0, 1× 10−3, 5× 10−3, 1× 10−2, 5× 10−2, 1×
10−1, 5 × 10−1}. On WN18RR and FB15k-237, we search batch sizes in {100, 500, 1000} and
embedding sizes in {500, 1000, 2000}. On YAGO3-10, we search batch sizes in {256, 512, 1024}
and embedding sizes in {500, 1000}. We search both λ1 and λ2 in {0.5, 1.0, 1.5, 2.0}.
We implement DURA in PyTorch and run on all experiments with a single NVIDIA GeForce RTX
2080Ti graphics card.

As we regard the link prediction as a multi-class classification problem and adopt the cross entropy
loss, we can assign different weights for different classes (i.e., tail entities) based on their frequency
of occurrence in the training dataset. Specifically, suppose that the loss of a given query (h, r, ?) is
`((h, r, ?), t), where t is the true tail entity, then the weighted loss is

w(t)`((h, r, ?), t),

where

w(t) = w0
#t

max{#ti : ti ∈ training set}
+ (1− w0),

w0 is a fixed number, #t denotes the frequency of occurrence in the training set of the entity t. For
all models on WN18RR and RESCAL on YAGO3-10, we choose w0 = 0.1 and for all the other
cases we choose w0 = 0.

We choose a learning rate of 0.1 after grid search. Table 2 shows the other best hyperparameters for
DURA found by grid search. Please refer to the Experiments part in the main text for the search
range of the hyperparameters.

4.2 Evaluation Protocol

Following Bordes et al. [1], we use entity ranking as the evaluation task. For each triplet (hi, rj , tk)

in the test dataset, the model is asked to answer (hi, rj , ?) and (tk, r
−1
j , ?). To do this, we fill the
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positions of missing entities with candidate entities to create a set of candidate triplets, and then
rank the triplets in descending order by their scores. Following the “Filtered” setting in Bordes et al.
[1], we then filter out all existing triplets known to be true at ranking. We choose Mean Reciprocal
Rank (MRR) and Hits at N (H@N) as the evaluation metrics. Higher MRR or H@N indicates better
performance. Detailed definitions are as follows.

• The mean reciprocal rank is the average of the reciprocal ranks of results for a sample of
queries Q:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
.

• The Hits@N is the ratio of ranks that no more than N :

Hits@N =
1

|Q|

|Q|∑
i=1

1x≤N (ranki),

where 1x≤N (ranki) = 1 if ranki ≤ N or otherwise 1x≤N (ranki) = 0.

4.3 The queries in T-SNE visualization

In Table 3, we list the ten queries used in the T-SNE visualization (Section 5.4 in the main text). Note
that a query is represented as (h, r, ?), where h denotes the head entity and r denotes the relation.

Table 3: The queries in T-SNE visualizations.

Index Query
1 (political drama, /media common/netflix genre/titles, ?)
2 (Academy Award for Best Original Song, /award/award category/winners./award/award honor/ceremony,?)
3 (Germany, /location/location/contains,?)
4 (doctoral degree , /education/educational degree/people with this degree./education/education/major field of study,?)
5 (broccoli, /food/food/nutrients./food/nutrition fact/nutrient,?)
6 (shooting sport, /olympics/olympic sport/athletes./olympics/olympic athlete affiliation/country,?)
7 (synthpop, /music/genre/artists, ?)
8 (Italian American, /people/ethnicity/people,?)
9 (organ, /music/performance role/track performances./music/track contribution/role, ?)

10 (funk, /music/genre/artists, ?)
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