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Abstract

Graph kernels based on the 1-dimensional Weisfeiler-Leman algorithm and corre-
sponding neural architectures recently emerged as powerful tools for (supervised)
learning with graphs. However, due to the purely local nature of the algorithms, they
might miss essential patterns in the given data and can only handle binary relations.
The k-dimensional Weisfeiler-Leman algorithm addresses this by considering
k-tuples, defined over the set of vertices, and defines a suitable notion of adjacency
between these vertex tuples. Hence, it accounts for the higher-order interactions
between vertices. However, it does not scale and may suffer from overfitting when
used in a machine learning setting. Hence, it remains an important open problem
to design WL-based graph learning methods that are simultaneously expressive,
scalable, and non-overfitting. Here, we propose local variants and corresponding
neural architectures, which consider a subset of the original neighborhood, making
them more scalable, and less prone to overfitting. The expressive power of (one of)
our algorithms is strictly higher than the original algorithm, in terms of ability to
distinguish non-isomorphic graphs. Our experimental study confirms that the local
algorithms, both kernel and neural architectures, lead to vastly reduced computation
times, and prevent overfitting. The kernel version establishes a new state-of-the-art
for graph classification on a wide range of benchmark datasets, while the neural
version shows promising performance on large-scale molecular regression tasks.

1 Introduction

Graph-structured data is ubiquitous across application domains ranging from chemo- and bioinfor-
matics [10, 103] to image [101] and social network analysis [27]. To develop successful machine
learning models in these domains, we need techniques that can exploit the rich information inherent
in the graph structure, as well as the feature information contained within nodes and edges. In
recent years, numerous approaches have been proposed for machine learning with graphs—most
notably, approaches based on graph kernels [71] or using graph neural networks (GNNs) [19, 45, 47].
Here, graph kernels based on the 1-dimensional Weisfeiler-Leman algorithm (1-WL) [46, 111], and
corresponding GNNs [83, 115] have recently advanced the state-of-the-art in supervised node and
graph learning. Since the 1-WL operates via simple neighborhood aggregation, the purely local nature
of these approaches can miss important patterns in the given data. Moreover, they are only applicable
to binary structures, and therefore cannot deal with general t-ary structures, e.g., hypergraphs [124] or
subgraphs, in a straight-forward way. A provably more powerful algorithm (for graph isomorphism
testing) is the k-dimensional Weisfeiler-Leman algorithm (k-WL) [15, 46, 77]. The algorithm can
capture more global, higher-order patterns by iteratively computing a coloring (or discrete labeling) for
k-tuples, instead of single vertices, based on an appropriately defined notion of adjacency between two
k-tuples. However, it fixes the cardinality of this neighborhood to k · n, where n denotes the number of
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vertices of a given graph. Hence, the running time of each iteration does not take the sparsity of a given
graph into account. Further, new neural architectures [77, 78] that possess the same power as the k-WL
in terms of separating non-isomorphic graphs suffer from the same drawbacks, i.e., they have to resort
to dense matrix multiplications. Moreover, when used in a machine learning setting with real-world
graphs, the k-WL may capture the isomorphism type, which is the complete structural information
inherent in a graph, after only a couple of iterations, which may lead to overfitting, see [82], and the
experimental section of the present work.

Present work To address this, we propose a local version of the k-WL, the local δ-k-dimensional
Weisfeiler-Leman algorithm (δ-k-LWL), which considers a subset of the original neighborhood in
each iteration. The cardinality of the local neighborhood depends on the sparsity of the graph, i.e.,
the degrees of the vertices of a given k-tuple. We theoretically analyze the strength of a variant of
our local algorithm and prove that it is strictly more powerful in distinguishing non-isomorphic
graphs compared to the k-WL. Moreover, we devise a hierarchy of pairs of non-isomorphic graphs
that a variant of the δ-k-LWL can separate while the k-WL cannot. On the neural side, we devise
a higher-order graph neural network architecture, the δ-k-LGNN, and show that it has the same
expressive power as the δ-k-LWL. Moreover, we connect it to recent advancements in learning theory
for GNNs [41], which show that the δ-k-LWL architecture has better generalization abilities compared
to dense architectures based on the k-WL. See Figure 1 for an overview of the proposed algorithms.

Experimentally, we apply the discrete algorithms (or kernels) and the (local) neural architectures to
supervised graph learning, and verify that both are several orders of magnitude faster than the global,
discrete algorithms or dense, neural architectures, and prevent overfitting. The discrete algorithms
establish a new state-of-the-art for graph classification on a wide range of small- and medium-scale
classical datasets. The neural version shows promising performance on large-scale molecular regression
tasks.

Related work In the following, we review related work from graph kernels and GNNs. We refer
to Appendix A for an in-depth discussion of related work, as well as a discussion of theoretical results
for the k-WL.

Historically, kernel methods—which implicitly or explicitly map graphs to elements of a Hilbert
space—have been the dominant approach for supervised learning on graphs. Important early work in
this area includes kernels based on random-walks [42, 60, 70], shortest paths [13], and kernels based
on the 1-WL [100]. Morris et al. [82] devised a local, set-based variant of the k-WL. However, the
approach is (provably) weaker than the tuple-based algorithm, and they do not prove convergence to the
original algorithm. For a thorough survey of graph kernels, see [71]. Recently, graph neural networks
(GNNs) [45, 97] emerged as an alternative to graph kernels. Notable instances of this architecture
include, e.g., [33, 51, 105], and the spectral approaches proposed in, e.g., [14, 29, 64, 81]—all of
which descend from early work in [65, 80, 102, 97]. A survey of recent advancements in GNN
techniques can be found, e.g., in [19, 113, 125]. Recently, connections to Weisfeiler-Leman type
algorithms have been shown [11, 24, 43, 44, 75, 77, 83, 115]. Specifically, the authors of [83, 115]
showed that the expressive power of any possible GNN architecture is limited by the 1-WL in terms of
distinguishing non-isomorphic graphs. Morris et al. [83] introduced k-dimensional GNNs (k-GNN)
which rely on a message-passing scheme between subgraphs of cardinality k. Similar to [82], the paper
employed a local, set-based (neural) variant of the k-WL, which is (provably) weaker than the variant
considered here. Later, this was refined in [77] by introducing k-order invariant graph networks
(k-IGN), based on Maron et al. [78], which are equivalent to the folklore variant of the k-WL [44, 46]
in terms of distinguishing non-isomorphic graphs. However, k-IGN may not scale since they rely
on dense linear algebra routines. Chen et al. [24] connect the theory of universal approximation of
permutation-invariant functions and the graph isomorphism viewpoint and introduce a variation of
the 2-WL, which is more powerful than the former. Our comprehensive treatment of higher-order,
sparse, (graph) neural networks for arbitrary k subsumes all of the algorithms and neural architectures
mentioned above.

2 Preliminaries

We briefly describe the Weisfeiler-Leman algorithm and, along the way, introduce our notation,
see Appendix B for expanded preliminaries. As usual, let [n] = {1, . . . , n} ⊂ N for n ≥ 1, and
let {{. . .}} denote a multiset. We also assume elementary definitions from graph theory (such as
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Figure 1: Overview of the power of proposed algorithms and neural architectures. The green and dark
red nodes represent algorithms proposed in the present work. The grey region groups dense algorithms
and neural architectures.
∗—Follows directly from the proof of Theorem 6. A v B (A @ B, A ≡ B): algorithm A is more
powerful (strictly more powerful, equally powerful) than B, †—Follows by definition, strictness open.

graphs, directed graphs, vertices, edges, neighbors, trees, and so on). The vertex and the edge set of a
graph G are denoted by V (G) and E(G) respectively. The neighborhood of v in V (G) is denoted
by δ(v) = N(v) = {u ∈ V (G) | (v, u) ∈ E(G)}. Moreover, its complement δ(v) = {u ∈ V (G) |
(v, u) /∈ E(G)}. We say that two graphsG andH are isomorphic (G ' H) if there exists an adjacency
preserving bijection ϕ : V (G)→ V (H), i.e., (u, v) is in E(G) if and only if (ϕ(u), ϕ(v)) is in E(H),
call ϕ an isomorphism from G to H . If the graphs have vertex/edges labels, the isomorphism is
additionally required to match these labels. A rooted tree is a tree with a designated vertex called root
in which the edges are directed in such a way that they point away from the root. Let p be a vertex
in a directed tree then we call its out-neighbors children with parent p. Given a k-tuple of vertices
v = (v1, . . . , vk), let G[v] denote the subgraph induced on the set {v1, . . . , vk}, where, the vertex vi
is labeled with i, for i in [k].

Vertex refinement algorithms For a fixed positive integer k, let V (G)k denote the set of k-tuples
of vertices of G. A coloring of V (G)k is a mapping C : V (G)k → N, i.e., we assign a number (or
color) to every tuple in V (G)k. The initial coloring C0 of V (G)k is specified by the isomorphism
types of the tuples, i.e., two tuples v and w in V (G)k get a common color iff the mapping vi → wi
induces an isomorphism between the labeled subgraphs G[v] and G[w]. A color class corresponding
to a color c is the set of all tuples colored c, i.e., the set C−1(c). For j in [k], let φj(v, w) be
the k-tuple obtained by replacing the jth component of v with the vertex w. That is, φj(v, w) =
(v1, . . . , vj−1, w, vj+1, . . . , vk). If w = φj(v, w) for some w in V (G), call w a j-neighbor of
v (and vice-versa). The neighborhood of v is then defined as the set of all tuples w such that
w = φj(v, w) for some j in [k] and w in V (G). The refinement of a coloring C : V (G)k → N,
denoted by Ĉ, is a coloring Ĉ : V (G)k → N defined as follows. For each j in [k], collect the colors of
the j-neighbors of v as a multiset Sj = {{C(φj(v, w)) | w ∈ V (G)}}. Then, for a tuple v, define
Ĉ(v) = (C(v),M(v)), where M(v) is the k-tuple (S1, . . . , Sk). For consistency, the strings Ĉ(v)
thus obtained are lexicographically sorted and renamed as integers. Observe that the new color Ĉ(v)
of v is solely dictated by the color histogram of its neighborhood and the previous color of v. In
general, a different mapping M(·) could be used, depending on the neighborhood information that we
would like to aggregate.

The k-dim. Weisfeiler-Leman For k ≥ 2, the k-WL computes a coloring C∞ : V (G)k → N of a
given graph G, as follows.4 To begin with, the initial coloring C0 is computed. Then, starting with C0,
successive refinements Ci+1 = Ĉi are computed until convergence. That is,

Ci+1(v) = (Ci(v),Mi(v)),

where
Mi(v) =

(
{{Ci(φ1(v, w)) | w ∈ V (G)}}, . . . , {{Ci(φk(v, w)) | w ∈ V (G)}}

)
. (1)

The successive refinement steps are also called rounds or iterations. Since the disjoint union of the
color classes form a partition of V (G)k, there must exist a finite ` ≤ |V (G)|k such that C` = Ĉ`. In

4We define the 1-WL in the next subsection.
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the end, the k-WL outputs C` as the stable coloring C∞. The k-WL distinguishes two graphs G and
H if, upon running the k-WL on their disjoint union G ∪̇H , there exists a color c in N in the stable
coloring such that the corresponding color class Sc satisfies |V (G)k ∩ Sc| 6= |V (H)k ∩ Sc|, i.e., there
exist an unequal number of c-colored tuples in V (G)k and V (H)k. Hence, two graphs distinguished
by the k-WL must be non-isomorphic. See Appendix C for its relation to the folklore k-WL.

The δ-k-dim. Weisfeiler-Leman Let w = φj(v, w) be a j-neighbor of v. Call v a local j-neighbor
of w if w is adjacent to the replaced vertex vj . Otherwise, call v a global j-neighbor of w. For tuples
v and w in V (G)k, let the function adj((v,w)) evaluate to L or G, depending on whether w is a local
or a global neighbor, respectively, of v. The δ-k-dimensional Weisfeiler-Leman algorithm, denoted
by δ-k-WL, is a variant of the classic k-WL which differentiates between the local and the global
neighbors during neighborhood aggregation [76]. Formally, the δ-k-WL algorithm refines a coloring
Ci (obtained after i rounds) via the aggregation function

M δ,δ
i (v) =

(
{{(Ci(φ1(v, w), adj(v, φ1(v, w))) | w ∈ V (G)}}, . . . ,
{{(Ci(φk(v, w), adj(v, φk(v, w))) | w ∈ V (G)}}

)
,

(2)

instead of the k-WL aggregation specified by Equation (1). We define the 1-WL to be the δ-1-WL,
which is commonly known as color refinement or naive vertex classification.

Comparison of k-WL variants Let A1 and A2 denote two vertex refinement algorithms, we write
A1 v A2 if A1 distinguishes between all non-isomorphic pairs A2 does, and A1 ≡ A2 if both
directions hold. The corresponding strict relation is denoted by @. The following result shows that the
δ-k-WL is strictly more powerful than the k-WL for k ≥ 2 (see Appendix C.1.1 for the proof).
Proposition 1. For k ≥ 2, the following holds:

δ-k-WL @ k-WL.

3 Local δ-k-dimensional Weisfeiler-Leman algorithm

In this section, we define the new local δ-k-dimensional Weisfeiler-Leman algorithm (δ-k-LWL). This
variant of the δ-k-WL considers only local neighbors during the neighborhood aggregation process,
and discards any information about the global neighbors. Formally, the δ-k-LWL algorithm refines a
coloring Ci (obtained after i rounds) via the aggregation function,

Mδ
i (v) =

(
{{Ci(φ1(v, w)) | w ∈ N(v1)}}, . . . , {{Ci(φk(v, w)) | w ∈ N(vk)}}

)
, (3)

instead of Equation (2), hence considering only the local j-neighbors of the tuple v in each iteration.
The indicator function adj used in Equation (2) is trivially equal to L here, and is thus omitted. The
coloring function for the δ-k-LWL is then defined by

Ck,δi+1(v) = (Ck,δi (v),Mδ
i (v)).

We also define the δ-k-LWL+, a minor variation of the δ-k-LWL. Later, we will show that the
δ-k-LWL+ is equivalent in power to the δ-k-WL (Theorem 2). Formally, the δ-k-LWL+ algorithm
refines a coloring Ci (obtained after i rounds) via the aggregation function,

Mδ,+(v) =
(
{{(Ci(φ1(v, w)),#1

i (v, φ1(v, w))) | w ∈ N(v1)}}, . . . ,
{{(Ci(φk(v, w)),#k

i (v, φk(v, w))) | w ∈ N(vk)}}
)
,

(4)

instead of δ-k-LWL aggregation defined in Equation (3). Here, the function

#j
i (v,x) =

∣∣{w : w ∼j v, Ci(w) = Ci(x)}
∣∣, (5)

where w ∼j v denotes that w is j-neighbor of v, for j in [k]. Essentially, #j
i (v,x) counts the number

of j-neighbors (local or global) of v which have the same color as x under the coloring Ci (i.e., after i
rounds). For a fixed v, the function #j

i (v, ·) is uniform over the set S ∩Nj , where S is a color class
obtained after i iterations of the δ-k-LWL+ and Nj denotes the set of j-neighbors of v. Note that after
the stable partition has been reached #j

i (v) will not change anymore. Intuitively, this variant captures
local and to some extent global information, while still taking the sparsity of the underlying graph into
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account. Moreover, observe that each iteration of the δ-k-LWL+ has the same asymptotic running
time as an iteration of the δ-k-LWL, and that the information of the # function is already implicitly
contained in Equation (2).

The following theorem shows that the local variant δ-k-LWL+ is at least as powerful as the δ-k-WL
when restricted to the class of connected graphs. The possibly slower convergence leads to advantages
in a machine learning setting, see Sections 4 and 6, and also Section 5 for a discussion of practicality,
running times, and remaining challenges.
Theorem 2. For the class of connected graphs, the following holds for all k ≥ 1:

δ-k-LWL+ ≡ δ-k-WL.

Along with Proposition 1, this establishes the superiority of the δ-k-LWL+ over the k-WL.
Corollary 3. For the class of connected graphs, the following holds for all k ≥ 2:

δ-k-LWL+ @ k-WL.

In fact, the proof of Proposition 1 shows that the infinite family of graphs Gk, Hk witnessing the
strictness condition can even be distinguished by the δ-k-LWL, for each corresponding k ≥ 2. We note
here that the restriction to connected graphs can easily be circumvented by adding a specially marked
vertex, which is connected to every other vertex in the graph.

Kernels based on vertex refinement algorithms After running the δ-k-LWL (and the other vertex
refinements algorithms), the concatenation of the histogram of colors in each iteration can be used as a
feature vector in a kernel computation. Specifically, in the histogram for every color c in N there is an
entry containing the number of nodes or k-tuples that are colored with c.

Local converges to global: proof of Theorem 2 The main technique behind the proof is to construct
tree-representations of the colors assigned by the k-WL (or its variants). Given a graph G, a tuple
v, and an integer ` ≥ 0, the unrolling tree of the graph G at v of depth ` is a rooted directed tree
UNR [G, s, `] (with vertex and edge labels) which encodes the color assigned by k-WL to the tuple v
after ` rounds, see Appendix D.2 for a formal definition and Figure 4 for an illustration. The usefulness
of these tree representations is established by the following lemma. Formally, let s and t be two
k-vertex-tuples in V (G)k.
Lemma 4. The colors of s and t after ` rounds of k-WL are identical if and only if the unrolling tree
UNR [G, s, `] is isomorphic to the unrolling tree UNR [G, t, `].

For different k-WL variants, the construction of these unrollings are slightly different, since an
unrolling tree needs to faithfully represent the corresponding aggregation process for generating
new colors. For the variants δ-k-WL, δ-k-LWL, and δ-k-LWL+, we define respective unrolling
trees δ-UNR [G, s, `], L-UNR [G, s, `], and L+-UNR [G, s, `] along with analogous lemmas, as above,
stating their correctness/usefulness. Finally, we show that for connected graphs, the δ-UNR unrolling
trees (of sufficiently large depth) at two tuples s and t are identical only if the respective δ-k-LWL+

unrolling trees (of sufficiently larger depth) are identical, as shown in the following lemma.
Lemma 5. Let G be a connected graph, and let s and t in V (G)k. If the stable colorings of s and t
under δ-k-LWL+ are identical, then the stable colorings of s and t under δ-k-WL are also identical.

Hence, the local algorithm δ-k-LWL+ is at least as powerful as the global δ-k-WL, for connected
graphs, i.e., δ-k-LWL+ v δ-k-WL. The exact details and parameters of this proof can be found in the
Appendix.

4 Higher-order neural architectures

Although the discrete kernels defined in the previous section are quite powerful, they are limited due to
their fixed feature construction scheme, hence suffering from poor adaption to the learning task at
hand and the inability to handle continuous node and edge labels in a meaningful way. Moreover,
they often result in high-dimensional embeddings forcing one to resort to non-scalable, kernelized
optimization procedures. This motivates our definition of a new neural architecture, called local
δ-k-GNN (δ-k-LGNN). Given a labeled graph G, let each tuple v in V (G)k be annotated with an
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initial feature f (0)(v) determined by its isomorphism type. In each layer t > 0, we compute a new
feature f (t)(v) as

fW1
mrg

(
f (t−1)(v), fW2

agg

(
{{f (t−1)(φ1(v, w)) | w ∈ δ(v1)}}, . . . , {{f (t−1)(φk(v, w)) | w ∈ δ(vk)}}

))
,

in R1×e for a tuple v, where W (t)
1 and W (t)

2 are learnable parameter matrices from Rd×e.5. Moreover,
fW2

mrg and the permutation-invariant fW1
agg can be arbitrary (permutation-invariant) differentiable

functions, responsible for merging and aggregating the relevant feature information, respectively.
Initially, we set f (0)(v) to a one-hot encoding of the (labeled) isomorphism type of G[v]. Note that
we can naturally handle discrete node and edge labels as well as directed graphs, see Section 4 on how
to deal with continuous information. The following result demonstrates the expressive power of the
δ-k-GNN, in terms of distinguishing non-isomorphic graphs.

Theorem 6. Let (G, l) be a labeled graph. Then for all t ≥ 0 there exists a sequence of weights W(t)

such that
Ck,δt (v) = Ck,δt (w) ⇐⇒ f (t)(v) = f (t)(w).

Hence, for all graphs, the following holds for all k ≥ 1:

δ-k-LGNN ≡ δ-k-LWL.

Moreover, the δ-k-GNN inherits the main strength of the δ-k-LWL, i.e., it can be implemented
using sparse matrix multiplication. Note that it is not possible to come up with an architecture, i.e.,
instantiations of fW1

mrg and fW2
agg , such that it becomes more powerful than the δ-k-LWL, see [83].

However, all results from the previous section can be lifted to the neural setting. That is, one can derive
neural architectures based on the δ-k-LWL+, δ-k-WL, and k-WL, called δ-k-LGNN+, δ-k-GNN, and
k-WL-GNN, respectively, and prove results analogous to Theorem 6.

Incorporating continous information Since many real-world graphs, e.g., molecules, have con-
tinuous features (real-valued vectors) attached to vertices and edges, using a one-hot encoding of
the (labeled) isomorphism type is not a sensible choice. Let a : V (G)→ R1×d be a function such
that each vertex v is annotated with a feature a(v) in R1×d, and let v = (v1, . . . , vk) be a k-tuple of
vertices. Then we can compute an inital feature

f (0)(v) = fW3
enc

(
(a(v1), . . . , a(vk))

)
, (6)

for the tuple v. Here, fenc :
(
R1×d)k → R1×e is an arbitrary differentiable, parameterized function, e.g.,

a multi-layer perceptron or a standard GNN aggregation function, that computes a joint representation
of the k node features a(v1), . . . , a(vk). Moreover, it is also straightforward to incorporate the labeled
isomorphism type and continuous edge label information. We further explore this in the experimental
section.

Generalization abilities of the neural architecture Garg et al. [41], studied the generalization
abilities of a standard GNN architecture for binary classification using a margin loss. Under mild
conditions, they bounded the empirical Rademacher complexity as Õ(rdL/√mγ),where d is the
maximum degree of the employed graphs, r is the number of components of the node features, L is the
number of layers, and γ is a parameter of the loss function. It is straightforward to transfer the above
bound to the higher-order (local) layer from above. Hence, this shows that local, sparsity-aware,
higher-order variants, e.g., δ-k-LGNN, exhibit a smaller generalization error compared to dense,
global variants like the k-WL-GNN.

5 Practicality, barriers ahead, and possible road maps

As Theorem 2 shows, the δ-k-LWL+ and its corresponding neural architecture, the δ-k-LGNN+, have
the same power in distinguishing non-isomorphic graphs as δ-k-WL. Although for dense graphs,
the local algorithms will have the same running time, for sparse graphs, the running time for each
iteration can be upper-bounded by |nk| · kd, where d denotes the maximum or average degree of the
graph. Hence, the local algorithm takes the sparsity of the underlying graph into account, resulting in
improved computation times compared to the non-local δ-k-WL and the k-WL (for the same number

5For clarity of presentation we omit biases.
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of iterations). These observations also translate into practice, see Section 6. The same arguments can
be used in favor of the δ-k-LWL and δ-k-LGNN, which lead to even sparser algorithms.

Obstacles The biggest obstacle in applying the algorithms to truly large graphs is the fact that the
algorithm considers all possible k-tuples leading to a lower bound on the running time of Ω(nk).
Lifting the results to the folklore k-WL, e.g., [77], only “shaves off one dimension”. Moreover,
applying higher-order algorithms for large k might lead to overfitting issues, see also Section 6.

Possible solutions Recent sampling-based approaches for graph kernels or GNNs, see, e.g., [22,
23, 51, 54, 82] address the dependence on nk, while appropriate pooling methods along the lines
of Equation (6) address the overfitting issue. Finally, new directions from the theory community,
e.g., [50] paint further directions, which might result in more scalable algorithms.

6 Experimental evaluation

Our intention here is to investigate the benefits of the local, sparse algorithms, both kernel and neural
architectures, compared to the global, dense algorithms, and standard kernel and GNN baselines. More
precisely, we address the following questions:
Q1 Do the local algorithms, both kernel and neural architectures, lead to improved classification and
regression scores on real-world benchmark datasets compared to global, dense algorithms and standard
baselines?
Q2 Does the δ-k-LWL+ lead to improved classification accuracies compared to the δ-k-LWL? Does it
lead to higher computation times?
Q3 Do the local algorithms prevent overfitting to the training set?
Q4 How much do the local algorithms speed up the computation time compared to the non-local
algorithms or dense neural architectures?

The source code of all methods and evaluation procedures is available at https://www.github.
com/chrsmrrs/sparsewl.

Datasets To evaluate kernels, we use the following, well-known, small-scale datasets: ENZYMES [98,
13], IMDB-BINARY, IMDB-MULTI [119], NCI1, NCI109 [109], PTC_FM [53], PROTEINS [31, 13],
and REDDIT-BINARY [119]. To show that our kernels also scale to larger datasets, we additionally used
the mid-scale datasets: YEAST, YEASTH, UACC257, UACC257H, OVCAR-8, OVCAR-8H [117].
For the neural architectures, we used the large-scale molecular regression datasets ZINC [34, 57] and
ALCHEMY [21]. To further compare to the (hierarchical) k-GNN [83] and k-IGN [77], and show the
benefits of our architecture in presence of continuous features, we used the QM9 [91, 112] regression
dataset.6 All datasets can be obtained from http://www.graphlearning.io [84]. See Appendix E.1
for further details.

Kernels We implemented the δ-k-LWL, δ-k-LWL+, δ-k-WL, and k-WL kernel for k in {2, 3}. We
compare our kernels to the Weisfeiler-Leman subtree kernel (1-WL) [100], the Weisfeiler-Leman
Optimal Assignment kernel (WLOA) [68], the graphlet kernel (GR) [99], and the shortest-path
kernel [13] (SP). All kernels were (re-)implemented in C++11. For the graphlet kernel, we counted
(labeled) connected subgraphs of size three. We followed the evaluation guidelines outlined in [84].
We also provide precomputed Gram matrices for easier reproducability.

Neural architectures We used the GIN and GIN-ε architecture [115] as neural baselines. For data with
(continuous) edge features, we used a 2-layer MLP to map them to the same number of components as
the node features and combined them using summation (GINE and GINE-ε). For the evaluation of the
neural architectures of Section 4, δ-k-LGNN, δ-k-GNN, and k-WL-GNN, we implemented them
using PYTORCH GEOMETRIC [36], using a Python-wrapped C++11 preprocessing routine to compute
the computational graphs for the higher-order GNNs.7 We used the GIN-ε layer to express fW1

mrg and
fW2

aggr of Section 4.

See Appendix E.2 for a detailed description of all evaluation protocols and hyperparameter selection
routines.

Results and discussion In the following we answer questions Q1 to Q4.
6We opted for comparing on the QM9 dataset to ensure a fair comparison concerning hyperparameter

selection.
7We opted for not implementing the δ-k-LGNN+ as it would involve precomputing #.
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Method
Dataset

ENZYMES IMDB-BINARY IMDB-MULTI NCI1 NCI109 PTC_FM PROTEINS REDDIT-BINARY

B
as

el
in

e GR 29.7 ±0.6 58.9 ±1.0 39.0 ±0.8 66.1 ±0.4 66.3 ±0.2 61.3 ±1.1 71.2 ±0.6 60.0 ±0.2
SP 40.7 ±0.9 58.5 ±0.4 39.4 ±0.3 74.0 ±0.3 73.0 ±0.4 61.3 ±1.3 75.6 ±0.5 84.6 ±0.3
1-WL 50.7 ±1.2 72.5 ±0.5 50.0 ±0.5 84.2 ±0.3 84.3 ±0.3 62.6 ±2.0 72.6 ±1.2 72.8 ±0.5
WLOA 56.8 ±1.6 72.7 ±0.9 50.1 ±0.7 84.9 ±0.3 85.2 ±0.3 61.8 ±1.5 73.2 ±0.6 88.1 ±0.4

N
eu

ra
l Gin-0 38.8 ±1.7 72.7 ±0.9 49.9 ±0.8 78.5 ±0.5 76.7 ±0.8 58.2 ±3.3 71.3 ±0.9 89.8 ±0.6

Gin-ε 39.4 ±1.7 72.9 ±0.6 49.6 ±0.9 78.6 ±0.3 77.0 ±0.5 57.7 ±2.0 71.1 ±0.8 90.3 ±0.3

G
lo

ba
l 2-WL 36.7 ±1.7 68.2 ±1.1 48.1 ±0.5 67.1 ±0.3 67.5 ±0.2 62.3 ±1.6 75.0 ±0.8 OOM

3-WL 42.3 ±1.1 67.8 ±0.8 47.0 ±0.7 OOT OOT 61.5 ±1.7 OOM OOM

δ-2-WL 37.5 ±1.2 68.1 ±1.1 47.9 ±0.7 67.0 ±0.5 67.2 ±0.4 61.9 ±0.9 75.0 ±0.4 OOM
δ-3-WL 43.0 ±1.4 67.5 ±1.0 47.3 ±0/9 OOT OOT 61.2 ±2.0 OOM OOM

L
oc

al

δ-2-LWL 56.6 ±1.2 73.3 ±0.5 50.2 ±0.6 84.7 ±0.3 84.2 ±0.4 60.3 ±3.2 75.1 ±0.3 89.7 ±0.4
δ-2-LWL+ 52.9 ±1.4 75.7 ±0.7 62.5 ±1.0 91.4 ±0.2 89.3 ±0.2 62.6 ±1.6 79.3 ±1.1 91.1 ±0.5
δ-3-LWL 57.6 ±1.2 72.8 ±1.2 49.3 ±1.0 83.4 ±0.2 82.4 ±0.4 61.3 ±1.6 OOM OOM
δ-3-LWL+ 56.8 ±1.2 76.2 ±0.8 64.2 ±0.9 82.7 ±0.5 81.9 ±0.4 61.3 ±2.0 OOM OOM

Table 1: Classification accuracies in percent and standard deviations, OOT— Computation did not
finish within one day, OOM— Out of memory.

(a) Training versus test accuracy of local and global
kernels for a subset of the datasets.

Set
Dataset

ENZYMES IMDB-BINARY IMDB-MULTI

δ-2-WL Train 91.2 83.8 57.6
Test 37.5 68.1 47.9

δ-2-
LWL Train 98.8 83.5 59.9

Test 56.6 73.3 50.2

δ-2-
LWL+ Train 99.5 95.1 86.5

Test 52.9 75.7 62.5

(b) Mean MAE (mean std. MAE, logMAE) on large-
scale (multi-target) molecular regression tasks.

Method
Dataset

ZINC (FULL) ALCHEMY (FULL)

B
as

el
in

e GINE-ε 0.084 ±0.004 0.103 ±0.001 -2.956 ±0.029

2-WL-GNN 0.133 ±0.013 0.093 ±0.001 -3.394 ±0.035
δ-2-GNN 0.042 ±0.003 0.080 ±0.001 -3.516 ±0.021

δ-2-LGNN 0.045 ±0.006 0.083 ±0.001 -3.476 ±0.025

Table 2: Additional results for kernel and neural approaches.

A1 Kernels See Table 1. The local algorithm, for k = 2 and 3, severely improves the classification
accuracy compared to the k-WL and the δ-k-WL. For example, on the ENZYMES dataset the δ-2-LWL
achieves an improvement of almost 20%, and the δ-3-LWL achieves the best accuracies over all
employed kernels, improving over the 3-WL and the δ-3-WL by more than 13%. This observation
holds over all datasets. Our algorithms also perform better than neural baselines. See Table 5 in the
appendix for additional results on the mid-scale datasets. However, it has to be noted that increasing k
does not always result in increased accuracies. For example, on all datasets (excluding ENZYMES), the
performance of the δ-2-LWL is better or on par with the δ-3-LWL. Hence, with increasing k the local
algorithm is more prone to overfitting.
Neural architectures See Table 2b and Figure 2. On the ZINC and ALCHEMY datasets, the δ-2-LGNN
is on par or slightly worse than the δ-2-GNN. Hence, this is in contrast to the kernel variant. We assume
that this is due to the δ-2-GNN being more flexible than its kernel variant in weighing the importance
of global and local neighbors. This is further highlighted by the worse performance of the 2-WL-GNN,
which even performs worse than the (1-dimensional) GINE-ε on the ZINC dataset. On the QM9
dataset, see Figure 2a, the δ-2-LGNN performs better than the higher-order methods from [77, 83]
while being on par with the MPNN architecture. We note here that the MPNN was specifically tuned
to the QM9 dataset, which is not the case for the δ-2-LGNN (and the other higher-order architectures).
A2 See Table 1. The δ-2-LWL+ improves over the δ-2-LWL on all datasets excluding ENZYMES. For
example, on IMDB-MULTI, NCI1, NCI109, and PROTEINS the algorithm achieves an improvement
over of 4%, respectively, achieving a new state-of-the-art. The computation times are only increased
slightly, see Table 8 in the appendix. Similar results can be observed on the mid-scale datasets,
see Tables 5 and 9 in the appendix.
A3 Kernels As Table 2a (Table 6 for all datasets) shows the δ-2-WL reaches slightly higher training
accuracies over all datasets compared to the δ-2-LWL, while the testing accuracies are much lower
(excluding PTC_FM and PROTEINS). This indicates that the δ-2-WL overfits on the training set.
The higher test accuracies of the local algorithm are likely due to the smaller neighborhood, which
promotes that the number of colors grow slower compared to the global algorithm. The δ-k-LWL+
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Method QM9

B
as

el
in

e

GINE-ε 0.081 ±0.003
MPNN 0.034 ±0.001
1-2-GNN 0.068 ±0.001
1-3-GNN 0.088 ±0.007
1-2-3-GNN 0.062 ±0.001
3-IGN 0.046 ±0.001

δ-2-LGNN 0.029 ±0.001

(a) Mean std. MAE com-
pared to [45, 77, 83].
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Figure 2: Additional results for neural architectures.

(a) Speed up ratios of local kernel computations for a
subset of the datasets.

Method
Dataset

ENZYMES IMDB-BINARY NCI1

G
lo

ba
l

2-WL 10.4 3.6 14.3
δ-2-WL 10.1 3.6 14.5

δ-2-LWL+ 1.2 1.2 1.3
δ-2-LWL 1.0 1.0 1.0

(b) Average speed up ratios over all epochs (training
and testing).

Method
Dataset

ZINC ALCHEMY

D
en

se 2-WL-GNN 2.2 1.1
δ-2-GNN 2.5 1.7

GINE-ε 0.2 0.4
δ-2-LGNN 1.0 1.0

Table 3: Speed up ratios of local over global algorithms.

inherits the strengths of both algorithms, i.e., achieving the overall best training accuracies while
achieving state-of-the-art testing accuracies.
Neural architectures See Figure 2. In contrast to the kernel variants, the 2-WL and the δ-2-WL, the
corresponding neural architectures, the 2-WL-GNN and the δ-2-GNN, seem less prone to overfitting.
However, especially on the ALCHEMY dataset, the δ-2-LGNN overfits less.
A4 Kernels See Table 3a (Tables 8 and 9 for all datasets). The local algorithm severely speeds up
the computation time compared to the δ-k-WL and the k-WL for k = 2 and 3. For example, on the
ENZYMES dataset the δ-2-LWL is over ten times faster than the δ-2-WL. The improvement of the
computation times can be observed across all datasets. For some datasets, the {2, 3}-WL and the
δ-{2, 3}-WL did not finish within the given time limit or went out of memory. For example, on four
out of eight datasets, the δ-3-WL is out of time or out of memory. In contrast, for the corresponding
local algorithm, this happens only two out of eight times. Hence, the local algorithm is more suitable
for practical applications.
Neural architectures See Table 3b. The local algorithm severely speeds up the computation time
of training and testing. Especially, on the ZINC dataset, which has larger graphs compared to the
ALCHEMY dataset, the δ-2-LGNN achieves a computation time that is more than two times lower
compared to the δ-2-GNN and the 2-WL-GNN.

7 Conclusion

We introduced local variants of the k-dimensional Weisfeiler-Leman algorithm. We showed that one
variant and its corresponding neural architecture are strictly more powerful than the k-WL while taking
the underlying graph’s sparsity into account. To demonstrate the practical utility of our findings, we
applied them to graph classification and regression. We verified that our local, sparse algorithms lead to
vastly reduced computation times compared to their global, dense counterparts while establishing new
state-of-the-art results on a wide range of benchmark datasets. We believe that our local, higher-order
kernels and GNN architectures should become a standard approach in the regime of supervised
learning with small graphs, e.g., molecular learning.

Future work includes a more fine-grained analysis of the proposed algorithm, e.g., moving away
from the restrictive graph isomorphism objective and deriving a deeper understanding of the neural
architecture’s capabilities when optimized with stochastic gradient descent.
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Broader impact

We view our work mainly as a methodological contribution. It studies the limits of current (supervised)
graph embeddings methods, commonly used in chemoinformatics [103], bioinformatics [10], or
network science [27]. Currently, methods used in practice, such as GNNs or extended-connectivity
fingerprints [93] have severe limitations and might miss crucial patterns in today’s complex, inter-
connected data. We investigate how to scale up graph embeddings that can deal with higher-order
interactions of vertices (or atom of molecules, users in social networks, variables in optimization,
. . .) to larger graphs or networks. Hence, our method paves the way for more resource-efficient and
expressive graph embeddings.

We envision that our (methodological) contributions enable the design of more expressive and scalable
graph embeddings in fields such as quantum chemistry, drug-drug interaction prediction, in-silicio,
data-driven drug design/generation, and network analysis for social good. However, progress in graph
embeddings might also trigger further advancements in hostile social network analysis, e.g., extracting
more fine-grained user interactions for social tracking.

Example impact We are actively cooperating with chemists on drug design to evaluate further our
approach to new databases for small molecules. Here, the development of new databases is quite
tedious, and graph embeddings can provide hints to the wet lab researcher where to start their search.
However, still, humans need to do much of the intuition-driven, manual wet lab work. Hence, we do
not believe that our methods will result in job losses in the life sciences in the foreseeable future.
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