
Appendix
In this appendix we first provide additional background (Sec. A) before detailing more information on
per-example gradient computation (Sec. B) and optimizer implementation (Sec. C). We then provide
implementation details (Sec. D) and more information about influence functions (Sec. E).

A Additional Background

A.1 Gradient-based Hyperparameter Optimization

Larsen et al. [18] Conjugate gradients (CG) [25] Identity [22]

r✓LS(V)
h
@L
@✓

@L>

@✓

i�1
argminx kxH✓ �r✓LS(V)k r✓LS(V) [I]

�1

Stochastic CG [14] Truncated Unrolled Diff. [37] Neumann [21]

Using [2] r✓LS(V)
P

L<j<i

hQ
k<j I �H✓|wi�k

i
r✓LS(V)

P
j<i

h
I �

@L2
T

@✓@✓>

ij

Table A1: A summary of methods to approximate the inverse Hessian vector productr✓LS(V) H
�1
✓

in Eq. (6).

Computing Eq. (6), restated here,

@LS(V, ✓⇤(⇤))

@�u
= �r✓LS(V, ✓

⇤)> H
�1
✓⇤ r✓`U (u, ✓

⇤),

is challenging as it involves an inverse Hessian. When using a deep net, the dimension of the Hessian
is potentially in the millions, which demands a lot of memory and computing resources. Prior
works, summarized in Tab. A1, have proposed various approximations to mitigate the computational
challenges. For example, Luketina et al. [22] propose to use an identity matrix as an approximation
of the inverse Hessian, and a recent method by Lorraine et al. [21] uses Neumann series to trade-off
computational resources for the quality of the approximation. Different from these approximations,
our approach has lower computation time and memory usage for tuning per-example weights. For
more details please refer to the ablation studies, specifically Sec. 4.3 in the main paper.

B Additional Details for Per-example Gradient Computation

In the main paper, we discussed efficient computation of per-example gradients and presented the
details for a fully connected layer. In this section, we will provide the details for two more layers,
convolution layers and batch-norm.

Convolutional Layer. The convolution layer can be reformulated as a fully-connected layer. Hence,
theoretically, we can apply the same implementation. In practice, we found that reshaping to a fully
connected layer is slow and memory intensive. Hence, we utilize the auto-vectorizing capability in
Tensorflow [1]. More specifically, we slice a convoluation layer’s activation into mini-batches of size
1 and call the backward function in parallel using tf.vectorized_map.

Batch-norm Layer. Batch normalization is a special case of a fully-connected layer. The trainable
parameters are the scalar weights and bias in the affine transformation. Thus, we can follow the
implementation used for a fully connected layer.

C Additional Details about Efficient Optimizer for ⇤

We illustrate the efficient implementation for updating ⇤ based on the Adam optimizer in Alg. 2.
We named this modified version M(asked)-Adam. Recall, we are updating �u 2 ⇤ only if the loss
function L depends on u 2 U

0, i.e., when the example is in the sampled mini-batch. Importantly, we
do not want to update the running averages of the gradients with 0 for all examples which are not in
the mini-batch. To do so, we introduce a mask M , 1[r⇤L(⇤) 6= 0] which indicates whether the
gradient w.r.t. a particular �u is 0. We use 1[·] to denote the indicator function.

13

Algorithm 2 M-Adam Optimizer. We use � to denote element-wise vector multiplication.
Require: ↵ 2 R>0: step size
Require: �1,�2 2 [0, 1): exponential decay rates for computing running averages of gradient and

its square
Require: ✏: a fixed small value
Require: L(⇤): A stochastic loss function with parameters ⇤.

1: Initialize ⇤,m, v 2 R|U|, t and ✓0

2: while not converged do
3: t t+ 1
4: gt r⇤Lt(⇤t�1) (Compute gradient w.r.t. to the stochastic loss function)
5: M 1[gt 6= 0] (Obtain mask to block updates, 1 denotes the indicator function)
6: mt mt�1 + (�1 � 1) ·mt�1 �M + (1� �1) · gt
7: vt vt�1 + (�2 � 1) · vt�1 �M + (1� �2) · gt � gt

8: m̂t mt/(1� �
t
1)

9: v̂t vt/(1� �
t
2)

10: ⇤t ⇤t�1 � ↵ · m̂t �M/(
p
v̂t + ✏)

11: end while

D Implementation Details

We follow the setup of UDA [41] and FixMatch [39]. We obtain datasets and model architectures
from UDA’s and FixMatch’s publicly available implementation3,4.

Image Classification. For both UDA and FixMatch, we use the same validation set of size 1024.
We use M-Adam with constant step size of 0.01 as discussed in Sec. C to update ⇤, and SGD with
momentum and a step size of 0.03 is used to optimize ✓.

For UDA, we set the training batch sizes for labeled and unlabeled data to 64 and 320. The model is
trained for 400k steps. The first 20k iterations are the warm-up stage where only network weights ✓
are optimized but not ⇤. We initialize �u, 8u 2 U , to 5 for training with 250 labeled samples and 1
for the other settings. All experiments are performed on a single NVIDIA V100 16GB GPU. The
inner step N is set to 100 and the step size ⌘ is 0.01.

Following FixMatch, the training batch sizes for labeled and unlabeled data are 64 and 448 = 64 · 7.
The model is trained for 1024 epochs. We initialize �u, 8u 2 U , to 1 for all experiments. The inner
step N is set to 512 and step size ⌘ is 0.01. Each experiment is performed on two NVIDIA V100
16GB GPUs.

Text Classification. Following UDA [41], the same 20 labeled examples are used. We randomly
sample another 20 to be part of the validation set as UDA did not provide a validation set. The train
and validation set have equal number of examples for each category. We use the same unlabeled data
split as UDA, except we exclude the examples used in the validation set. In total, we have 69,972
unlabeled samples. We fine-tune the BERT model for 10k steps with the first 1k iterations being the
warm-up phase. The training batch sizes for labeled and unlabeled data are 8 and 32. We use Adam
to optimize network weights ✓ with learning rate 2 ⇥ 10�5. M-Adam is used to optimize ⇤ with
constant learning rate 0.01, and we optimize ⇤ once every 5 ✓ optimization steps. All experiments
for text classification are performed on NVIDIA V100 32GB GPUs. As mentioned in Sec. 4.2, UDA
uses v3-32 Cloud TPU Pods which allows to train with larger batch sizes and longer sequence lengths.
In our case, the largest memory GPUs which we have access to are the V100 32GB GPUs.

Reparamterization for Binary Classification. The text classification task contains two classes and
uses cross entropy during training. The provided network architecture of UDA predicts two logits
f✓1(x) and f✓2(x) one for each class given an input x. While this over-parametrization doesn’t hurt
the classification performance, it leads to unstable computation of H�1

✓⇤ , as ✓1 and ✓2 are highly
correlated.

To handle this concern, we reparametrize the final classification layer to have parameters ✓0 , ✓1�✓2,
and we use the logits f✓0(x) and �f✓0(x) in the cross-entropy loss. With this implementation,

3https://github.com/google-research/uda
4https://github.com/google-research/fixmatch

14

https://github.com/google-research/uda
https://github.com/google-research/fixmatch

we can compute a stable inverse Hessian while obtaining the same training loss of the original
parametrization.

E Additional Discussion on Influence Functions

Eq. (6) is derived by assuming: (a) the training objective L is twice-differentiable and strictly convex
with respect to ✓, and (b) ✓⇤ has been optimized to global optimality. While these assumptions
are violated in context of deep nets, prior works [14, 21] have demonstrate that influence functions
remain accurate despite the non-convergence and non-convexity of the model. This finding is also
consistent with our experimental results: SSL tasks benefit from tuning the per-example weights via
influence functions.

For completeness, we provide a standard derivation of the influence function of ✓, i.e., @✓⇤(⇤)
@�j

=

�H
�1
✓⇤ r✓`U (j, ✓⇤) for an unlabeled sample j below.

Recall that ✓⇤ minimize the loss

L(D,U , ✓,⇤) = LS(D, ✓) +
X

u2U
�u · `U (u, ✓).

We assume L is twice-differentiable and strictly convex w.r.t. ✓. Therefore, the Hessian matrix
H✓⇤ , r2

✓L(D,U , ✓
⇤
,⇤) is positive definite and invertible.

Let’s say we increase the weight �j of unlabeled sample j by a small value ✏ via �j �j + ✏ and
optimize the network using the new weights to optimality. We refer to the new optimal weights as

✓
⇤
✏,j = argmin

✓
LS(D, ✓) + ✏`U (j, ✓) +

X

u2U
�u · `U (u, ✓) = argmin

✓
L(D,U , ✓,⇤) + ✏`U (j, ✓).

Since ✓
⇤
✏,j minimizes above equation, we then have the first order optimality conditions:

0 = rL(D,U , ✓
⇤
✏,j ,⇤) + ✏r`U (j, ✓

⇤
✏,j).

As ✓⇤✏,j ! ✓
⇤ when ✏! 0, we perform a Taylor expansion of the right-hand side:

0 = [rL(D,U , ✓
⇤
,⇤) + ✏r`U (j, ✓

⇤)] + [r2
L(D,U , ✓

⇤
,⇤) + ✏r

2
`U (j, ✓

⇤)]�✏ +O(k�✏k),

where the parameter change is denoted by �✏ , ✓
⇤
✏,j � ✓

⇤, and O(k�✏k) captures the higher order
terms.

Ignoring O(k�✏k) and solving for �✏, we have:

�✏ ⇡ �[r
2
L(D,U , ✓

⇤
,⇤) + ✏r

2
`U (j, ✓

⇤)]�1[rL(D,U , ✓
⇤
,⇤) + ✏r`U (j, ✓

⇤)].

Recall, ✓⇤ minimizes L. Consequently, we have rL(D,U , ✓
⇤
,⇤) = 0. Dropping O(✏2) terms, we

get
�✏ ⇡ �r

2
L(D,U , ✓

⇤
,⇤)�1

r`U (j, ✓
⇤)✏ = �H�1

✓⇤ r`U (j, ✓
⇤)✏.

Finally, following the definition of derivatives,

@✓
⇤

@�j
=

✓
⇤
✏,j � ✓

⇤

�j + ✏� �j

����
✏!0

=
@�✏

@✏
⇡ �H

�1
✓⇤ r`U (j, ✓

⇤),

which concludes derivation of the influence function.

15

	Introduction
	Background & Related Work
	SSL with Per-example Weights
	Efficient Computation of Influence Approximation

	Experiments
	Synthetic Experiments
	Semi-supervised Learning Benchmarks
	Ablation Studies and Analysis
	Running Time Comparisons

	Conclusion
	Additional Background
	Gradient-based Hyperparameter Optimization

	Additional Details for Per-example Gradient Computation
	Additional Details about Efficient Optimizer for
	Implementation Details
	Additional Discussion on Influence Functions

