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1 Model and training details

Here we give details to our models, and to the encoding and representation of images and questions
used in our models.

1.1 Details to: Flexible associations through Hebbian plasticity

Model details We used a CNN as input encoder in this task. The CNN consisted of 11 weight
layers with the following structure: 5 × (Conv2D → BatchNorm → Conv2D → BatchNorm →
MaxPooling→ Dropout)→ Fully connected→ BatchNorm→ Dropout, with 32, 64, 128, 256, and
512 filters, respectively. Each with a kernel size of 3 × 3 (stride = 1, padding="same") and ELU
nonlinearity [1]. We used a 2× 2 pool size in the max pooling layers. The dropout rate was set to
0.1, 0.1, 0.2, 0.3, 0.3, and 0.3, respectively. The last fully connected layer was of size 128 followed
by a ReLU nonlinearity (BatchNorm denotes a batch normalization layer [2]).

Training details We used the MNIST and the CIFAR-10 data set in this task (we kept the default
train-test split of these data sets; data sets from the TensorFlow data set API). Training examples
were generated as described in the main text. We trained on 11 250 examples and tested on 2230
examples. Here, an example is one full sequence of image pairs (including random images) and
one query image. The optimal hyper-parameters were selected through grid search on a held-out
validation set which was 10% of the training set. The model was trained with Adam [3] using a
learning rate of µ = 0.001, that was decayed exponentially (starting at epoch 50) with a decay rate of
0.1. The weights were initialized using the He uniform variance scaling initializer [4]. We applied
L2 regularization to the weights. The L2-norm of these weights was scaled by 0.001 before adding
it to the loss. The hetero-associative memory module was represented by a square matrix of order
m = 200 and was initialized with all its elements set to zero. Plasticity coefficients were set to
γ+ = 0.01 and γ− = 0.01, and wmax was set to 1. The networks were trained for 100 epochs
with a batch size of 32 (one epoch consists of all samples of the training set). Gradients with an
L2-norm larger than 10.0 were normalized to have norm 10.0. We performed two independent runs
with different random initializations and report the results of the model with the highest validation
accuracy in these runs.

1.2 Details to: Question answering through Hebbian plasticity

Model details We evaluated three different representations for the sentences. The first one is
the standard bag-of-words (BoW) representation. It embeds each word wt,j of a sentence xt =
{wt,1,wt,2, . . . ,wt,J} and sums the resulting vectors: et =

∑
j Awt,j . Here, A is the embedding

matrix. As [5] pointed out, this representation has the drawback that it can not capture the order of
the words in the sentence, which is important for some tasks. We therefore used a representation
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that encodes the position of the words within a sentence (as proposed in [5]). The authors call
this type of representation position encoding (PE), which takes the form: et =

∑
j lj ◦ Awt,j ,

where ◦ is the Hadamard product. The column vector lj with one-based indexing has the structure
lkj = (1 − j/J) − (k/d)(1 − 2j/J), where J is the number of words in the sentence and d the
embedding size. We found it helpful to let the model choose for itself which type of sentence encoding
to use. As proposed in [6], we therefore used a learned encoding (LE) given by et =

∑
j fj ◦Awt,j .

The vectors fj were constant across time steps and were trained jointly with the other parameters of
our model. By using this type of encoding the model can adapt the sentence representation to best
suit the task at hand. It can either choose a BoW representation (by setting all elements in fj to one),
a position encoding, or any encoding beneficial to the task.

In order to enable our models to capture the temporal context of a task, we used a temporal encoding
for sentences as introduced in [5]. This encoding uses a special matrix TA that encodes temporal
information. The modified sentence representation is then given by et =

∑
j Awt,j + rowt(TA)

(BoW), et =
∑
j lj ◦Awt,j + rowt(TA) (PE), and et =

∑
j fj ◦Awt,j + rowt(TA) (LE), where

rowt(TA) is the tth row of the matrix TA. Note that TA was learned during training and that sentences
are indexed in reverse order, so that x1 is the last sentence of a story.

Answers to questions in the bAbI QA tasks are typically a single word. In a few tasks, answers are a
set of words (e.g., task 8: Lists/Sets). In this case, we considered each answer as one word in the
vocabulary (i.e., there was one output class for each word pair that could be a target output).

We found it helpful to apply a batch normalization layer at the output of the input encoder of our
model.

Training details The optimal hyper-parameters were selected through grid search on a held-out
validation set which was 10% of the bAbI training set. We used version 1.2 of the data set (we kept
the default train-test split of the data set). The model was trained with Adam [3] using a learning rate
of µ = 0.003, that was reduced by 15% every 20 epochs. The weights and the embedding matrices
were initialized using the He uniform variance scaling initializer [4]. We found it helpful to apply L2

regularization to W s
key, W s

val, and W q
key. The L2-norm of these weights was scaled by 0.001 before

adding it to the loss. The embedding dimension d was 80. The hetero-associative memory module
was represented by a square matrix of order m = 100 and was initialized with all its elements set
to zero. Plasticity coefficients were set to γ+ = 0.01 and γ− = 0.01, and wmax was set to 1. In
our recurrent model, the number of memory queries N was set to 3. The networks were trained for
100 epochs with a batch size of 128 (200 epochs with a batch size of 32 in the 1k training example
setting). Gradients with an L2-norm larger than 20.0 were normalized to have norm 20.0. Since the
number of sentences and the number of words per sentence varied within and between tasks, a null
symbol was used to pad them to a fixed size. The embedding of the null symbol was constraint to be
zero. We observed rather high variance in the model’s performance for some tasks. We therefore
performed three independent runs with different random initializations and report the results of the
model with the highest validation accuracy in these runs (similar to previous work [5], [6]).

1.3 Details to: Memory-dependent memorization

Model details Here we present an extension to the H-Mem model where the computation of the
value-vectors during storage is dependent on the memory content. More specifically, in the store-
branch, we compute a vector ks

t by passing the input-embedding et through a weight matrix W s
key of

size m× d followed by a ReLU nonlinearity and a layer normalization:
ks
t = LNγ,β(ReLU(W s

keyet)), (1)
where LNγ,β denotes layer normalization [7] with learnable parameters γ and β, and where
ReLU(z) = (ReLU1(z), . . . ,ReLUm(z))ᵀ with ReLUi(z) = max(0, zi). We call ks

t the key-
vector. Similarly, we compute a value-vector v̂s

t by using another matrix Ŵ s
val with the same size as

W s
key:

v̂s
t = ReLU(Ŵ s

valet). (2)

The key-vector ks
t at time t is then used to extract the associated value-vector from memory by taking

the matrix-vector product of W assoc,t and the key-vector ks
t:

ṽs
t =W assoc,tks

t. (3)
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The vector v̂s
t and the vector ṽs

t are concatenated and passed through a matrix W s
val of size m× 2m

followed a layer normalization to compute the final value-vector vs
t :

vs
t = LNγ,β(W

s
val(v̂

s
t
ᵀ, ṽs

t
ᵀ)ᵀ). (4)

We then use the same Hebbian plasticity rule (see Eq. (1) in the main text) for establishing the
association between key-vector ks

t and value-vector vs
t . The recall-branch and the final output layer

were implemented as before (see Methods in the main text).

Training details We used the same hyper-parameters as before (see Training detais in Section 1.2),
except we trained for 250 epochs using Adam [3] with a learning rate of 0.003, that was decayed
exponentially (starting at epoch 150) with a decay rate of 0.01. Weights Ŵ s

val were initialized using
the He uniform variance scaling initializer [4]. We applied L2 regularization to Ŵ s

val. The L2-norm
of these weights was scaled by 0.001 before adding it to the loss.

2 Results on 1k QA data set

Table S1: Test error rates (in %) on the 20 bAbI QA tasks for models using 1k training examples.
Keys: BoW = bag-of-words representation; PE = position encoding representation; LE = learned
encoding.

Baseline H-Mem

Task LSTM MemN2N EntNet BoW PE LE

1: Single Supporting Fact 50.0 0.0 0.7 0.0 0.0 0.0
2: Two Supporting Facts 80.0 8.3 56.4 65.5 66.1 66.7
3: Three Supporting Facts 80.0 40.3 69.7 66.1 67.9 66.2
4: Two Arg. Relations 39.0 2.8 1.4 43.6 0.0 0.0
5: Three Arg. Relations 30.0 13.1 4.6 30.6 26.6 28.8
6: Yes/No Questions 52.0 7.6 30.0 32.6 33.6 30.3
7: Counting 51.0 17.3 22.3 19.3 18.1 17.6
8: Lists/Sets 55.0 10.0 19.2 12.7 12.1 11.0
9: Simple Negation 36.0 13.2 31.5 28.8 28.1 28.7
10: Indefinite Knowledge 56.0 15.1 15.6 41.9 43.0 40.5
11: Basic Coreference 38.0 0.9 8.0 2.5 3.3 2.6
12: Conjunction 26.0 0.2 0.8 0.0 0.0 0.0
13: Compound Coref. 6.0 0.4 9.0 4.0 2.0 3.8
14: Time Reasoning 73.0 1.7 62.9 24.5 29.4 26.4
15: Basic Deduction 79.0 0.0 57.8 18.8 0.0 0.0
16: Basic Induction 77.0 1.3 53.2 54.2 55.2 57.0
17: Positional Reasoning 49.0 51.0 46.4 41.1 43.9 44.5
18: Size Reasoning 48.0 11.1 8.8 45.3 8.3 8.0
19: Path Finding 92.0 82.8 90.4 88.3 90.0 86.8
20: Agent’s Motivations 9.0 0.0 2.6 0.0 0.0 0.0

Mean error 51.3 13.9 29.6 31.0 26.4 25.9
Failed tasks (err. > 5%) 20 11 15 15 13 13
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3 Comparison of our feed-forward and our recurrent model on QA data set

In Table S2 we compare our feed-forward model to our recurrent model. We compare the performance
of these models in terms of their mean error, error on individual tasks, and the number of failed
tasks. We observed a variety of tasks that could be solved by our recurrent model but not by the
feed-forward model. Fig. S1 shows some examples of bAbI tasks along with the evolution of the
validation error over 100 epochs of our H-Mem models on these tasks.

Table S2: Test error rates (in %) on the 20 bAbI QA tasks for our feed-forward model N = 1 and our
recurrent model N = 3 using 10k training examples (mean test errors for 1k training examples are
shown at the bottom). Results for N = 3 match those reported in Table 1 of the main manuscript.
Keys: BoW = bag-of-words representation; PE = position encoding representation; LE = learned
encoding.

H-Mem (N = 1) H-Mem (N = 3)

Task BoW PE LE BoW PE LE

1: Single Supporting Fact 0.0 0.0 0.0 0.0 0.0 0.0
2: Two Supporting Facts 63.9 64.9 64.2 0.2 0.0 0.2
3: Three Supporting Facts 56.6 59.0 58.6 30.5 24.9 26.9
4: Two Arg. Relations 42.5 0.0 0.0 37.8 0.0 0.0
5: Three Arg. Relations 9.1 4.3 4.1 11.6 1.8 1.3
6: Yes/No Questions 11.2 9.6 12.2 1.2 1.5 1.2
7: Counting 0.6 0.6 0.8 0.5 6.8 0.8
8: Lists/Sets 0.4 0.8 0.4 0.7 0.8 0.5
9: Simple Negation 14.8 14.6 15.5 2.9 6.6 3.3
10: Indefinite Knowledge 21.8 22.6 21.3 1.4 1.5 1.5
11: Basic Coreference 5.4 1.0 0.1 0.0 0.0 0.0
12: Conjunction 0.0 0.0 0.0 0.0 0.0 0.0
13: Compound Coref. 2.3 3.8 2.3 0.0 0.0 0.0
14: Time Reasoning 7.9 7.9 7.9 0.0 0.3 1.1
15: Basic Deduction 14.0 0.4 1.0 10.6 0.0 0.0
16: Basic Induction 53.4 55.3 54.2 53.6 54.3 54.8
17: Positional Reasoning 41.2 38.0 38.8 38.7 41.1 28.7
18: Size Reasoning 43.6 3.1 4.8 44.3 6.8 1.9
19: Path Finding 83.0 76.4 74.7 74.8 70.0 77.1
20: Agent’s Motivations 0.0 0.0 0.0 0.0 0.0 0.0

Mean error 23.6 18.1 18.0 15.4 10.8 10.0
Failed tasks (err. > 5%) 14 9 9 8 7 4

On 1k training data
Mean error 33.2 28.5 28.2 31.0 26.4 25.9
Failed tasks (err. > 5%) 17 16 16 15 13 13
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Task  19: Path Finding

The kitchen is south of the office.
The bedroom is north of the office.
The bathroom is east of the office.
The bedroom is east of the hallway.
How do you go from the office to the hallway?
        n,wAnswer:

Mary moved to the bathroom.
John went to the hallway.
Daniel went back to the hallway
Sandra moved to the garden.
Where is Daniel?
        hallwayAnswer:

Task 1: Single Supporting Fact

Sandra journeyed to the garden.
Sandra went back to the bedrooom.
John went to the hallway.
Daniel journeyed to the bathroom.
Is Sandra in the office?
        noAnswer:

Task 6: Yes/No Questions

Julie is either in the cinema or the park.
Mary is in the cinema.
Bill travelled to the cinema.
Fred is in the kitchen.
Is Julie in the park?
        maybeAnswer:

Task 10: Indefinite Knowledge

Figure S1: Sample stories from the bAbI data set and evolution of the validation error of H-
Mem for this task. A) Example story from task 1 of the bAbI data set and evolution of the validation
error over 100 epochs of the feed-forward (blue) and recurrent (green) H-Mem model. Both models
solved this task since it requires only one memory query to answer the question. B) Same as in A)
but for task 6 of the bAbI data set. The recurrent model solved this task but not the feed-forward
model. C) Same as in A) but for task 10 of the bAbI data set. The recurrent model solved this task
but not the feed-forward model. D) Same as in A) but for task 19 of the bAbI data set. Both models
had failed to solve this task.
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4 Similarity analysis and visualization of key-value pairs

To understand H-Mem more deeply, we analyzed the key- and value-vectors that the model extracts
from input. We therefore conducted an additional experiment on bAbI task 1 and 15. After training,
we reran the model over stories of these tasks and computed the cosine similarity SC of recall keys
kq
t,n (resp. recalled values va

t,n) to keys ks
t (and values vs

t) of previous storing operations. The
results of this analysis for one story of bAbI task 1 and 15 are summarized in Fig. S2 and Fig. S3,
respectively. The model learns to extract the relevant key-value pairs from the input and stores that in
memory. At a query, it learns which keys are essential in order to retrieve the informative values.
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Figure S2: Key-value pairs and cosine similarity for a story of bAbI task 1. A) Shown are the
extracted keys ks

t and values vs
t for each sentence of the story, the recall key kq

t,1 and the recalled
value va

t,1. B) Cosine similarity SC of recall keys kq
t,n to keys ks

t (top) and cosine similarity of
recalled values va

t,n to values vs
t (bottom). Results are shown for the nth memory query (note that we

set the total number of memory queries N to one). The recall key kq
7,1 for the question where is

sandra is most similar to the key of the sentence where sandra appeared (key ks
3). The recalled

value va
7,1 is most similar to the value of the sentence in time step 3, that is the sentence that supports

the correct answer (kitchen).
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Figure S3: Key-value pairs and cosine similarity for a story of bAbI task 15. A) Shown are the
extracted keys ks

t and values vs
t for each sentence of the story, the recall keys kq

t,n and the recalled
values va

t,n. B) Cosine similarity SC of recall keys kq
t,n to keys ks

t (top) and cosine similarity of
recalled values va

t,n to values vs
t (bottom) for the nth memory query. The recall key kq

7,1 at the
first recall for the question what is emily afraid of, is most similar to the key of the sentence
containing emily (key ks

4). The recall key at the second and third memory query, that is kq
7,2 and

kq
7,3, respectively, has a high similarity to keys of sentences that contain emily and cat. The recalled

value of the first and second query (va
7,1, va

7,2) has a high similarity to values of sentences containing
cat (values vs

1, vs
2, and vs

4). The value of the third memory query, that is va
7,3, is most similar to

the value of the first sentence in the story (vs
1; that is, the sentence that supports the correct answer

wolves).
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5 Results on QA data set of our extended model with memory-dependent
memorization

Table S3: Test error rates (in %) on the 20 bAbI QA tasks for our extended model with memory-
dependent memorization using 1k training examples (left) and 10k training examples (right). Keys:
BoW = bag-of-words representation; PE = position encoding representation; LE = learned encoding.

On 1k training data On 10k training data

Task BoW PE LE BoW PE LE

1: Single Supporting Fact 0.0 0.1 0.0 0.0 0.0 0.0
2: Two Supporting Facts 18.5 29.0 22.3 0.1 0.0 0.0
3: Three Supporting Facts 76.7 74.6 75.4 3.6 3.2 3.7
4: Two Arg. Relations 37.3 0.0 0.0 31.2 0.0 0.0
5: Three Arg. Relations 24.1 18.4 21.9 3.7 0.3 0.3
6: Yes/No Questions 40.3 34.1 39.6 0.4 1.0 1.0
7: Counting 15.5 12.3 14.7 0.7 0.0 0.2
8: Lists/Sets 1.6 2.5 1.2 0.0 0.0 0.0
9: Simple Negation 28.9 30.5 27.9 0.0 0.3 0.1
10: Indefinite Knowledge 43.3 42.6 39.7 0.1 1.0 1.5
11: Basic Coreference 1.6 1.3 1.3 0.0 0.0 0.0
12: Conjunction 0.0 0.0 0.1 0.0 0.0 0.0
13: Compound Coref. 0.0 0.2 0.0 0.0 0.0 0.0
14: Time Reasoning 19.7 18.3 19.5 0.0 0.3 0.4
15: Basic Deduction 21.3 0.0 0.0 9.9 0.0 0.0
16: Basic Induction 54.9 56.7 54.1 0.5 0.0 0.3
17: Positional Reasoning 41.6 42.2 44.6 38.8 38.3 0.0
18: Size Reasoning 47.2 8.1 8.7 41.6 0.6 0.1
19: Path Finding 87.2 86.0 85.9 70.9 7.6 4.7
20: Agent’s Motivations 0.0 0.0 0.1 0.0 0.0 0.0

Mean error 28.0 22.8 22.9 10.1 2.6 0.6
Failed tasks (err. > 5%) 14 12 12 5 2 0
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