
Supplementary Material: Learning Semantic-aware
Normalization for Generative Adversarial Networks

1 Unconditional Image Generation1

Ablation study: We compare our proposed Similarity-based Grouping Module (SGM) with random2

grouping on LSUN CATS [26] dataset in Table 1 (140w iterations with batch size of 32). It3

can be observed that random grouping obtains improvements compared to StyleGAN2 [7], which4

benefits from the mechanism of intra-/inter group embedding and info loss. The proposed SGM can5

further improve the performance with an obvious margin, which shows the importance of learning6

semantics. Table 2 shows the results of conducting semantic-aware control at different resolutions7

(40w iterations). We use FFHQ [2] dataset with 1024×1024 image resolution, so that a large range of8

settings can be studied. Features with low resolutions (e.g., 8×8−64×64) show better performance9

on learning semantics (refer to Figure 1), and 256×256 is the most common resolution used in image10

generation. Thus we conduct experiments with three settings: 8× 8− 64× 64, 8× 8− 256× 256,11

and 8× 8− 1024× 1024. It can be observed that semantic-aware control for low-resolution features12

can improve the performance. While for high-resolution features whose semantics are hard to learn,13

semantic-aware control would cause a performance drop.14

Visualization: We show attention maps of the learned semantics at different resolutions (from 8× 815

to 256× 256) in Figure 1. It can be observed that features with low resolutions (e.g., 8× 8− 64× 64)16

show better performance on learning semantics. Figure 2 shows the semantic interpolation results.17

Specifically, we visualize the image attributes controlled by each semantic group, and obtain Figure 218

by conducting interpolation in the latent space of the corresponding group. It can be observed that we19

can realize independent control on fine-grained semantics by the proposed SariGAN. Figure 3 shows20

the qualitative comparison of scale-specific control by StyleGAN2 and semantic-specific control by21

SariGAN. The results are obtained by style-mixing, which replaces the corresponding latent codes of22

the source images with that of the reference images. It can be observed that SariGAN can control a23

specific semantic (e.g., mouth) while preserving identities.24

2 Conditional Image Inpainting25

Image inpainting is a task that takes both masks and masked images as conditions to complete missing26

regions in input images. To extend SariGAN for image inpainting, we add an image encoder to27

encode masks and masked images. The encoded features are then used as the input of the generator28

and the mapping network in the extended model. Style codes from the mapping network are used to29

control features in each layer of the generator. Besides the adversarial loss, the channel grouping30

loss, and the mutual information loss mentioned in Section 3.3 in the paper, we also use L1 loss as a31

reconstruction loss, which is widely used in image inpainting [27,30,31].32

We evaluate models by using central square masks on Paris Street View [27] following the common33

setting used in most inpainting papers [27,30,31]. All images are cropped and resized to 256× 25634

for both training and testing. We show more qualitative comparison results with SOTA inpainting35

models in Figure 4 [27,30,31]. Through specially-designed network architecture and optimization,36

SariGAN is able to achieve finer-grained style control and higher fidelity of unconditional image37

synthesis, which also brings benefits in image inpainting. Visual results in Figure 4 show that our38

model achieves SOTA performance in image inpainting.39

Model FID
Baseline (StyleGAN2 [7]) 8.16
Ours w/ random grouping 7.35
Ours w/ semantic grouping (SGM) 6.74

Table 1: Comparison of baseline, random grouping
and semantic grouping (i.e., the proposed SGM)
on LSUN CATS [26] in terms of FID.

Model FID
Baseline (StyleGAN2 [7]) 3.95
Ours 8× 8− 64× 64 3.92
Ours 8× 8− 256× 256 4.26
Ours 8× 8− 1024× 1024 4.85

Table 2: Conduct semantic-aware control at differ-
ent resolutions on FFHQ [2] in terms of FID.40
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Figure 1: Visualization of the semantics learned in different resolutions. We show 16 groups in each
layer with the resolution increasing from 8 × 8 to 256 × 256. The attention maps are obtained by
averaging the feature maps in a group. It can be observed that features with low resolutions (i.e.,
8× 8− 64× 64) show better performance in learning semantics (e.g., eyes, mouths and hair).
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Figure 2: An illustration of semantic-aware disentanglement. We can realize independent control
on fine-grained semantics by conducting interpolation in latent space. Specifically, we visualize the
image attributes controlled by each semantic group, and conduct interpolation in the latent space of
the corresponding group. For clear representation, the tags (i.e., glasses eyes, mouths, and beard) are
associated by human.

Source Reference StyleGAN2 Ours

Figure 3: Qualitative comparison of StyleGAN2 and SariGAN by controlling the semantic of mouth.
SariGAN (semantic-specific control) can control a specific semantic while preserving identities.
StyleGAN2 (scale-specific control) makes several unexpected changes, as the semantics of mouth,
eyes, and hairstyle are highly-entangled.
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Figure 4: Qualitative comparisons on Paris Street View [27] with SOTA inpainting models CA [30],
AN [31], and StyleGAN [7]. Results show that our model is able to generate plausible structures of
windows and fine-grained details of trees and achieve SOTA performance in image inpainting.
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