Appendix

A Related work (Expanded)

In the following, we review related work from graph kernels, GNNs, and theory.

Graph kernels Historically, kernel methods—which implicitly or explicitly map graphs to elements
of a Hilbert space—have been the dominant approach for supervised learning on graphs. Important
early work in this area includes random-walk based kernels [42, 60, 70] and kernels based on shortest
paths [13]. More recently, graph kernels’ developments have emphasized scalability, focusing on
techniques that bypass expensive Gram matrix computations by using explicit feature maps, see,
e.g., [100]. Morris et al. [82] devised a local, set-based variant of the k-WL. However, the approach is
(provably) weaker than the tuple-based algorithm, and they do not prove convergence to the original
algorithm. Yanardag and Vishwanathan successfully employed Graphlet [99], and Weisfeiler-Leman
kernels within frameworks for smoothed [118] and deep graph kernels [119]. Other recent works
focus on assignment-based [59, 68, 88], spectral [67, 106], graph decomposition [89], randomized
binning approaches [52], and the extension of kernels based on the 1-WL [92, 104]. For a theoretical
investigation of graph kernels, see [69], for a thorough survey of graph kernels, see [71].

GNNs Recently, graph neural networks (GNNs) [45, 97] emerged as an alternative to graph kernels.
Notable instances of this architecture include, e.g., [33, 37, 51, 105], and the spectral approaches
proposed in, e.g., [14, 29, 64, 81]—all of which descend from early work in [65, 80, 102, 97].
Recent extensions and improvements to the GNN framework include approaches to incorporate
different local structures (around subgraphs), e.g., [1, 38, 58, 87, 114], novel techniques for pooling
node representations in order perform graph classification, e.g., [16, 40, 120, 122], incorporating
distance information [121], and non-euclidian geometry approaches [18]. Moreover, recently empirical
studies on neighborhood aggregation functions for continuous vertex features [26], edge-based GNN's
leveraging physical knowledge [2, 66], and sparsification methods [94] emerged. Loukas [74] and
Sato et al. studied the limits of GNNs when applied to combinatorial problems. A survey of recent
advancements in GNN techniques can be found, e.g., in [19, 113, 125]. Garg et al. [41] and Verma
and Zhang [107] studied the generalization abilities of GNNs, and [32] related wide GNNs to a
variant of the neural tangent kernel [3, 56]. Murphy et al. [85, 86] and Sato et al. [96] extended the
expressivity of GNNs by considering all possible permutations of a graph’s adjacency matrix, or
adding random node features, respectivley. The connection between random colorings and universality
was investigated in [28].

Recently, connections to Weisfeiler-Leman type algorithms have been shown [11, 24, 43, 44,75, 77,
83, 115]. Specifically, [83, 115] showed that the expressive power of any possible GNN architecture
is limited by the 1-WL in terms of distinguishing non-isomorphic graphs. Morris et al. [83] also
introduced k-dimensional GNNs (k-GNN) which rely on a message-passing scheme between subgraphs
of cardinality k. Similar to [82], the paper employed a local, set-based (neural) variant of the k-WL,
which is (provably) weaker than the variant considered here. Later, this was refined in [77] by
introducing k-order invariant graph networks (k-IGN), based on Maron et al. [78], and references
therein, which are equivalent to the folklore variant of the k-WL [46] in terms of distinguishing
non-isomorphic graphs. However, k-GN may not scale since they rely on dense linear algebra routines.
Chen et al. [24] connect the theory of universal approximation of permutation-invariant functions and
the graph isomorphism viewpoint and introduce a variation of the 2-WL, which is more powerful than
the former. Our comprehensive treatment of higher-order, sparse, neural networks for arbitrary k
subsumes all of the algorithms and neural architectures mentioned above.

Finally, there exists a new line of work focusing on extending GNNs to hypergraphs, see, e.g., [9,
116, 123], and a line of work in the data mining community incorporating global or higher-order
information into graph or node embeddings, see, e.g., [17, 72, 79].

Theory The Weisfeiler-Leman algorithm constitutes one of the earliest approaches to isomorphism
testing [110, 111], having been heavily investigated by the theory community over the last few
decades [49]. Moreover, the fundamental nature of the k-WL is evident from a variety of connections
to other fields such as logic, optimization, counting complexity, and quantum computing. The power
and limitations of £-WL can be neatly characterized in terms of logic and descriptive complexity [55],
Sherali-Adams relaxations of the natural integer linear program for the graph isomorphism prob-
lem [6, 48, 76], homomorphism counts [30], and quantum isomorphism games [7]. In their seminal

paper [55], Cai et al. showed that for each k there exists a pair of non-isomorphic graphs of size
O(k) each that cannot be distinguished by the k-WL. Grohe et al. [49] gives a thorough overview
of these results. For k = 1, the power of the algorithm has been completely characterized [4, 63].
Moreover, upper bounds on the running time for £ = 1 [12, 61], and the number of iterations for the
folklore &k = 2 [62, 73] have been shown. For kK = 1 and 2, Arvind et al. [5] studied the abilities
of the (folklore) k-WL to detect and count fixed subgraphs, extending the work of Fiirer [39]. The
former was refined in [25]. The algorithm (for logarithmic k) plays a prominent role in the recent
result of Babai [8] improving the best-known running time for the graph isomorphism problem.
Recently, Grohe et al. [50] introduced the framework of Deep Weisfeiler Leman algorithms, which
allow the design of a more powerful graph isomorphism test than Weisfeiler-Leman type algorithms.
Finally, the emerging connections between the Weisfeiler-Leman paradigm and graph learning are
described in a recent survey of Grohe [47].

B Preliminaries (Expanded)

We briefly describe the Weisfeiler-Leman algorithm and, along the way, introduce our notation. We
also state a variant of the algorithm, introduced in [76]. As usual, let [n] = {1,...,n} C Nforn > 1,
and let {{...} denote a multiset.

Graphs A graph G is a pair (V, E) with a finite set of vertices V and a set of edges E C {{u,v} C
V' | u # v}. We denote the set of vertices and the set of edges of G by V(G) and E(G), respectively.
For ease of notation, we denote the edge {u, v} in E(G) by (u, v) or (v, u). In the case of directed
graphs E C {(u,v) € V xV | u # v}. A labeled graph G is a triple (V, E,[) with a label
function {: V(G) U E(G) — X, where X' is some finite alphabet. Then [(v) is a label of v for v
in V(G) U E(QG). The neighborhood of v in V(G) is denoted by §(v) = N(v) = {u € V(G) |
(v,u) € E(G)}. Moreover, its complement §(v) = {u € V(G) | (v,u) ¢ E(G)}.Let S C V(G)
then G[S] = (S, Eg) is the subgraph induced by S with Eg = {(u,v) € E(G) | u,v € S}. A tree
is a connected graph without cycles. A rooted tree is a tree with a designated vertex called root in
which the edges are directed in such a way that they point away from the root. Let p be a vertex in a
directed tree then we call its out-neighbors children with parent p.

We say that two graphs G and H are isomorphic if there exists an edge preserving bijection
v: V(G) = V(H),ie., (u,v)is in E(G) if and only if (¢(u), p(v)) is in E(H). If G and H are
isomorphic, we write G ~ H and call ¢ an isomorphism between G and H. Moreover, we call the
equivalence classes induced by ~ isomorphism types, and denote the isomorphism type of G by
T¢. In the case of labeled graphs, we additionally require that I(v) = [(¢(v)) for v in V(G) and
I((u,v)) = 1((p(u), p(v))) for (u,v) in E(G). Let v be a tuple in V(G)* for k > 0, then G[v] is
the subgraph induced by the components of v, where the vertices are labeled with integers from
{1, ..., k} corresponding to indices of v.

Kernels A kernel on a non-empty set X’ is a positive semidefinite function k: X x & — R.
Equivalently, a function k is a kernel if there is a feature map ¢: X — H to a Hilbert space H with
inner product (-, -), such that k(z,y) = (¢(z), ¢(y)) for all z and y in X. Let G be the set of all
graphs, then a (positive semidefinite) function G x G — R is called a graph kernel.

C Vertex refinement algorithms (Expanded)

Let k be a fixed positive integer. As usual, let V' (G)* denote the set of k-tuples of vertices of G.

A coloring of V(G)* is a mapping C: V(G)* — N, i.e., we assign a number (color) to every tuple in
V(G)F. The initial coloring Cy of V(G)* is specified by the isomorphism types of the tuples, i.e.,
two tuples v and w in V(G)* get a common color iff the mapping v; — w; induces an isomorphism
between the labeled subgraphs G[v] and G[w]. A color class corresponding to a color c¢ is the set of
all tuples colored ¢, i.e., the set C~1(c).

The neighborhood of a vertex tuple v in V(G)* is defined as follows. For j in [k], let ¢;(v,w) be
the k-tuple obtained by replacing the j™ component of v with the vertex w. That is, ¢, (v, w) =
(U1, Vj—1, W, Vjg1, ..., V). If w = ¢;(v,w) for some w in V(G), call w a j-neighbor of v.
The neighborhood of v is thus defined as the set of all tuples w such that w = ¢; (v, w) for some j in
[k] and w in V(G).

The refinement of a coloring C: V(G)* — N, denoted by C, is a coloring C: V(G)¥ — N
defined as follows. For each j in [k], collect the colors of the j-neighbors of v as a multiset
S; ={C(¢;j(v,w)) | w e V(G)}. Then, for a tuple v, define

C(v) = (C(v), M(v)),

where M (v) is the k-tuple (Sy, ..., Sk). For consistency, the strings C (v) thus obtained are lexico-

graphically sorted and renamed as integers. Observe that the new color C(v) of v is solely dictated
by the color histogram of its neighborhood. In general, a different mapping M (-) could be used,
depending on the neighborhood information that we would like to aggregate. We will refer to a
mapping M () as an aggregation map.

k-dimensional Weisfeiler-Leman For £ > 2, the k-WL computes a coloring C : V(G)’C — Nof
a given graph G, as follows.! To begin with, the initial coloring Cy is computed. Then, starting with

Cy, successive refinements C; 1 = a are computed until convergence. That is,
Cit1(v) = (Ci(v), M;(v)),
where
M;(v) = ({Ci(gr(v,w)) |w e V(G)}, ..., {Ci(¢x(v,w)) |w e V(G)}). (1)

The successive refinement steps are also called rounds or iterations. Since the disjoint union of the

color classes form a partition of V' (G)*, there must exist a finite ¢ < |V (G)|* such that C; = Ci.n
the end, the k-WL outputs Cy as the stable coloring C..

The k-WL distinguishes two graphs G and H if, upon running the k-WL on their disjoint union G U H,
there exists a color ¢ in N in the stable coloring such that the corresponding color class S, satisfies

V(G)* N S| # [V(H)" NS,
i.e., there exist an unequal number of c-colored tuples in V (G)* and V (H)*. Hence, two graphs
distinguished by the £-WL must be non-isomorphic.

In fact, there exist several variants of the above defined k-WL. These variants result from the application
of different aggregation maps M (-). For example, setting M (+) to be

MF(v) = {(C(o1(v,w)),...,C(¢r(v,w))) |w e V(G)},

yields a well-studied variant of the k-WL (see, e.g., [15]), commonly known as “folklore” k-WL in
machine learning literature. It holds that the k-WL using Equation (7) is as powerful as the folklore
(k—1)-WL [438].

C.1 §-Weisfeiler-Leman algorithm

Let w = ¢, (v, w) be a j-neighbor of v. Call w a local j-neighbor of v if w is adjacent to the replaced
vertex v;. Otherwise, call w a global j-neighbor of v. Figure 3 illustrates this definition for a 3-tuple
(u, v, w). For tuples v and w in V' (G)*, the function

adj((v, w)) = L if wis a local neighbor of v
W ~ |G if wis a global neighbor of v
indicates whether w is a local or global neighbor of v.

The -k-dimensional Weisfeiler-Leman algorithm, denoted by d-k-WL, is a variant of the classic k-WL
which differentiates between the local and the global neighbors during neighborhood aggregation [76].
Formally, the §-k-WL algorithm refines a coloring C; (obtained after 7 rounds) via the aggregation map

M (v) = ({(Cil¢1 (v, w), adi(v, é1.(v,w)) [w € V(@) }, ...,
{(Cior (v, w), adi(v, éx (v, w))) | w € V(G)}),

instead of the k-WL aggregation specified by Equation (7). We define the 1-WL to be the 6-1-WL,
which is commonly known as color refinement or naive vertex classification.

2

'We define the 1-WL in the next subsection.

©
0‘« e‘u ® &6

(a) Underlying grath with (b) (u,v,z) is a local 3- (¢) (z,v,w) is a global 1-
tuple (u, v, w) neighbor of (u, v, w) neighbor of (u, v, w)

Figure 1: llustration of the local and global neighborhood of the 3-tuple (u, v, w).

Comparing k-WL variants Given that there exist several variants ofthe k-WL, corresponding to
different aggregation maps M (+), it is natural to ask whether they are equivalent in power, vis-a-vis
distinguishing non-isomorphic graphs. Let A; and As denote two vertex refinement algorithms, we
write A; C A, if A; distinguishes between all non-isomorphic pairs As does, and A; = A, if both
directions hold. The corresponding strict relation is denoted by .

The following result relates the power of the k-WL and 6-k-WL. Since for a graph G = (V, E),

M (v) = M*®(w) implies M;(v) = M;(w) for all v and w in V(G)* and i > 0, it immediately
follows that 0-k-WL C k-WL. For k& = 1, these two algorithms are equivalent by definition. For
k > 2, this relation can be shown to be strict, see the next section.

Proposition 1 (restated, Proposition 1 in the main text). For all graphs and k& > 2, the following
holds:

0-k-WL C k-WL.

C.1.1 Proof of Proposition 1

It suffices to show an infinite family of graphs (G, Hy), k € N, such that (a) k-WL does not
distinguish G, and Hy, although (b) §-k-WL distinguishes G, and Hy,.

We proceed to the construction of this family. The graph family is based on the classic construction of
[15], commonly referred to as Cai-Furer-Immermman (CFI) graphs.

Construction. Let K denote the complete graph on k£ + 1 vertices (there are no loops in K). The
vertices of K are numbered from 0 to k. Let F(v) denote the set of edges incident to v in K: clearly,
|E(v)| = k for all v € V(K). Define the graph G as follows:

1. For the vertex set V(G), we add
(@) (v,S) for each v € V(K) and for each even subset S of E(v),
(b) two vertices e', €” for each edge e € E(K).
2. For the edge set E(G), we add
(a) anedge {e°, e'} foreach e € E(K),
(b) an edge between (v, S) and e! ifv € cande € S,
(c) an edge between (v, S) and e’ if v € eand e 5,

Define a companion graph H, in a similar manner to GG, with the following exception: in Step
1(a), for the vertex 0 € V(K), we choose all odd subsets of E(0). Counting vertices, we find that

\V(G)| = |V(H)| = (k + 1) -2"=1 4 (5) - 2. This finishes the construction of graphs G and H. We
set G := G and H, := H.

A set S of vertices is said to form a distance-two-clique if the distance between any two vertices in S
is exactly two.

Lemma 2. The following holds for graphs G and H defined above.

e There exists a distance-two-clique of size (k + 1) inside G.
e There does not exist a distance-two-clique of size (k + 1) inside H.

Hence, G and H are non-isomorphic.

Proof. In the graph G, consider the vertex subset S = {(0,0), (1,0),..., (k,0)} of size (k+1). That
is, from each “cloud” of vertices of the form (v, S) for a fixed v, we pick the vertex corresponding to
the trivial even subset, the empty set denoted by (). Observe that any two vertices in .S are at distance
two from each other. This holds because for any i, € V(K), (4,0) is adjacent to {i, j}° which is
adjacent to (j,?) (e.g. see Figure 1). Hence, the vertices in .S form a distance-two-clique of size &k + 1.

On the other hand, for the graph H, suppose there exists a distance-two-clique, say (0, Sp), . . ., (k, Sk)
in H, where each S; C E(i). If we compute the parity-sum of the parities of [Sp|, .. ., |Sk|, we end up
with 1 since there is exactly one odd subset in this collection, viz. Sy. On the other hand, we can also
compute this parity-sum in an edge-by-edge manner: for each edge (¢, j) € E(K), since (i, .5;) and
(4,S;) are at distance two, either both S; and .S} contain the edge {i, j} or neither of them contains
{4, j}: hence, the parity-sum contribution of .S; and \S; to the term corresponding to e is zero. Since
the contribution of each edge to the total parity-sum is 0, the total parity-sum must be zero. This is a
contradiction, and hence, there does not exist a distance-two-clique in H. O

Next, we show that the local algorithm §-k-LWL can distinguish G and H. Since §-k-WL C §-k-LWL,
the above lemma implies the strictness condition 6-k-WL C k-WL.

Lemma 3. §-k-LWL distinguishes G and H.

Proof. The proof idea is to show that §-k-LWL algorithm is powerful enough to detect distance-two-
cliques of size (k 4+ 1), which ensures the distinguishability of G' and H. Indeed, consider the k-tuple
P=((1,0),(2,0),...,(k,0))in V(G)*. We claim that there is no tuple Q in V' (H)¥ such that the
unrolling of P is isomorphic to the unrolling of (). Indeed, for the sake of contradiction, assume
that there does exist @ in V' (H)* such that the unrolling of @ is isomorphic to the unrolling of P.
Comparing isomorphism types, we know that the tuple) must be of the form ((1,51),. .., (k, Sk)).

Consider the depth-two unrolling of P: from the root vertex P, we can go down via two local-edges
labeled 1, to hit the tuple P> = ((2,0), (2,0), ..., (k,0)). If we consider the depth-two unrolling of Q,
the isomorphism type of P implies that the vertices (1, S7) and (2, S2) must be at distance-two in the
graph H. Repeating this argument, we obtain that (1,S7), ..., (k, Si) form a distance-two-clique in
H of size k. Our goal is to produce a distance-two-clique in H of size k, for the sake of contradiction.

For that, consider the depth-four unrolling of P: from the root vertex P, we can go down via two
local-edges labeled 1 to hit the tuple R = ((0,0), (2,0),...(k,0). For each 2 < j < k, we can
further go down from R via two local edges labeled j to reach a tuple whose 1% and j™ entry is
(0,0). Similarly, for the unrolling of Q, there exists a subset Sy C F(0) and a corresponding tuple
R’ = ((0,50),(2,52),...,(k,Sk)), such that for each 2 < j < k, we can further go down from
R’ via two local edges labeled j to reach a tuple whose 1% and ;™ entry is (0, Sy). Comparing the
isomorphism types of all these tuples, we deduce that (0, .Sy) must be at distance two from each of
(i,8;) for i € [k]. This implies that the vertex set {(0, Sy), (1, 51), ..., (k, Sk)} is a distance-two-
clique of size k + 1 in H, which is impossible. Hence, there does not exist any k-tuple Q in V (H)*
such that the unrolling of P and the unrolling of () are isomorphic. Hence, the §-k-LWL distinguishes
G and H. O

Finally, we note that CFI graphs are standard tools from graph isomorphism theory, and are often used
to analyze the power and limitations of WL-type algorithms. It follows from results of [15] that for
every k > 0, k-WL fails to distinguish the graphs G, and Hj, of our constructed family. This finishes
the proof of the proposition.

D Local §-k-dimensional Weisfeiler-Leman algorithm (Expanded)

In this section, we define the new local §-k-dimensional Weisfeiler-Leman algorithm (6-k-LWL). This
variant of 0-k-WL considers only local neighbors during the neighborhood aggregation process, and
discards any information about the global neighbors. Formally, the d-k-LWL algorithm refines a
coloring C; (obtained after 7 rounds) via the aggregation map,

M (v) = ({Ci(¢r(v.w)) [w € N(vn)}, ... {Ci(dx(v,w)) | w € N(vi)}), 3)

instead of Equation (8). That is, the algorithm only considers the local j-neighbors of the vertex v in
each iteration. Therefore, the indicator function adj used in Equation (8) is trivially equal to L here,

and is hence omitted. The coloring function for the §-k-LWL is defined by

CEL(v) = (CF° (v), M ().

We also define §-k-LWL™, a minor variation of §-k-LWL. Later, we will show that 6-k-LWL™ is

equivalent in power to §-k-WL (Theorem 10). Formally, the §-k-LWL™ algorithm refines a coloring
C; (obtained after ¢ rounds) via the aggregation function,

MOF(v) = ({(Ci(¢1(v,w), #1 (v, 61(v,w))) | w € N(v)},...,
{(Ci(dr (v, w)), #5 (v, dr (v, w))) | w € N(vg)}),
instead of §-k-LWL aggregation defined in Equation (9). Here, the function
#(v,x) = {w: w~; v, C(w) = Ci(x)}],

4)

where w ~; v denotes that w is j-neighbor of v, for j in [k]. Essentially, #7 (v,x) counts the number
of j-neighbors (local or global) of v which have the same color as x under the coloring C; (i.e., after ¢
rounds). For a fixed v, the function #{ (v, +) is uniform over the set S N N. j» where S'is a color class
obtained after iterations of the §-k-LWL™ and N; denotes the set of j-neighbors of v. Note that after

the stable partition has been reached #{ (v) will not change anymore. Observe that each iteration of
the §-k-LWL™ has the same asymptotic running time as an iteration of the §-k-LWL.

The following theorem shows that the local variant J-k-LWL™ is at least as powerful as the §-k-WL
when restricted to the class of connected graphs. In other words, given two connected graphs G and H,
if these graphs are distinguished by §-k-WL, then they must also be distinguished by the 6-k-LWL™.
On the other hand, it is important to note that, in general, the §-k-LWL™ might need a larger number
of iterations to distinguish two graphs, as compared to §-k-WL. However, this leads to advantages in a
machine learning setting, see Section 6.

Theorem 4 (restated, Theorem 2 in the main text). For the class of connected graphs, the following
holds for all k¥ > 1:
§-k-LWL" = 6-k-WL.

Along with Proposition 1, we obtain the following corollary relating the power of k-WL and §-k-LWL*.

Corollary 5 (restated, Corollary 3 in the main text). For the class of connected graphs, the following
holds for all k¥ > 2:
-k-LWL"Y C k-WL.

In fact, the proof of Proposition 1 shows that the infinite family of graphs G, Hy witnessing the
strictness condition can even be distinguished by §-k-LWL, for each corresponding k& > 2. We note
here that the restriction to connected graphs can easily be circumvented by adding a specially marked
vertex, which is connected to every other vertex in the graph.

D.1 Kernels based on vertex refinement algorithms

The idea for a kernel based on the §-k-LWL (and the other vertex refinements algorithms) is to
compute it for 4 > 0 iterations resulting in a coloring function C*: V(G) — X; for each iteration
i. Now, after each iteration, we compute a feature vector ¢;(G) in RI¥i for each graph G. Each
component ¢;(G). counts the number of occurrences of k-tuples labeled by ¢ in X;. The overall
feature vector ¢pwi.(G) is defined as the concatenation of the feature vectors of all h iterations, i.e.,
dwi(G) = [00(G), ..., #n(G)]. The corresponding kernel for / iterations then is computed as
kiwo(G, H) = (¢rwL(G), érwL(H)), where (-, -) denotes the standard inner product.

D.2 Local converges to global: Proof of Theorem 2

The main technique behind the proof is to encode the colors assigned by the £-WL (or its variants) as
rooted directed trees, called unrolling trees. The exact construction of the unrolling tree depends on the
aggregation map M (-) used by the k-WL variant under consideration. We illustrate this construction
for the k-WL. For other variants such as the §-k-WL, §-k-LWL, and §-k-LWL™, we will specify
analogous constructions.

3
Lonbrs e 1 2 Snbrs
______________) 2 2 2
PR 2R N .
(*,v,w) . . 1 2 (ua Ua*)

A A o—e 3 1 o—e

1 2 1 2 5 5

(u, T, w) (u, v, w) (u, u, w) (u, w, w)

Figure 2: Unrolling at the tuple (u, v, w) of depth one.

Unrollings (“Rolling in the deep”) Given a graph G, a tuple v in V(G)k, and an integer ¢ > 0, the
unrolling UNR [G, v, ¢] is a rooted, directed tree with vertex and edge labels, defined recursively as
follows.

- For ¢ = 0, UNR G, v, 0] is defined to be a single vertex, labeled with the isomorphism type
7(v). This lone vertex is also the root vertex.

- For £ > 0, UNR G, v,] is defined as follows. First, introduce a root vertex r, labeled with
the isomorphism type 7(v). Next, for each j € [k] and for each j-neighbor w of v, append
the rooted subtree UNR [G, w, £ — 1] below the root r. Moreover, the directed edge e from r
to the root of UNR [G, w, £ — 1] is labeled j iff w is a j-neighbor of v.

We refer to UNR [G, v, £] as the unrolling of the graph G at v of depth ¢. Figure 4 partially illustrates
the recursive construction of unrolling trees: it describes the unrolling tree for the graph in Figure 3 at
the tuple (u, v, w), of depth 1. Each node w in the unrolling tree is associated with some k-tuple w,
indicated alongside the node in the figure. We call w the tuple corresponding to the node w.

Analogously, we can define unrolling trees -UNR, L-UNR , and L"-UNR for the k-WL-variants
5-k-WL, 6-k-LWL, and §-k-LWL™ respectively. The minor differences lie in the recursive step above,
since the unrolling construction needs to faithfully represent the aggregation process.

- For 5-UNR, we additionally label the directed edge e with (j, L) or (j, G) instead of just 7,
depending on whether the neighborhood is local or global.

- For L-UNR, we consider only the subtrees L-UNR [G, w, ¢ — 1] for local j-neighbors w.

- For L"-UNR, we again consider only the subtrees L"-UNR [G, w, £—1] for local j-neighbors
w. However, the directed edge e to this subtree is also labeled with the # counter value

#1 (v, w).

Encoding colors as trees The following Lemma shows that the computation of the k-WL can be
faithfully encoded by the unrolling trees. Formally, let s and t be two k-vertex-tuples in V (G)¥.

Lemma 6. The colors of s and t after £ rounds of k-WL are identical if and only if the unrolling tree
UNR[G, s, ¢] is isomorphic to the unrolling tree UNR [G, t, ¢].

Proof. By induction on £. For the base case £ = 0, observe that the initial colors of s and t are
equal to the respective isomorphism types 7(s) and 7(t). On the other hand, the vertex labels for the
single-vertex graphs UNR [G, s, 0] and UNR [G, t, 0] are also the respective isomorphism types 7(s)
and 7(t). Hence, the statement holds for ¢ = 0.

For the inductive case, we proceed with the forward direction. Suppose that k-WL assigns the same
color to s and t after £ rounds. For each j in [k], the j-neighbors of s form a partition Cy,...,C,
corresponding to their colors after £ — 1 rounds of k-WL. Similarly, the j-neighbors of t form a partition
Dy, ..., D, corresponding to their colors after £ — 1 rounds of k-WL, where for ¢ in [p], C; and D;
have the same size and correspond to the same color. By inductive hypothesis, the corresponding depth
¢ — 1 unrollings UNR[G, ¢, ¢ — 1] and UNR [G, d, ¢ — 1] are isomorphic, for every ¢ in C; and d in
D;. Since we have a bijective correspondence between the depth £ — 1 unrollings of the j-neighbors of

S (SF-=-=-====-="="="="="=-"-"-"-"-"-"-"-"-"-"---"--- > t
J J
0
A) e e > Z
(4, #) 0 (4, #)

v

Figure 3: Unrollings L; = L"-UNR|[G, s, ¢] and L, = L"-UNR [G, t, q] of sufficiently large depth.

s and t, respectively, there exists an isomorphism between UNR [G, s, £] and UNR [G, t, £]. Moreover,
this isomorphism preserves vertex labels (corresponding to isomorphism types) and edges labels
(corresponding to j-neighbors).

For the backward direction, suppose that UNR [G, s, {] is isomorphic to UNR [G, t, £]. Then, we
have a bijective correspondence between the depth ¢ — 1 unrollings of the j-neighbors of s and of t,
respectively. For each j in [k], the j-neighbors of s form a partition Cq, ..., C, corresponding to
their unrolling trees after ¢ — 1 rounds of k-WL. Similarly, the j-neighbors of t form a partition
D1, ..., D, corresponding to their unrolling trees after £ — 1 rounds of k-WL, where for i in [p], C;,
and D; have the same size and correspond to the same isomorphism type of the unrolling tree. By
induction hypothesis, the j-neighborhoods of s and t have an identical color profile after £ — 1 rounds.
Finally, since the depth ¢ — 1 trees UNR [G, s, ¢ — 1] and UNR [G, t, £ — 1] are trivially isomorphic,
the tuples s and t have the same color after £ — 1 rounds. Therefore, k-WL must assign the same color
to s and t after £ rounds. O

Using identical arguments, we can state the analogue of Lemma 12 for the algorithms §-k-WL,
d-k-LWL, 6-k-LWL™, and their corresponding unrolling constructions 6-UNR, L-UNR and L"-UNR.
The proof is identical and is hence omitted.

Lemma 7. The following statements hold.

1. The colors of s and t after £ rounds of §-k-WL are identical if and only if the unrolling tree
d-UNR G, s, {] is isomorphic to the unrolling tree -UNR [G, t, ¢].

2. The colors of s and t after £ rounds of -k-LWL are identical if and only if the unrolling tree
L-UNR[G, s,] is isomorphic to the unrolling tree L-UNR [G, t, ¢].

3. The colors of s and t after £ rounds of §-k-LWL™ are identical if and only if the unrolling
tree L"™-UNR[G, s, /] is isomorphic to the unrolling tree L"-UNR [G, t, /].

Equivalence The following Lemma establishes that the local algorithm §-k-LWL™ is at least as
powerful as the global 6-k-WL, for connected graphs, i.e., 6-k-LWL™ C §-k-WL.

Lemma 8. Let G be a connected graph, and let s and t in V' (G)F. If the stable colorings of s and t
under the §-k-LWL™ are identical, then the stable colorings of s and t under §-k-WL are also identical.

Proof. Let r* denote the number of rounds needed to attain the stable coloring under 6-k-LWL™T.
Consider unrollings L; = LT-UNR[G, s, ¢] and Ly = LT-UNR G, t, ¢] of sufficiently large depth
q =r*+|V(G)| + 1. Since s and t have the same stable coloring under §-k-LWL™, the trees L, and
Ly are isomorphic (by Lemma 13). Let 6 be an isomorphism from L to L.

We prove the following equivalent statement. If L; and Lo are isomorphic, then for all ¢ > 0,
J-UNR|[G,s,] = 0-UNR |G, t,]. The proof is by induction on 7. The base case ¢ = 0 follows
trivially by comparing the isomorphism types of s and t.

For the inductive case, let j € [k]. Let X; be the set of j-neighbors of s. Similarily, let Y ; be the set
of j-neighbors of t. Our goal is to construct, for every j € [k], a corresponding bijection o; between
X; and Y satisfying the following conditions.

1. For all x in X, x is a local j-neighbor of s if and only if ¢;(x) is a local j-neighbor of t.
2. For all x in X, -UNR[G, x,7 — 1] = 6-UNR[G, 0;(x),i — 1], i.e., x and 0;(x) are
identically colored after ¢ — 1 rounds of d-k-WL.

From the definition of §-UNR trees, the existence of such o1, .. ., o) immediately implies the desired
claim §-UNR[G, s, i] = §-UNR[G, t, 4]. First, we show the following claim.

Claim 9. Let C be a color class in the stable coloring of G under §-k-LWL™. Let j € [k]. Then,
ICNX,|=|CNY,|.

Proof. Either |CNX,| =|CNY,|=0,in which case we are done. Otherwise, assume without loss
of generality that |C N X;| # 0. Let x in C N X;. Since G is connected, we can start from the root s
of Ly, go down along j-labeled edges, and reach a vertex x such that corresponds to the tuple x. Let
w be the parent of x, and let w be the tuple corresponding to w. Note that x is a local j-neighbor of w.
Moreover, the depth of w is at most n — 1. Hence, the height of the subtree of L; rooted at w is at
leastq — (n — 1) > r*.

Consider the tuple z corresponding to the vertex z = 6(w) in L. Observe that the path from the root ¢
of L to the vertex z = 6(w) consists of j-labeled edges. Therefore, z is j-neighbor of t, and hence z
in Y ;. The stable colorings of w and z under J-k-LWL™ are identical, because the subtrees rooted at

w and z are of depth more than r*. Let C denote the common color class of w and z, in the stable
coloring of G under 6-k-LWL™.

Since x is a local neighbor of w, the agreement of the # function values ensures that the number
of j-neighbors (local or global) of w in C is equal to the number of j-neighbors (local or global)
of z in C. Finally, the set of j-neighbors of w is equal to the set of j-neighbors of s, which is X ;.
Similarily, the set of j-neighbors of z is equal to the set of j-neighbors of t, which is Y ;. Hence,
ICNX,|=|CNY,|. O

Moreover, for each j € [k], the number of local j-neighbors of s in C N X} is equal to the number of
local j-neighbors of t in C NY ;. Otherwise, we could perform one more round of 6-k-LWL™ and
derive different colors for s and t, a contradiction.

Hence, we can devise the required bijection o; = O'jL U oJG as follows. We pick an arbitrary bijection
ojL between the set of local j-neighbors of s inside C and the set of local j-neighbors of t inside

C. We also pick an arbitrary bijection O'JG between the set of global j-neighbors of s inside C and
the set of global j-neighbors of t inside C. Clearly, o; satisfies the first stipulated condition. By
induction hypothesis, the second condition is also satisifed. Hence, we can obtain a desired bijection
o; satisfying the two stipulated conditions. Since we obtain the desired bijections o1, . .., o, this
finishes the proof of the lemma. O

Finally, since for a graph G = (V, E), Mf’g(v) = Mf’g(w) implies Mf’+(v) = M{S’Jr(w) for all v
and w in V(G)’“ and 7 > 0, it holds that §-k-WL C 6-k-LWL™. Together with Lemma 14 above, this
finishes the proof of Theorem 10.

E Details on experiments and additional results

Here we give details on the experimental study of Section 6.

Properties

Dataset Number of graphs Number of classes/targets & Number of vertices & Number of edges Vertex labels Edge labels
ENZYMES 600 6 32.6 62.1 v X
IMDB-BINARY 1000 2 19.8 96.5 X X
IMDB-MULTI 1500 3 13.0 65.9 X X
NCI1 4110 2 299 323 v X
NCI109 4127 2 29.7 32.1 v X
PTC_FM 349 2 14.1 14.5 v X
PROTEINS 1113 2 39.1 72.8 v X
REDDIT-BINARY 2000 2 429.6 497.8 X X
YEAST 79601 2 21.5 22.8 v v
YEASTH 79601 2 394 40.7 v v
UACC257 39988 2 26.1 28.1 v v
UACC257H 39988 2 46.7 48.7 v v
OVCAR-8 40516 2 26.1 28.1 v v
OVCAR-8H 40516 2 46.7 48.7 v v
ZINC 249456 12 23.1 249 v v
ALCHEMY 202579 12 10.1 10.4 v v
QM9 129433 12 18.0 18.6 v/ (13+3D)f v (4)

Table 1: Dataset statistics and properties, f—Continuous vertex labels following [45], the last three
components encode 3D coordinates.

E.1 Datasets, graph kernels, and neural architectures

In the following, we give an overview of employed datasets, (baselines) kernels, and (baseline) neural
architectures.

Datasets To evaluate kernels, we use the following, well-known, small-scale ENZYMES [98, 13],
IMDB-BINARY, IMDB-MULTI [119], NCI1, NCI109 [109], PTC_FM [53]?, PRO-
TEINS [31, 13], and REDDIT-BINARY [119] datasets. To show that our kernels also
scale to larger datasets, we additionally used the mid-scale YEAST, YEASTH, UACC257,
UACC257H, OVCAR-8, OVCAR-8H [117]® datasets. For the neural architectures we
used the large-scale molecular regression datasets ZINC [34, 57] and ALCHEMY [21]. We
opted for not using the 3D-coordinates of the ALCHEMY dataset to solely show the benefits
of the (sparse) higher-order structures concerning graph structure and discrete labels. To
further compare to the (hierarchical) k-GNN [83] and k-IGN [77], and show the benefits of
our architecture in presence of continuous features, we used the QM9 [91, 112] regression
dataset.* To study data efficiency, we also used smaller subsets of the ZINC and ALCHEMY
dataset. That is, for the ZINC 10K (ZINK 50K) dataset, following [34], we sampled 10 000
(50 000) graphs from the training, and 1 000 (5 000) from the training and validation split,
respectively. For ZINC 10K, we used the same splits as provided by [34]. For the ALCHEMY
10K (ALCHEMY 50K) dataset, as there is no fixed split available for the full dataset’, we
sampled the (disjoint) training, validation, and test splits uniformly and at random from the
full dataset. See Table 4 for dataset statistics and properties.®

Kernels We implemented the J-k-LWL, 6-k-LWL™, §-k-WL, and k-WL kernel for & in {2, 3}. We
compare our kernels to the Weisfeiler-Leman subtree kernel (1-WL) [100], the Weisfeiler-
Leman Optimal Assignment kernel (WLOA) [68], the graphlet kernel [99] (GR), and the
shortest-path kernel [13] (SP). All kernels were (re-)implemented in C++11. For the graphlet
kernel we counted (labeled) connected subgraphs of size three.

Neural architectures We used the GIN and GIN-¢ architecture [115] as neural baselines. For data
with (continuous) edge features, we used a 2-layer MLP to map them to the same number
of components as the node features and combined them using summation (GINE and
GINE-¢). For the evaluation of the neural architectures of Section 4, §-k-LGNN, §-%-

*https://wuw.predictive-toxicology.org/ptc/

*https://sites.cs.ucsb.edu/ xyan/dataset.htm

“We opted for comparing on the QM9 dataset to ensure a fair comparison concerning hyperparameter
selection.

Note that the full dataset is different from the contest dataset, e.g., it does not provide normalized targets, see
https://alchemy.tencent.com/.

SAll datasets can be obtained from http://www.graphlearning.io.

10

Dataset

Method = ™7y \ST YEastH UACC257 UACC257H OVCAR-8 OVCAR-8H
1-WL 88.8 <01 888<o01 96.8<o01 96.9 < 0.1 96.1 < 0.1 96.2 < 0.1
= GINE 883 <01 883<01 959<o01 959 <o0.1 94.9 < 0.1 94.9 < 0.1

3 GINE-¢ 883 <01 883<01 959<o01 959 <o0.1 949 <o0.1 949 <o0.1

Z
s 0-2-LWL 89.2<01 889<o01 970<o01 96.9 < 0.1 96.4 < 0.1 96.3 <o0.1
S 6-2-LWLT 950 <01 957 <01 974 <01 98.1 <01 97.4 <01 97.7 <o0.1

Table 2: Classification accuracies in percent and standard deviations on medium-scale datasets.

Dataset
Set
¢ ENzZYMES IMDB-BINARY IMDB-MuLTi NCIl1 NCI109 PTC_FM PROTEINS REDDIT-BINARY
NV Train 91.2 83.8 57.6 91.5 92.4 74.1 85.4
% Test 37.5 68.1 479 67.0 67.2 61.9 75.0
\’\N\, Train 98.8 83.5 59.9 98.6 99.1 84.0 84.5 92.0
Y Test 56.6 73.3 50.2 84.7 84.2 60.3 75.1 89.7
\N\’X Train 99.5 95.1 86.5 95.8 94.4 96.1 90.9 96.2
6*7*'\' Test 529 75.7 62.5 914 89.3 62.6 79.3 91.1

Table 3: Training versus test accuracy of local and global kernels.

GNN, £-WL-GNN, we implemented them using PYTORCH GEOMETRIC [36], using a
Python-wrapped C++11 preprocessing routine to compute the computational graphs for the
higher-order GNNs. We used the GIN-¢ layer to express fn‘fr/é and fan‘f; of Section 4. Finally,
we used the PYTORCH [90] implementations of the 3-IGN [77], and 1-2-GNN, 1-3-GNN,
1-2-3-GNN [83] made available by the respective authors.

For the QM9 dataset, we additionally used the MPNN architecture as a baseline, closely
following the setup of [45]. For the GINE-¢ and the MPNN architecture, following Gilmer
et al. [45], we used a complete graph, computed pairwise ¢, distances based on the 3D-
coordinates, and concatenated them to the edge features. We note here that our intent is not
the beat state-of-the-art, physical knowledge-incorporating architectures, e.g., DimeNet [66]
or Cormorant [2], but to solely show the benefits of the (local) higher-order architectures
compared to the corresponding (1-dimensional) GNN. For the -2-GNN, to implement Equa-
tion (6), for each 2-tuple we concatenated the (two) node and edge features, computed
pairwise /o distances based on the 3D-coordinates, and a one-hot encoding of the (la-
beled) isomorphism type. Finally, we used a 2-layer MLP to learn a joint, initial vectorial
representation.

The source code of all methods and evaluation procedures is available at https://www.github.
com/chrsmrrs/sparsewl.

E.2 Experimental protocol and model configuration

In the following, we describe the experimental protocol and hyperparameter setup.

Kernels For the smaller datasets (first third of Table 4), for each kernel, we computed the (cosine)
normalized gram matrix. We computed the classification accuracies using the C-SVM
implementation of LIBSVM [20], using 10-fold cross-validation. We repeated each 10-
fold cross-validation ten times with different random folds, and report average accuracies
and standard deviations. For the larger datasets (second third of Table 4), we computed
explicit feature vectors for each graph and used the linear C-SVM implementation of
LIBLINEAR [35], again using 10-fold cross-validation (repeated ten times). Following the
evaluation method proposed in [84], in the both cases, the C-parameter was selected from
{1073,1072,...,102%, 103} using a validation set sampled uniformly at random from the
training fold (using 10% of the training fold). Similarly, the number of iterations of the 1-WL,
WLOA, §-k-LWL, 6-k-LWL™, and k-WL were selected from {0, ..., 5} using the validation
set. Moreover, for the 6-k-LWL™, we only added the additional label function # on the last
iteration to prevent overfitting. We report computation times for the 1-WL, WLOA, 0-k-LWL,
§-k-LWL™, and k-WL with five refinement steps. All kernel experiments were conducted on

11

Dataset

Method

ZINC (10k) ~ ZINC (50k) ZINC (FULL) ALCHEMY (10K) ALCHEMY (50K) ALCHEMY (FULL)
2 GINE-¢ 0.278 +0.022 0.145 +0.006 0.084 £0.004 0.185 +0.007 -1.864 +0.062 0.127 +0.004 -2.415 +0.053 0.103 +0.001 -2.956 +0.029
3 2-WL-GNN 0.399 +0.006 0.357 £0.017 0.133 £0.013 0.149 £0.004 -2.609 +£0.020 0.105 +0.001 -3.139 +0.020 0.093 +0.001 -3.394 +0.035
& 0-2-GNN 0.374 £0.022 0.150 +0.064 0.042 +0.003 0.118 +0.001 -2.679 +0.044 0.085 +0.001 -3.239 +0.023 0.080 +0.001 -3.516 +0.021
0-2-LGNN 0.306 +0.044 0.100 £0.005 0.045 +0.006 0.122 £0.003 -2.573 +0.078 0.090 +0.001 -3.176 +0.020 ~ 0.083 +0.001 -3.476 +0.025

o

Table 4: Mean MAE (mean std. MAE, logMAE) on large-scale (multi-target) molecular regression

tasks.
Dataset
Graph Kernel
ENzYMES IMDB-BINARY IMDB-MuLTI NCI1 NCI109 PTC_FM PROTEINS REDDIT-BINARY
» GR <1 <1 <1 1 1 <1 <1 2
£ sP <1 <1 <1 2 2 <1 <1 1035
Z 1-WL <1 <1 <1 2 2 <1 <1 2
2 WLOA <l <l <l 14 14 <1 1 15
_ 2-WL 302 89 44 1422 1445 11 14755 Oom
_§ 3-WL 74712 18180 5346 oot oot 5346 ooMm ooMm
o 6-2-WL 294 89 44 1469 1459 11 14620 Oom
0-3-WL 64486 17 464 5321 oot oot 1119 OoM OoM
§-2-LWL 29 25 20 101 102 1 240 59378
S §-2-LWL*T 35 31 24 132 132 1 285 84044
._ol 6-3-LWL 4453 3496 2127 18035 17848 98 Oom Oom
§-3-LWL+ 4973 3748 2275 20644 20410 105 ooMm ooMm

Table 5: Overall computation times for the whole datasets in seconds (Number of iterations for 1-WL,
2-WL, 3-WL, §-2-WL, WLOA, ¢-3-WL, §-2-LWL, and 6-3-LWL.: 5), O0T— Computation did not
finish within one day (24h), OOM— Out of memory.

a workstation with an Intel Xeon E5-2690v4 with 2.60GHz and 384GB of RAM running
Ubuntu 16.04.6 LTS using a single core. Moreover, we used the GNU C++ Compiler 5.5.0
with the flag -02.

Neural architectures For comparing to kernel approaches, see Tables 1 and 5, we used 10-fold

cross-validation, and again used the approach outlined in [84]. The number of components of
the (hidden) node features in {32, 64, 128} and the number of layers in {1, 2, 3,4, 5} of the
GIN (GINE) and GIN-¢ (GINE-¢) layer were again selected using a validation set sampled
uniformly at random from the training fold (using 10% of the training fold). We used mean
pooling to pool the learned node embeddings to a graph embedding and used a 2-layer MLP
for the final classification, using a dropout layer with p = 0.5 after the first layer of the MLP.
We repeated each 10-fold cross-validation ten times with different random folds, and report
the average accuracies and standard deviations. Due to the different training methods, we do
not provide computation times for the GNN baselines.

For the larger molecular regression tasks, ZINC and ALCHEMY, see Table 7, we closely
followed the hyperparameters found in [34] and [21], respectively, for the GINE-¢ layers.
That is, for ZINC, we used four GINE-¢ layers with a hidden dimension of 256 followed by
batch norm and a 4-layer MLP for the joint regression of the twelve targets, after applying
mean pooling. For ALCHEMY and QM9, we used six layers with 64 (hidden) node features
and a set2seq layer [108] for graph-level pooling, followed by a 2-layer MLP for the joint
regression of the twelve targets. We used exactly the same hyperparameters for the (local)
0-2-LGNN, and the dense variants J-2-GNN and 2-WL-GNN.

For ZINC, we used the given train, validation split, test split, and report the MAE over
the test set. For the ALCHEMY and QM9 datasets, we uniformly and at random sampled
80% of the graphs for training, and 10% for validation and testing, respectively. Moreover,
following [21, 45], we normalized the targets of the training split to zero mean and unit
variance. We used a single model to predict all targets. Following [66, Appendix C], we report
mean standardized MAE and mean standardized logMAE. We repeated each experiment five
times (with different random splits in case of ALCHEMY and QM9) and report average scores
and standard deviations.

12

Graph Kernel Dataset
YEAST YEASTH UACC257 UACC257H OVCAR-8 OVCAR-8H

1-WL 11 19 6 10 6 10
§ 0-2-LWL 1499 5934 1024 3875 1033 4029
g d-2-LWL+ 2627 7563 1299 4676 1344 4895

Table 6: Overall computation times for the whole datasets in seconds on medium-scale datasets
(Number of iterations for 1-WL, §-2-LWL, and §-3-LWL.: 2).

To compare training and testing times between the 6-2-LGNN, the dense variants the
0-2-GNN and 2-WL-GNN, and the (1-dimensional) GINE-¢ layer, we trained all four models
on ZINC (10K) and ALCHEMY (10K) to convergence, divided by the number of epochs, and
calculated the ratio with regard to the average epoch computation time of the §-2-LGNN
(average computation time of dense or baseline layer divided by average computation time of
the §-2-LGNN). All neural experiments were conducted on a workstation with four Nvidia
Tesla V100 GPU cards with 32GB of GPU memory running Oracle Linux Server 7.7.

13

