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Abstract

Parsing sentences into syntax trees can benefit downstream applications in NLP.
Transition-based parsers build trees by executing actions in a state transition system.
They are computationally efficient, and can leverage machine learning to predict
actions based on partial trees. However, existing transition-based parsers are
predominantly based on the shift-reduce transition system, which does not align
with how humans are known to parse sentences. Psycholinguistic research suggests
that human parsing is strongly incremental—humans grow a single parse tree
by adding exactly one token at each step. In this paper, we propose a novel
transition system called attach-juxtapose. It is strongly incremental; it represents
a partial sentence using a single tree; each action adds exactly one token into the
partial tree. Based on our transition system, we develop a strongly incremental
parser. At each step, it encodes the partial tree using a graph neural network
and predicts an action. We evaluate our parser on Penn Treebank (PTB) and
Chinese Treebank (CTB). On PTB, it outperforms existing parsers trained with
only constituency trees; and it performs on par with state-of-the-art parsers that
use dependency trees as additional training data. On CTB, our parser establishes a
new state of the art. Code is available at https://github.com/princeton-vl/
attach-juxtapose-parser.

1 Introduction

Constituency parsing is a core task in natural language processing. It recovers the syntactic structures
of sentences as trees (Fig. 1). State-of-the-art parsers are based on deep neural networks and typically
consist of an encoder and a decoder. The encoder embeds input tokens into vectors, from which the
decoder generates a parse tree. A main class of decoders builds trees by executing a sequence of
actions in a state transition system [32, 12, 22]. These transition-based parsers achieve linear runtime
in sentence length. More importantly, they construct partial trees during decoding, enabling the parser
to leverage explicit structural information for predicting the next action.

Most existing transition-based parsers adopt the shift-reduce transition system [32, 12, 22]. They
represent the partial sentence as a stack of subtrees. At each step, the parser either pushes a new
token onto the stack (shift) or combines two existing subtrees in the stack (reduce).

Despite their empirical success, shift-reduce parsers appear to differ from how humans are known to
perform parsing. Psycholinguistic research [25, 37, 35] has suggested that human parsing is strongly
incremental: at each step, humans process exactly one token—no more, no less—and integrate it into
a single parse tree for the partial sentence. In a shift-reduce system, however, only shift actions
process new tokens, and the partial sentence is represented as a stack of disconnected subtrees rather
than a single connected tree.
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Figure 1: The constituency tree for “Arthur is King of the Britons.” Leaves are labeled with tokens,
and internal nodes are labeled with syntactic categories, e.g., S for sentence, NP for noun phrase, VP
for verb phrase, and PP for prepositional phrase.

This observation puts forward an intriguing question: can a strongly incremental transition system
lead to a better parser? Intuitively, a strongly incremental system is more aligned with human
processing; as a result, the sequence of actions may be easier to learn.

Attach-juxtapose transition system We propose a novel transition system named attach-juxtapose,
which enables strongly incremental constituency parsing. For a sentence of length n, we start with an
empty tree and execute n actions; each action integrates exactly one token into the current partial
tree, deciding on where and how to integrate the new token. There are two types of actions: attach,
which attaches the new token as a child to an existing node, and juxtapose, which juxtaposes the
new token as a sibling to an existing node while also creating a shared parent node (Fig. 2). We can
prove that any parse tree without unary chains can be constructed by a unique sequence of actions in
this attach-juxtapose system.

Being strongly incremental, our system represents the state as a single tree rather than a stack of
multiple subtrees. Not only is the single-tree representation more aligned with humans, but it also
allows us to tap into a large inventory of model architectures for learning from graph data, such as
TreeLSTMs [39] and graph neural networks (GNNs) [19]. Further, the single-tree representation
provides valid syntax trees for partial sentences, which is impossible in bottom-up shift-reduce
systems [32]. Taking “Arthur is King of the Britons” as an example, we can produce a valid tree for
the prefix “Arthur is King” (Fig. 2 Bottom). Whereas in bottom-up shift-reduce systems, you must
complete the subtree for “is King of the Britons” before connecting it to “Arthur.” Therefore, our
representation captures the complete syntactic structure of the partial sentence, and thus provides
stronger guidance for action generation.

Our transition system can be understood as a refactorization of In-order Shift-reduce System (ISR)
proposed by Liu and Zhang [22]. We prove that a sequence of actions in our system can be translated
into a sequence of actions in ISR, but our sequence is shorter (Theorem 4). Specifically, to generate a
parse tree with n leaves and m internal nodes (assuming no unary chains), our sequence has length
n, whereas ISR has length n+ 2m. On the other hand, each of our actions has a larger number of
choices, resulting in a different trade-off between the sequence length and the number of choices per
action. We hypothesize that our system achieves a trade-off more amenable to machine learning due
to closer alignment with human processing.

Action generation with graph neural networks Based on the attach-juxtapose system, we de-
velop a strongly incremental parser by training a deep neural network to generate actions. Specifically,
we adopt the encoder in prior work [21, 49] and propose a novel graph-based decoder. It uses GNNs
to learn node features in the partial tree, and uses attention to predict where and how to integrate the
new token. To our knowledge, this is the first time GNNs are applied to constituency parsing.

We evaluate our method on two standard benchmarks for constituency parsing: Penn Treebank
(PTB) [24] and Chinese Treebank (CTB) [46]. On PTB, our method outperforms existing parsers
trained with only constituency trees. And it performs competitively with state-of-the-art parsers that
use dependency trees as additional training data. On CTB, we achieve an F1 score of 93.59—a signif-
icant improvement of 0.95 upon previous best results. These results demonstrate the effectiveness of
our strongly incremental parser.
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Contributions Our contributions are threefold. First, we propose attach-juxtapose, a novel transi-
tion system for constituency parsing. It is strongly incremental and motivated by psycholinguistics.
Second, we provide theoretical results characterizing its capability and its connections with an exist-
ing shift-reduce system [22]. Third, we develop a parser by generating actions in the attach-juxtapose
system. Our parser achieves state-of-the-art performance on two standard benchmarks.

2 Related Work

Constituency parsing Significant progress in constituency parsing has been made by powerful
token representations. Stern et al. [36] fed tokens into an LSTM [17] to obtain contextualized embed-
dings. Gaddy et al. [14] demonstrated the value of character-level features. Kitaev and Klein [21]
replaced LSTMs with self-attention layers [41]. They also show that pre-trained contextualized
embeddings such as ELMo [30] significantly improve parsing performance. Further improve-
ments [20, 49] came with more powerful pre-trained embeddings, including BERT [10] and XL-
Net [47]. Mrini et al. [27] proposed label attention layers that improved upon self-attention layers.
All these works use an existing decoder (chart-based) and focus on designing a new encoder. In
contrast, we use an existing encoder by Kitaev and Klein [21] and focus on designing a new decoder.

There are several types of decoders in prior work: chart-based decoders search for a tree maximizing
the sum of span scores via dynamic programming (e.g., the CKY algorithm) [36, 14, 21, 49, 27];
transition-based decoders build trees through a sequence of actions [32, 50, 12, 8, 22]; sequence-based
decoders generate a linearized sequence of the tree using seq2seq models [42, 5, 38, 15, 23]. Our
method is transition-based; but unlike the conventional shift-reduce methods, we propose a novel
transition system, which is strongly incremental.

State-of-the-art parsers perform joint constituency parsing and dependency parsing, e.g., through
head-driven phrase structure grammar (HPSG) [49, 27]. They use dependency trees as additional
training data, which are converted from constituency trees by a set of hand-crafted rules [9]. In
contrast, our parser is trained with only constituency trees and achieves competitive performance.

Transition-based constituency parsers Most transition-based parsers adopt the shift-reduce tran-
sition system: a state consists of a buffer B holding unprocessed tokens and a stack S holding
processed subtrees. Initially, S is empty, and B contains the entire input sentence. In a successful
final state, B is empty, and S contains a single subtree—the complete parse tree. Below are actions
for a standard bottom-up shift-reduce system such as Sagae and Lavie [32], which corresponds to
post-order traversal of the complete parse tree.

• shift: Remove the first element from B and push it onto S.

• unary_reduce(X): Pop a subtree from S; add a label X as its parent; and push it back onto S.

• binary_reduce(X): Pop two subtrees; add a label X as their shared parent; and push back.

Dyer et al. [12] proposed a top-down (pre-order) variant. Liu and Zhang [22] proposed an in-order
shift-reduce system, outperforming bottom-up [32] and top-down [12] baselines. Compared to our
transition system, none of these shift-reduce systems is strongly incremental, because they represent
the partial sentence as a stack of disconnected subtrees and they do not process exactly one token per
action—only the shift action consumes a token.

Among the shift-reduce systems, our approach is most related to the in-order system by
Liu and Zhang [22] in that each action in our system can be mapped to a combination of actions in
their system (see Sec. 3 for details). An analogy is that their actions resemble a set of microinstruc-
tions for CPUs, where each instruction is simple but it takes many instructions to complete a task;
our actions resemble a set of complex instructions, where each instruction is more complex but it
takes fewer instructions to complete the same task.

Transition-based parsers use machine learning to make local decisions—determining the action to take
at each step. This poses the question of how to represent a stack of subtrees in shift-reduce systems.
Earlier works such as Sagae and Lavie [32] and Zhu et al. [50] use hand-crafted features. More
recent works [43, 12, 8, 22] have switched to recurrent neural networks and LSTMs. In particular,
Dyer et al. [11] propose an LSTM-based model named Stack LSTM for representing the stack. It is
designed for dependency parsing but applies to constituency parsing as well [11, 22]. However, we
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do not have to represent stacks thanks to the single-tree state representation. Instead, we use graph
neural networks (GNNs) [19] to represent partial trees.

Incremental parsing Prior work has built parsers inspired by the incremental syntax processing of
humans. Earlier works focused on psycholinguistic modeling of humans and evaluated on a handful
of carefully curated sentences [26, 1]. More recent methods switched to developing efficient parsers
with a wide coverage of real-world texts. Roark [31] proposed a top-down incremental parser that
expands nodes in the partial tree using a probabilistic context-free grammar (PCFG). In contrast,
our system is more flexible by not restricted to any predefined grammar. Also, we predict actions
leveraging not only top-down information but also bottom-up information.

Costa et al. [7] proposed a transition system for incremental parsing. Similar to ours, it integrates
exactly one token per step into the partial tree. However, at each step, they have to predict an
unbounded number of labels, whereas we have to predict no more than two. Therefore, our action
space is smaller than theirs and thus easier to navigate by learning-based parsers. In fact, this
limitation may have prevented Costa et al. [7] from building a fully functional parser, and they only
evaluated on action generation. Collins and Roark [6] developed a parser based on Costa et al. [7] by
using grammar rules and heuristics to prune the action space. In contrast, our action space is more
flexible without grammar rules but still tractable for machine learning models.

Graph neural networks for syntactic processing GNNs have been used to process syntactic
information. These methods obtain syntax trees using external parsers and apply GNNs to the trees
for downstream tasks such as pronoun resolution [45], relation extraction [16, 48, 33], and machine
translation [3, 4]. In contrast, we apply GNNs to partial trees for the task of parsing. Ji et al. [18] used
GNNs for graph-based dependency parsing. However, their method is not transition-based. They
apply GNNs to complete graphs formed by all tokens, whereas we apply GNNs to partial trees.

3 Attach-juxtapose Transition System

Overview We introduce a novel transition system named attach-juxtapose for strongly incremental
constituency parsing. Our system is inspired by psycholinguistic research [25, 37, 35]; it maintains a
single parse tree and adds one token to it at each step. Our system can produce valid syntax trees for
partial sentences and can handle trees with arbitrary branching factors.

For parsing a sentence of length n, we start with an empty tree and sequentially execute n actions;
each action integrates the next token into the current partial tree. Formally speaking, for the sentence
[w0, w1, . . . , wn−1], the state at ith step is si = (Ti, wi), where Ti is the partial tree for the prefix
[w0, . . . , wi−1]. The state transition rules are T0 = empty_tree and Ti+1 = Ti(ai), where Ti(ai)
denotes the result of executing action ai on tree Ti. After n steps, we end up with a complete tree Tn.
The actions are designed to capture where and how to integrate a new token into the partial tree.

Where to integrate the new token Since the new token is to the right of existing tokens, it must
appear on the rightmost chain—the chain of nodes starting from the root and iteratively descending
to the rightmost child (A similar observation was also made by Costa et al. [7]). Formally speaking,
at the ith step, we have a partial tree Ti and a new token wi. Let rightmost_chain(Ti) denote the set
of internal nodes on the rightmost chain of Ti. We pick target_node ∈ rightmost_chain(Ti) as
where the new token should be integrated.

How to integrate the new token Fig. 2 Top shows the rightmost chain and target_node (orange),
we design two types of actions specifying how to integrate the new token (blue):

• attach(target_node, parent_label): Attach the token as a descendant of target_node.
The parameter parent_label is optional; when provided, we create an internal node labeled
parent_label (green) as the parent of the new token. Parent_label then becomes the rightmost
child of target_node (as in Fig. 2 Top). When parent_label is not provided, the new token
itself becomes the rightmost child of target_node.

• juxtapose(target_node, parent_label, new_label): Create an internal node labeled
new_label (gray) as the shared parent of target_node and the new token. It then replaces
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target_node in the tree. Similar to attach, we can optionally create a parent for the new token
via the parent_label parameter.
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Figure 2: Actions in the attach-juxtapose transition system. Top-left: Given a target node (orange) on
the rightmost chain, the attach action attaches the new token (blue) as its descendant. Top-right:
The juxtapose action juxtaposes the new token and the target node in different branches of a shared
ancestor (gray). Both actions can optionally create a parent (green) for the new token. Bottom: Two
example actions when parsing the sentence “Arthur is King of the Britons.”

Fig. 2 Bottom shows two example actions when parsing “Arthur is King of the Britons.” We
represent target_node using its index on the rightmost chain (starting from 0). The complete
action sequence to parse the sentence correctly (Fig. 1) would be: attach(0, NP), juxtapose(0,
VP, S), attach(1, NP), juxtapose(2, PP, NP), attach(3, NP), attach(4, None). Note
that the first action attach(0, NP) is a degenerated case. Since T0 = empty_tree, it is impossible
to pick target_node ∈ rightmost_chain(T0). In this case, imagine a dummy root node for T0; then
we can execute attach(0, parent_label), making parent_label the new root.

Oracle actions Having defined the attach-juxtapose transition system, we are yet to show its
capability for constituency parsing: Given a constituency tree, is it always possible to find a sequence
of oracle actions to produce the tree? This question is important because if the oracle actions did not
exist, it would not be possible to parse the sentence correctly. If the oracle actions do exist, a further
question is: For a given tree, is the sequence of oracle actions unique? Uniqueness is desirable
because it guarantees an unambiguous supervision signal at each step when training the parser. We
prove that the answers to both questions are positive under mild conditions:
Theorem 1 (Existence of oracle actions). Let T be a constituency tree for a sentence of length n.
If T does not contain unary chains, there exists a sequence of actions a0, a1, . . . , an−1 such that
empty_tree(a0)(a1) . . . (an−1) = T .
Theorem 2 (Uniqueness of oracle actions). Let T be a constituency tree for a sentence of length n,
and T does not contain unary chains. If a0, a1, . . . , an−1 is a sequence of oracle actions, it is the
only action sequence that satisfies empty_tree(a0)(a1) . . . (an−1) = T .

The condition regarding unary chains is not a restriction in practice, as we can remove unary chains
using the preprocessing technique in prior work [21, 49, 27]. The theorems above can be proved
by constructing an algorithm to compute the oracle actions. We present the algorithm and detailed
proofs in the supplementary materials. Intuitively, given a tree T , we recursively find and undo the
last action until T becomes empty_tree.

Connections with In-order Shift-reduce System Our attach-juxtapose transition system is closely
related to In-order Shift-reduce System (ISR) proposed by Liu and Zhang [22]. ISR’s state space
is strictly larger than ours; we prove it to be equivalent to an augmented version of our state
space. Given a sentence [w0, w1, . . . , wn−1], the space of partial trees is U = {t | ∃ 0 ≤ m ≤
n, s.t. t is a constituency tree for [w0, w1, . . . , wm−1]}. By Theorem 1, our state space (for the
given sentence) is a subset of U , i.e., UAJ = {t | t ∈ U , t does not contain unary chains}. To
bridge UAJ and UISR (the state space of IRS), we define the augmented space of partial trees to be
U ′ = {(t, i) | t ∈ U , i ∈ Z,−1 ≤ i < L(t)}, where L(t) denotes the number of internal nodes on
the rightmost chain of t. We assert that U ′ is equivalent to UISR.
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Figure 3: The architecture of our model for action generation. We use the self-attention encoder in
prior work [21, 49] and generate actions using a GCN-based [19] decoder.

Theorem 3 (Connection in state spaces). There is a bijective mapping ϕ : UISR → U
′ between the

set of legal states in In-order Shift-reduce System and the augmented space of partial trees.

We prove the theorem in the supplementary materials. Intuitively, a state in ISR is a stack configu-
ration; it corresponds to an element of U ′, which can be understood as a partial tree t ∈ U with a
special node on the rightmost chain marked by an integer i.

Not only is ϕ bijective, but it also preserves actions. In other words, each action in our system can be
mapped to a combination of actions in ISR. To see this, we define an injective mapping ξ : UAJ → U

′

such that ξ(t) = (t, L(t)− 1). Then by Theorem 3, ϕ−1 ◦ ξ : UAJ → UISR is an injective mapping
from our state space to ISR’s state space. And we have the following connection between actions:

Theorem 4 (Connection in actions). Let t1 and t2 be two partial trees without unary chains, i.e.,
t1, t2 ∈ UAJ. If a is an attach-juxtapose action that brings t1 to t2, there must exist a sequence of
actions in In-order Shift-reduce System that brings ϕ−1 ◦ ξ(t1) to ϕ−1 ◦ ξ(t2).

We present a constructive proof in the supplementary materials, making it possible to translate any
action sequence on our system to a longer sequence in ISR. Theorem 4 also implies any reachable
parse tree in our system can also be reached in ISR. And by Theorem 1, both our system and ISR can
generate any tree without unary chains.

4 Action Generation with Graph Neural Networks

Given the attach-juxtapose system, we develop a model for constituency parsing by generating actions
based on the partial tree and the new token (Fig. 3). First, it encodes input tokens as vectors using
the self-attention encoder in prior work [21, 49]. These vectors are used to initialize node features
in the partial tree, which is then fed into a graph convolutional network (GCN) [19]. The GCN
produces features for each node, and in particular, the features on the rightmost chain. Finally, an
attention-based action decoder generates the action based on the new token and the rightmost chain.

Token encoder We use the same encoder as Kitaev and Klein [21] and Zhou and Zhao [49]. It
consists of a pre-trained contextualized embedding such as BERT [10] or XLNet [47], followed by a
few additional self-attention layers. Like in prior work, we separate content and position information;
the resulting token features are the concatenation of content features and position features. The
encoder is not incremental due to how self-attention works; it is applied once to the entire sentence.
Then we apply the decoder to generate actions in a strongly incremental manner.

Graph convolutional neural network We use GCN on the partial tree to produce features for
nodes on the rightmost chain. Initially, leaf features are provided by the encoder, whereas for
an internal node labeled l that spans from position i to j (endpoints included), the initial feature
x = [Wl, xp] ∈ RD is a concatenation of label and position embeddings: Wl is a D

2 -dimensional
learned embedding for label l. And xp = (Pi + Pj)/2 is the position embedding averaging two
endpoints, where P is the same position embedding matrix in the self-attention encoder.
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The initial node features go through several GCN layers with residual connections. We use a variant
of the original GCN layer [19] to separate content features and position features (details in the
supplementary materials). The GCN produces features for all nodes. However, we are only interested
in nodes on the rightmost chain, as they are candidates for target_node in actions.

Action decoder Given the structure of our actions (Sec. 3), the action decoder has to (1) choose a
target_node on the rightmost chain; (2) decide between attach and juxtapose; and (3) generate
the parameters parent_label and new_label.

We choose target_node using attention on the rightmost chain. Let L be the size of the chain,
Y = [Yc, Yp] ∈ RL×D be the features on the chain produced by the GCN, z = [zc, zp] ∈ R1×D

be the feature of the new token given by the encoder. They are both concatenation of con-
tent and position features. We generate attention weights for nodes on the rightmost chain as
w = fc([Yc,1

L×1zc]) + fp([Yp,1
L×1zp]), where 1L×1 is a L×1 matrix of ones. [·, ·] concatenates

two matrices horizontally, and fc, fp are two-layer fully-connected networks with ReLU [28] and
layer normalization [2]. w ∈ RL×1 and we pick the node with maximum attention as target_node.

Since the parameter new_label is only for juxtapose, we can interpret new_label = None as
attach. So we only need to generate parent_label, new_label ∈ V ∪ {None}, where V is the
vocabulary of labels. We generate them using the new token and a weighted average of the rightmost
chain: [u, v] = g([z, σ(w)TY ]), where σ is the sigmoid function, u, v ∈ R|V |+1 are predicted log
probabilities of parent_label and new_label, and g is a two-layer layer-normalized network.

Training We train the model to predict oracle actions. At any step, let a =
(target_node, parent_label, new_label) be the oracle action; recall that new_label = None
implies attach, and new_label 6= None implies juxtapose. The loss function is a sum of
cross-entropy losses for each component: L = CE(w, target_node) + CE(u, parent_label) +
CE(v, new_label). For a batch of training examples, the losses are summed across steps and
averaged across different examples.

5 Experiments

Setup We evaluate our model for constituency parsing on two standard benchmarks: Chinese
Treebank 5.1 (CTB) [46] and the Wall Street Journal part of Penn Treebank (PTB) [24]. PTB consists
of 39,832 training examples; 1,700 validation examples; and 2,416 testing examples. Whereas CTB
consists of 17,544/352/348 examples for training/validation/testing respectively. Each example is a
constituency tree with words and POS tags.

For both datasets, we follow the standard data splits and preprocessing in prior work [22, 34, 21, 49].
In evaluation, we report four metrics—exact match (EM), F1 score, labeled precision (LP), and
labeled recall (LR)—all computed by the standard Evalb1 tool. The testing numbers are produced by
models trained on training data alone (not including validation data).

We use the same technique in prior work [21, 49, 27] to remove unary chains by collapsing multiple
labels in a unary chain into a single label. It does not affect evaluation, as we revert this process
before computing evaluation metrics.

Training details We train the model to predict oracle actions through teacher forcing [44]—the
model takes actions according to the oracle rather than the predictions. Model parameters are
optimized using RMSProp [40] with a batch size of 32. We decrease the learning rate by a factor of 2
when the best validation F1 score plateaus. The model is implemented in PyTorch [29] and takes
2 ∼ 3 days to train on a single Nvidia GeForce GTX 2080 Ti GPU. The hyperparameters for each
model are in the supplementary materials. For fair comparisons with prior work, we use the same
pre-trained BERT and XLNet models2: xlnet-large-cased and bert-large-uncased for PTB;
bert-base-chinese for CTB.

1https://nlp.cs.nyu.edu/evalb/
2https://huggingface.co/transformers/pretrained_models.html
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Table 1: Constituency parsing performance on Penn Treebank (PTB). Methods with ? are trained with
extra supervision from dependency parsing data. Methods with † are reported in the re-implementation
by Fried et al. [13]. Liu and Zhang [22] is transition-based, whereas other baselines are chart-based.
We run each experiment 5 times to report the mean and standard error (SEM) of four metrics—
exact match (EM), F1 score, labeled precision (LP), and labeled recall (LR). Our method performs
competitively with state of the art and achieves the highest EM.

Model EM F1 LP LR #Params

Liu and Zhang [22] - 91.8 - - -
Liu and Zhang [22] (BERT) † 57.05 95.71 - - -
Kitaev and Klein [21] 47.31 93.55 93.90 93.20 26M
Kitaev and Klein [21] (ELMo) 53.06 95.13 95.40 94.85 107M
Kitaev et al. [20] (BERT) - 95.59 95.46 95.73 342M
Zhou and Zhao [49] (GloVe) ? 47.72 93.78 93.92 93.64 51M
Zhou and Zhao [49] (BERT) ? 55.84 95.84 95.98 95.70 349M
Zhou and Zhao [49] (XLNet) ? 58.73 96.33 96.46 96.21 374M
Mrini et al. [27] (XLNet) ? 58.65 96.38 96.53 96.24 459M

Ours (BERT) 57.29 ± 0.57 95.79 ± 0.05 96.04 ± 0.05 95.55 ± 0.06 377M
Ours (XLNet) 59.17 ± 0.33 96.34 ± 0.03 96.55 ± 0.02 96.13 ± 0.04 391M

Parsing performance Table 1 summarizes our PTB results compared to state-of-the-art parsers,
including both chart-based parsers [21, 20, 49, 27] and transition-based parsers [22]. Methods with ?
are trained with extra supervision from dependency parsing data. Methods with † are reported in not
their original papers but the re-implementation by Fried et al. [13], since the original versions did not
use BERT. Liu and Zhang [22] (BERT) † performs beam search during testing with a beam size of
10. We do the same for fair comparisons, which improves the performance marginally (0.05 in EM
and 0.02 in F1 for our model with XLNet). Some metrics for prior work are missing because they
are neither reported in the original papers nor available using the released model and code. We run
each experiment 5 times with different random seeds to report the mean and its standard error (SEM).
Overall, our method performs competitively with state-of-the-art parsers on PTB. It achieves higher
EM using the same pre-trained embedding (BERT or XLNet). Also, our method has a comparable
number of parameters with existing methods.

Table 2: Constituency parsing performance on Chinese Treebank (CTB). ? and † bear the same
meaning as in Table 1. Our method outperforms state-of-the-art parsers by a large margin.

Model EM F1 LP LR

Kitaev et al. [20] - 91.75 91.96 91.55
Kitaev et al. [20] (BERT) † 44.42 92.14 - -
Zhou and Zhao [49] ? - 92.18 92.33 92.03
Mrini et al. [27] (BERT) ? - 92.64 93.45 91.85
Liu and Zhang [22] - 86.1 - -
Liu and Zhang [22] (BERT) † 44.94 91.81 - -

Ours (BERT) 49.72 ± 0.83 93.59 ± 0.26 93.80 ± 0.26 93.40 ± 0.28

Table 2 summarizes our results on CTB. Our method outperforms existing parsers by a large margin
(0.95 in F1). Compared to PTB, the CTB results have a larger SEM. The reason could be that CTB
has a small testing set of only 348 examples, leading to less stable evaluation metrics. However, the
SEM is still much smaller than our performance margin with existing parsers.

Parsing speed We measure parsing speed empirically using the wall time for parsing the 2,416 PTB
testing sentences. Results are shown in Table 3. It takes 33.9 seconds for our method (with XLNet,
without beam search), 37.3 seconds for Zhou and Zhao [49], and 40.8 seconds for Mrini et al. [27].
Our method is slightly faster, but the gap is small. About 50% of the time is spent on the XLNet
encoder, which is shared among all three methods and explains their similar run time. These
experiments were run on machines with 2 CPUs, 16GB memory, and one GTX 2080 Ti GPU.
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Table 3: The wall time for parsing the PTB testing set. We run each experiment 5 times.

Ours (XLNet) Zhou and Zhao [49] (XLNet) Mrini et al. [27] (XLNet)

Time (seconds) 33.9 ± 0.3 37.3 ± 0.2 40.8 ± 0.9

Effect of the transition system Our method differs from Liu and Zhang [22] in not only the
transition system but also the overall model architecture. To more closely compare our attach-
juxtapose transition system with their In-order Shift-reduce System (ISR), we perform an ablation
that only changes the transition system while keeping the other part of the model as close as possible.

We implement a baseline that generates ISR actions on top of our encoder and GCNs. To that end, we
rely on Theorem 3 to interpret ISR states (stacks) as augmented partial trees. Specifically, given an
ISR state s ∈ UISR, we have ϕ(s) ∈ U ′ from Theorem 3. We know ϕ(s) = (t, i), where t is a partial
tree and i is an integer ranging from −1 to L(t)− 1. First, we encode t in the same way as before,
using XLNet and GCNs. Then, we take the GCN feature of the ith node on the rightmost chain and
use it to generate actions in ISR. We add a special node to the rightmost chain to handle i = −1.

Results are shown in Table 4. the ISR baseline achieves an average F1 score of 96.23 on PTB, which
is lower than our method (96.34). This ablation demonstrates that the attach-juxtapose transition
system contributes to the performance.

Table 4: Comparison on PTB between different transition systems. Both models use XLNet for
encoding tokens and GCNs for learning graph features.

Transition system EM F1

ISR [22] 58.99 ± 0.11 96.23 ± 0.04
Attach-juxtapose 59.17 ± 0.33 96.34 ± 0.03

Effect of graph neural networks A key ingredient of our model is using GNNs to effectively
leverage structural information in partial trees. We conduct an ablation study to demonstrate its
importance. Specifically, we keep the encoder fixed and replace the graph-based decoder with a
simple two-layer network. For each new token, it predicts an action from the token feature alone—no
partial tree is built. It predicts target_node as an integer in [0, 249]. We increase the feature
dimensions so that both models have the same number of parameters. Results are in Table 5; the
graph-based decoder achieves better performance in all settings, which demonstrates the value explicit
structural information.

Table 5: Ablation study comparing our graph-based action decoder with a sequence-based decoder
that cannot leverage structural information in partial trees. The graph-based decoder leads to better
performance in all settings, which demonstrates the importance of explicit structural information.

Decode BERT (PTB) XLNet (PTB) BERT (CTB)

EM F1 EM F1 EM F1

Sequence-based 53.26 ± 0.45 94.89 ± 0.03 55.84 ± 0.53 95.54 ± 0.07 44.14 ± 0.88 90.98 ± 0.35
Graph-based 57.29 ± 0.57 95.79 ± 0.05 59.17 ± 0.33 96.34 ± 0.03 49.72 ± 0.83 93.59 ± 0.26

6 Conclusion

We proposed the attach-juxtapose transition system for constituency parsing. It is inspired by the
strong incrementality of human parsing discovered by psycholinguistics. We presented theoretical
results characterizing its capability and its connections with existing shift-reduce systems. Further, we
developed a parser based on it and achieved state-of-the-art performance on two standard benchmarks.
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Broader Impact

We evaluated our method on constituency parsing for English and Chinese. They are the two most
spoken languages, with more than two billion speakers across the globe. However, there are more
than 7,000 languages in the world. And it is important to deliver parsing and other NLP technology
to benefit speakers of diverse languages. Fortunately, our method can be applied to many languages
with little additional effort. We developed the system using PTB, and when adding CTB, we only had
to make a few minor changes in language-specific preprocessing.

However, a potential barrier is the lack of training data for low-resource languages. Our method relies
on supervised learning with a large number of annotated parse trees, which are available only for
some languages. A potential solution is to do joint multilingual training as in Kitaev et al. [20].
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