
We thank the reviewers for their thoughtful comments. We are delighted that reviewers unanimously find our work1

novel, well-written, and state-of-the-art on well-studied benchmarks. Most of their questions ask for additional analysis2

and ablation experiments. Below we try to provide as many of them as we could accomplish within the tight time frame.3

R1, R3, R4: Where does the performance gain come from—the transition system or the GNN? We perform4

an ablation study that only changes the transition system while keeping GNNs untouched. We implement In-order5

Shift-reduce System (ISR) [22]. In order to apply GNNs to ISR, we rely on Theorem 3 to interpret ISR states (stacks)6

as augmented partial trees. ISR + GNNs (with XLNet encoder) achieves an F1 score of 96.24 on PTB, which is lower7

than our method (96.34 ± 0.03). This ablation demonstrates that the attach-juxtapose transition system contributes to8

the performance.9

R4: Does the choice of GNNs matter? Besides GNNs, what about other tree encoders? We experimented with10

TreeLSTMs [39] and multiple GNN architectures such as GATs [Veličković et al. ICLR 2018]. Some of them were11

trained faster than GCNs, but they converged to a similar final performance. We prefer GNNs to TreeLSTMs because12

they work for graphs with loops. Although our graph is a tree without loops, variants of our method could violate the13

tree constraint by introducing additional edges,e.g., between consecutive tokens. We chose GCNs among other GNNs14

because it is straightforward to separate content and position information (details in the supplementary material).15

R1, R4: Detailed analysis of the performance, perhaps using Berkeley Parser Analyser. We use Berkeley Parser16

Analyzer [Kummerfeld et al. EMNLP 2012] to categorize the errors of Mrini et al. [27] and our model on PTB. Two17

methods have the same relative ordering of error categories. The 3 most frequent categories are “PP Attachment”,18

“Single Word Phrase”, and “Unary”. Compared to Mrini et al., our method has more “PP Attachment” (342 vs. 320)19

and “UNSET move” (33 vs. 23), but fewer “Clause Attachment” (110 vs. 122) and “XoverX Unary” (48 vs. 56). We20

will present the detailed results in the revised paper.21

R1, R3: Compare with existing parsers in terms of efficiency. Our method is slightly faster than existing parsers,22

measured by the wall time for parsing the 2,416 PTB testing examples. It takes 33.9 ± 0.3 seconds for our method (with23

XLNet, without beam search), 37.3 ± 0.2 seconds for Zhou and Zhao [49], and 40.8 ± 0.9 seconds for Mrini et al. [27].24

About 50% of the time is spent on the XLNet encoder, which is the same computation for all three methods. We run25

these experiments on machines with 2 CPU cores, 16GB memory, and one Nvidia GeForce GTX 2080 Ti GPU.26

R3: Additional baselines. We experiment with the two baselines suggested by R3. As the first baseline, we compute27

attention for the rightmost chain using token embeddings at each node’s starting position. It achieves an F1 score of28

96.18 on PTB, which is between the sequence-based ablation (95.54 ± 0.07) and our method (96.34 ± 0.03). As the29

second baseline, we compute attentions for attach and juxtapose actions separately. It achieves an F1 score of 96.3530

on PTB. It is not clear whether this is better or worse than our original method (96.35 vs. 96.34 ±0.03). However, we31

will investigate more closely and include the results in the revised paper.32

R3: Limited novelty compared to previous incremental parsers. The contribution is a more expressive param-33

eterization of parsing action prediction. We respectfully disagree that our contribution is “a more expressive34

parameterization.” Compared to the closest incremental parser (Collins and Roark [6]), our main novelty is in the35

action space itself, rather than how it is parameterized. Our actions can produce any valid tree (Theorem 1), whereas36

Collins and Roark can produce only a subset of them. This is because they rely on grammar rules and additional rules37

prescribing what structures are allowed in parse trees (They call them “allowable chains” and “allowable triples” ).38

These rules are necessary for making their search space manageable, but they make it impossible to produce some trees.39

R3: How is the attention computed in the sequence-based ablation? No attention is computed. At each step, we40

simply predict the target node as an integer in [0, 249]. It works because the rightmost chain is shorter than (or equal to)41

the sentence length, and all sentences in the datasets are shorter than 250.42

R4: Why does beam search help so little? We were also surprised to find that beam search helps only marginally.43

A possible reason is that our method is trained with a local loss at each step, whereas prior work has demonstrated44

beam search works most effectively when combined with global losses. 145

R1, R2: The potential impact of incremental parsing on NLP. Besides psycholinguistic motivation, incremental46

parsing is also useful in NLP applications. It produces a parse tree before a complete sentence is available, which is47

desirable when the agent responds to streaming input in real-time. For example, 2 a human-like conversational agent48

needs to process input information incrementally, since humans do not wait until the end of every sentence to respond.49

R2: Evaluate the method on speeches rather than texts. This is a good idea since speech is a domain where it is50

more important to parse incrementally. However, that is out of the scope of this paper. Also, most existing incremental51

parsers [6,7,31] were evaluated on texts.52
1Zhang and Nivre. “Analyzing the Effect of Global Learning and Beam-search on Transition-based Dependency Parsing”,

COLING 2012
2Schlangen and Skantze, “A General, Abstract Model of Incremental Dialogue Processing”, EACL 2009


