
We thank all reviewers for their fair and constructive reviews.U1

General remarks We will revise and restructure the appendix (and the main paper), especially concerning refer-2

ences/theorem numbering and redundancy between the main text.3

Scalability We agree that our methods are not ready for industrial-scale graphs. We view our contribution as method-4

ological work that is the first step to make higher-order methods more practical by leveraging sparsity, which is perhaps5

the most significant parameter associated with a class of graphs. Moreover, we want to stress that we empirically6

verified that our method offers significant benefits (compared to standard GNNs) in the regime of small graphs such as7

molecules. We will integrate the discussion of Appendix F into the main text (complexity, sampling, . . . ).8

R1 Computation of isomorphism type We agree that the method is only of theoretical interest for a large choice of k.9

Nonetheless, we believe that we provided sufficient empirical evidence showing that for small k ∈ {2, 3}, the method10

provides benefits over standard GNN and other higher-order architectures. Note that strictly speaking, the k-WL does11

not need to perform an isomorphism test. It merely performs an equality test. Lines 97-98 (in the "appendix.pdf")12

describe the condition for two tuples to have the same initial labeling: it is only the identity mapping id: [k] 7→ [k]13

which we demand to be a (partial) graph isomorphism. Hence, we only need to check "equality" of the two tuples and14

not their "isomorphism". If we had considered two sets of k vertices instead of two tuples of k vertices, then we would15

have needed isomorphism testing (as the reviewer suggests).16

Subgraph learning Yes, we agree that results on link and triadic prediction would further highlight the approach’s17

generality. We plan to include them in a revised version/future work and add a discussion to the main paper.18

Aggregation scheme We considered all tuples. We will make the complexity, especially the dependence on k, clearer in19

the main paper, e.g., by including the discussion of Appendix F in the main paper.20

Directed graphs Thank you for bringing this to our attention. The applicability of our arguments to the direct case21

depends on the way we define the k-WL for directed graphs. It is typical to consider both in-neighbours and out-22

neighbours, but separately. Hence for a tuple T, we have "local-in"-neighbors and "local-out"-neighbors. The local23

unfolding at the tuple T will have both in-neighbours and out-neighbours at depth-1, and so on. Therefore, in this kind24

of WL, we are essentially dealing with the underlying undirected graph of the given directed graph. If the graph is25

weakly connected, we will still see all 1-neighbours of a tuple (local-in,local-out, global) somewhere down the local26

unfolding tree. In that case, we are fine with weak connectivity. Of course, we could choose to define a WL-variant27

with only "local-out"-neighbors, where we agree that strong connectivity will be necessary. Since the typical notion of28

sparsity for directed/undirected graphs is the same, i.e., low edge-density, we would argue that it is natural to stick with29

the first formalism. In that case, weak connectivity will suffice. We will clarify this in the revised version.30

R2 Performance of δ-2-LWL+ The δ-2-LWL+ is as a middle ground between the purely local δ-2-LWL and the global31

δ-2-WL. The +-Version achieves good generalization performance due to slower convergence while preserving certain32

global information, which is needed to derive Theorem 2. We will expand on this in the revised version.33

Other GNN architectures We agree and will include more recently-proposed GNNs as baselines.34

Lower results for GIN We used the implementation available in Pytorch Geometric. The lower numbers are because35

we did not use an initial one-hot degree feature for datasets that did not provide node labels. We will add a comment36

and add a row for results using degree features. (Note that all kernels are computed without this information)37

Leman vs. Lehman Leman/Lehman personally stated that he prefers the transcription Leman (through private commu-38

nication with Russian graph theorist Ilia Ponomarenko).1 Moreover, the spelling Leman is also used throughout the39

theory community.40

Proof of Prop. 1 Thank you for bringing this to our attention. The missing part directly follows from the CFI41

construction outlined in [15]. However, a formal proof is quite involved and would require repeating the reasoning of42

the paper above. We will add a proof sketch to the revised version of the paper.43

R3 Scalability/limitations See general remarks above. We will report absolute running times (<1h for the local44

architecture on the 10k subset.).45

Readability/relevance to a broader audience We will incorporate intuition in the revised paper and emphasize the46

neural architecture. Moreover, we will try to make the main paper as self-contained as possible.47

R4 Notation We agree and will make the main text more self-contained.48

δ-k-LGNN We note that the δ-k-LGNN is slightly weaker than the δ-k-GNN as it does not use the # labeling. (It49

could be included but would require preprocessing.). Moreover, observe that the δ-k-GNN may learn to combine the50

local and global neighborhood information in a more fine-grained way compared to the kernel (due to its discrete51

nature). Moreover, we stress here that the δ-k-LGNN still achieves good performance while being much faster than the52

δ-k-GNN or k-WL-GNN. We will add an expanded discussion in the revised paper.53

Explanation on experiment part Thank you for the good suggestion; we will incorporate it into a revised version.54

1https://www.iti.zcu.cz/wl2018/pdf/leman.pdf


