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Abstract

Learning a causal directed acyclic graph from data is a challenging task that
involves solving a combinatorial problem for which the solution is not always iden-
tifiable. A new line of work reformulates this problem as a continuous constrained
optimization one, which is solved via the augmented Lagrangian method. However,
most methods based on this idea do not make use of interventional data, which can
significantly alleviate identifiability issues. This work constitutes a new step in this
direction by proposing a theoretically-grounded method based on neural networks
that can leverage interventional data. We illustrate the flexibility of the continuous-
constrained framework by taking advantage of expressive neural architectures such
as normalizing flows. We show that our approach compares favorably to the state
of the art in a variety of settings, including perfect and imperfect interventions for
which the targeted nodes may even be unknown.

1 Introduction

The inference of causal relationships is a problem of fundamental interest in science. In all fields
of research, experiments are systematically performed with the goal of elucidating the underlying
causal dynamics of systems. This quest for causality is motivated by the desire to take actions that
induce a controlled change in a system. Achieving this requires to answer questions, such as “what
would be the impact on the system if this variable were changed from value x to y?”, which cannot
be answered without causal knowledge [33].

In this work, we address the problem of data-driven causal discovery [16]. Our goal is to design an
algorithm that can automatically discover causal relationships from data. More formally, we aim to
learn a causal graphical model (CGM) [36], which consists of a joint distribution coupled with a
directed acyclic graph (DAG), where edges indicate direct causal relationships. Achieving this based
on observational data alone is challenging since, under the faithfulness assumption, the true DAG is
only identifiable up to a Markov equivalence class [46]. Fortunately, identifiability can be improved
by considering interventional data, i.e., the outcome of some experiments. In this case, the DAG
is identifiable up to an interventional Markov equivalence class, which is a subset of the Markov
equivalence class [48, 15], and, when observing enough interventions [9, 11], the DAG is exactly
identifiable. In practice, it may be possible for domain experts to collect such interventional data,
resulting in clear gains in identifiability. For instance, in genomics, recent advances in gene editing
technologies have given rise to high-throughput methods for interventional gene expression data [6].
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Figure 1: Different intervention types (shown in red). In imperfect interventions, the causal relation-
ships are altered. In perfect interventions, the targeted node is cut out from its parents.

Nevertheless, even with interventional data at hand, finding the right DAG is challenging. The
solution space is immense and grows super-exponentially with the number of variables. Recently,
Zheng et al. [52] proposed to cast this search problem as a constrained continuous-optimization
problem, avoiding the computationally-intensive search typically performed by score-based and
constraint-based methods [36]. The work of Zheng et al. [52] was limited to linear relationships,
but was quickly extended to nonlinear ones via neural networks [27, 49, 53, 32, 21, 54]. Yet, these
approaches do not make use of interventional data and must therefore rely on strong parametric
assumptions (e.g., gaussian additive noise models). Bengio et al. [1] leveraged interventions and
continuous optimization to learn the causal direction in the bivariate setting. The follow-up work
of Ke et al. [23] generalized to the multivariate setting by optimizing an unconstrained objective
with regularization inspired by Zheng et al. [52], but lacked theoretical guarantees. In this work,
we propose a theoretically-grounded differentiable approach to causal discovery that can make
use of interventional data (with potentially unknown targets) and that relies on the constrained-
optimization framework of [52] without making strong assumptions about the functional form of
causal mechanisms, thanks to expressive density estimators.

1.1 Contributions

• We propose Differentiable Causal Discovery with Interventions (DCDI): a general differen-
tiable causal structure learning method that can leverage perfect, imperfect and unknown-
target interventions (Section 3). We propose two instantiations, one of which is a universal
density approximator that relies on normalizing flows (Section 3.4).

• We show that the exact maximization of the proposed score will identify the I-Markov
equivalence class [48] of the ground truth graph (under regularity conditions) for both
the known- and unknown-target settings (Thm. 1 in Section 3.1 & Thm. 2 in Section 3.3,
respectively).

• We provide an extensive comparison of DCDI to state-of-the-art methods in a wide variety
of conditions, including multiple functional forms and types of interventions (Section 4).

2 Background and related work

2.1 Definitions

Causal graphical models. A CGM is defined by a distribution PX over a random vector X =
(X1, · · · , Xd) and a DAG G = (V,E). Each node i ∈ V = {1, · · · d} is associated with a random
variable Xi and each edge (i, j) ∈ E represents a direct causal relation from variable Xi to Xj . The
distribution PX is Markov to the graph G, which means that the joint distribution can be factorized as

p(x1, · · · , xd) =

d∏
j=1

pj(xj |xπGj ) , (1)

where πGj is the set of parents of the node j in the graph G, and xB , for a subset B ⊆ V , denotes the
entries of the vector x with indices in B. In this work, we assume causal sufficiency, i.e., there is no
hidden common cause that is causing more than one variable in X [36].

Interventions. In contrast with standard Bayesian Networks, CGMs support interventions. For-
mally, an intervention on a variable xj corresponds to replacing its conditional pj(xj |xπGj ) by a new
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conditional p̃j(xj |xπGj ) in Equation (1), thus modifying the distribution only locally. Interventions
can be performed on multiple variables simultaneously and we call the interventional target the set
I ⊆ V of such variables. When considering more than one intervention, we denote the interventional
target of the kth intervention by Ik. Throughout this paper, we assume that the observational distribu-
tion (the original distribution without interventions) is observed, and denote it by I1 := ∅. We define
the interventional family by I := (I1, · · · , IK), where K is the number of interventions (including
the observational setting). Finally, the kth interventional joint density is

p(k)(x1, · · · , xd) :=
∏
j /∈Ik

p
(1)
j (xj |xπGj )

∏
j∈Ik

p
(k)
j (xj |xπGj ) , (2)

where the assumption of causal sufficiency is implicit to this definition of interventions.

Type of interventions. The general type of interventions described in (2) are called imperfect (or
soft, parametric) [36, 7, 8]. A specific case that is often considered is (stochastic) perfect interventions
(or hard, structural) [10, 48, 26] where p(k)

j (xj |xπGj ) = p
(k)
j (xj) for all j ∈ Ik, thus removing the

dependencies with their parents (see Figure 1). Real-world examples of these types of interventions
include gene knockout/knockdown in biology. Analogous to a perfect intervention, a gene knockout
completely suppresses the expression of one gene and removes dependencies to regulators of gene
expression. In contrast, a gene knockdown hinders the expression of one gene without removing
dependencies with regulators [55], and is thus an imperfect intervention.

2.2 Causal structure learning

In causal structure learning, the goal is to recover the causal DAG G using samples from PX and,
when available, from interventional distributions. This problem presents two main challenges: 1) the
size of the search space is super-exponential in the number of nodes [5] and 2) the true DAG is not
always identifiable (more severe without interventional data). Methods for this task are often divided
into three groups: constraint-based, score-based, and hybrid methods. We briefly review these below.

Constraint-based methods typically rely on conditional independence testing to identify edges
in G. The PC algorithm [41] is a classical example that works with observational data. It performs
conditional independence tests with a conditioning set that increases at each step of the algorithm
and finds an equivalence class that satisfies all independencies. Methods that support interventional
data include COmbINE [45], HEJ [19], which both rely on Boolean satisfiability solvers to find a
graph that satisfies all constraints; and [24], which proposes an algorithm inspired by FCI [41]. In
contrast with our method, these methods account for latent confounders. The Joint causal inference
framework (JCI) [31] supports latent confounders and can deal with interventions with unknown
targets. This framework can be used with various observational constraint-based algorithms such as
PC or FCI. Another type of constraint-based method exploits the invariance of causal mechanisms
across interventional distributions, e.g., ICP [35, 17]. As will later be presented in Section 3, our loss
function also accounts for such invariances.

Score-based methods formulate the problem of estimating the ground truth DAG G∗ by optimizing
a score function S over the space of DAGs. The estimated DAG Ĝ is given by

Ĝ ∈ arg max
G∈DAG

S(G) . (3)

A typical choice of score in the purely observational setting is the regularized maximum likelihood:

S(G) := max
θ

EX∼PX log fθ(X)− λ|G| , (4)

where fθ is a density function parameterized by θ, |G| is the number of edges in G and λ is a positive
scalar.1 Since the space of DAGs is super-exponential in the number of nodes, these methods often
rely on greedy combinatorial search algorithms. A typical example is GIES [15], an adaptation of
GES [5] to perfect interventions. In contrast with our method, GIES assumes a linear gaussian model
and optimizes the Bayesian information criterion (BIC) over the space of I-Markov equivalence

1This turns into the BIC score when the expectation is estimated with n samples, the model has one parameter
per edge (like in linear models) and λ = logn

2n
[36, Section 7.2.2].
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classes (see Definition 6 in Appendix A.1). CAM [4] is also a score-based method using greedy
search, but it is nonlinear: it assumes an additive noise model where the nonlinear functions are
additive. In the original paper, CAM only addresses the observational case where additive noise
models are identifiable, however code is available to support perfect interventions.

Hybrid methods combine constraint and score-based approaches. Among these, IGSP [47, 48] is
a method that optimizes a score based on conditional independence tests. Contrary to GIES, this
method has been shown to be consistent under the faithfulness assumption. Furthermore, this method
has recently been extended to support interventions with unknown targets (UT-IGSP) [42], which are
also supported by our method.

2.3 Continuous constrained optimization for structure learning

A new line of research initiated by Zheng et al. [52], which serves as the basis for our work,
reformulates the combinatorial problem of finding the optimal DAG as a continuous constrained-
optimization problem, effectively avoiding the combinatorial search. Analogous to standard score-
based approaches, these methods rely on a model fθ parametrized by θ, though θ also encodes the
graph G. Central to this class of methods are both the use a weighted adjacency matrix Aθ ∈ Rd×d≥0

(which depends on the parameters of the model) and the acyclicity constraint introduced by Zheng
et al. [52] in the context of linear models:

Tr eAθ − d = 0 . (5)

The weighted adjacency matrix encodes the DAG estimator Ĝ as (Aθ)ij > 0 ⇐⇒ i → j ∈ Ĝ.
Zheng et al. [52] showed, in the context of linear models, that Ĝ is acyclic if and only if the
constraint Tr eAθ − d = 0 is satisfied. The general optimization problem is then

max
θ

EX∼PX log fθ(X)− λΩ(θ) s.t. Tr eAθ − d = 0 , (6)

where Ω(θ) is a regularizing term penalizing the number of edges in Ĝ. This problem is then
approximately solved using an augmented Lagrangian procedure, as proposed by Zheng et al. [52].
Note that the problem in Equation (6) is very similar to the one resulting from Equations (3) and (4).

Continuous-constrained methods differ in their choice of model, weighted adjacency matrix, and
the specifics of their optimization procedures. For instance, NOTEARS [52] assumes a Gaussian
linear model with equal variances where θ := W ∈ Rd×d is the matrix of regression coefficients,
Ω(θ) := ||W ||1 and Aθ := W �W is the weighted adjacency matrix. Several other methods use
neural networks to model nonlinear relations via fθ and have been shown to be competitive with
classical methods [27, 53]. In some methods, the parameter θ can be partitioned into θ1 and θ2

such that fθ = fθ1 and Aθ = Aθ2 [21, 32, 23] while in others, such a decoupling is not possible,
i.e., the adjacency matrix Aθ is a function of the neural networks parameters [27, 53]. In terms of
scoring, most methods rely on maximum likelihood or variants like implicit maximum likelihood [21]
and evidence lower bound [49]. Zhu and Chen [54] also rely on the acyclicity constraint, but use
reinforcement learning as a search strategy to estimate the DAG. Ke et al. [23] learn a DAG from
interventional data by optimizing an unconstrained objective with a regularization term inspired by
the acyclicity constraint, but that penalizes only cycles of length two. However, their work is limited
to discrete distributions and single-node interventions. To the best of our knowledge, no work has
investigated, in a general manner, the use of continuous-constrained approaches in the context of
interventions as we present in the next section.

3 DCDI: Differentiable causal discovery from interventional data

In this section, we present a score for imperfect interventions, provide a theorem showing its validity,
and show how it can be maximized using the continuous-constrained approach to structure learning.
We also provide a theoretically grounded extension to interventions with unknown targets.

3.1 A score for imperfect interventions

The model we consider uses neural networks to model conditional densities. Moreover, we encode the
DAG G with a binary adjacency matrix MG ∈ {0, 1}d×d which acts as a mask on the neural networks
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inputs. We similarly encode the interventional family I with a binary matrix RI ∈ {0, 1}K×d,
where RIkj = 1 means that Xj is a target in Ik. In line with the definition of interventions in
Equation (2), we model the joint density of the kth intervention by

f (k)(x;MG , RI , φ) :=

d∏
j=1

f̃(xj ; NN(MGj � x;φ
(1)
j ))1−RIkj f̃(xj ; NN(MGj � x;φ

(k)
j ))R

I
kj , (7)

where φ := {φ(1), · · · , φ(K)}, the NN’s are neural networks parameterized by φ(1)
j or φ(k)

j , the
operator � denotes the Hadamard product (element-wise) and MGj denotes the jth column of MG ,
which enables selecting the parents of node j in the graph G. The neural networks output the
parameters of a density function f̃ , which in principle, could be any density. We experiment with
Gaussian distributions and more expressive normalizing flows (see Section 3.4).

We denote G∗ and I∗ := (I∗1 , ..., I
∗
K) to be the ground truth causal DAG and ground truth inter-

ventional family, respectively. In this section, we assume that I∗ is known, but we will relax this
assumption in Section 3.3. We propose maximizing with respect to G the following regularized
maximum log-likelihood score:

SI∗(G) := sup
φ

K∑
k=1

EX∼p(k) log f (k)(X;MG , RI
∗
, φ)− λ|G| , (8)

where p(k) stands for the kth ground truth interventional distribution from which the data is sampled.
A careful inspection of (7) reveals that the conditionals of the model are invariant across interventions
in which they are not targeted. Intuitively, this means that maximizing (8) will favor graphs G in
which a conditional p(xj |xπGj ) is invariant across all interventional distributions in which xj is not a
target, i.e., j 6∈ I∗k . This is a fundamental property of causal graphical models.

We now present our first theoretical result (see Appendix A.2 for the proof). This theorem states that,
under appropriate assumptions, maximizing SI∗(G) yields an estimated DAG Ĝ that is I∗-Markov
equivalent to the true DAG G∗. We use the notion of I∗-Markov equivalence introduced by [48]
and recall its meaning in Definition 6 of Appendix A.1. Briefly, the I∗-Markov equivalence class
of G∗ is a set of DAGs which are indistinguishable from G∗ given the interventional targets in I∗.
This means identifying the I∗-Markov equivalence class of G∗ is the best one can hope for given the
interventions I∗ without making further distributional assumptions.

Theorem 1 (Identification via score maximization) Suppose the interventional family I∗ is such
that I∗1 := ∅. Let G∗ be the ground truth DAG and Ĝ ∈ arg maxG∈DAG SI∗(G). Assume that the
density model has enough capacity to represent the ground truth distributions, that I∗-faithfulness
holds, that the density model is strictly positive and that the ground truth densities p(k) have finite
differential entropy, respectively Assumptions 1, 2, 3 & 4 (see Appendix A.2 for precise statements).
Then for λ > 0 small enough, we have that Ĝ is I∗-Markov equivalent to G∗.

Proof idea. Using the graphical characterization of I-Markov equivalence from Yang et al. [48], we
verify that every graph outside the equivalence class has a lower score than that of the ground truth
graph. We show this by noticing that any such graph will either have more edges than G∗ or limit the
distributions expressible by the model in such a way as to prevent it from properly fitting the ground
truth. Moreover, the coefficient λ must be chosen small enough to avoid too sparse solutions. �

I∗-faithfulness (Assumption 2) enforces two conditions. The first one is the usual faithfulness
condition, i.e., whenever a conditional independence statement holds in the observational distribution,
the corresponding d-separation holds in G∗. The second one requires that the interventions are
non-pathological in the sense that every variable that can be potentially affected by the intervention
are indeed affected. See Appendix A.2 for more details and examples of I∗-faithfulness violations.

To interpret this result, note that the I∗-Markov equivalence class of G∗ tends to get smaller as we add
interventional targets to the interventional family I∗. As an example, when I∗ = (∅, {1}, · · · , {d}),
i.e., when each node is individually targeted by an intervention, G∗ is alone in its equivalence class
and, if assumptions of Theorem 1 hold, Ĝ = G∗. See Corollary 11 in Appendix A.1 for details.

Perfect interventions. The score SI∗(G) can be specialized for perfect interventions, i.e., where the
targeted nodes are completely disconnected from their parents. The idea is to leverage the fact that the
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conditionals targeted by the intervention in Equation (7) should not depend on the graph G anymore.
This means that these terms can be removed without affecting the maximization w.r.t. G. We use this
version of the score when experimenting with perfect interventions and present it in Appendix A.4.

3.2 A continuous-constrained formulation

To allow for gradient-based stochastic optimization, we follow [21, 32] and treat the adjacency
matrix MG as random, where the entries MGij are independent Bernoulli variables with success
probability σ(αij) (σ is the sigmoid function) and αij is a scalar parameter. We group these αij’s
into a matrix Λ ∈ Rd×d. We then replace the score SI∗(G) (8) with the following relaxation:

ŜI∗(Λ) := sup
φ

E
M∼σ(Λ)

[
K∑
k=1

E
X∼p(k)

log f (k)(X;M,RI
∗
, φ)− λ||M ||0

]
, (9)

where we dropped the G superscript in M to lighten notation. This score tends asymptotically
to SI∗(G) as σ(Λ) progressively concentrates its mass on G.2 While the expectation of the log-
likelihood term is intractable, the expectation of the regularizing term simply evaluates to λ||σ(Λ)||1.
This score can then be maximized under the acyclicity constraint presented in Section 2.3:

sup
Λ
ŜI∗(Λ) s.t. Tr eσ(Λ) − d = 0 . (10)

This problem presents two main challenges: it is a constrained problem and it contains intractable ex-
pectations. As proposed by [52], we rely on the augmented Lagrangian procedure to optimize φ and Λ
jointly under the acyclicity constraint. This procedure transforms the constrained problem into a
sequence of unconstrained subproblems which can themselves be optimized via a standard stochastic
gradient descent algorithm for neural networks such as RMSprop. The procedure should converge to a
stationary point of the original constrained problem (which is not necessarily the global optimum due
to the non-convexity of the problem). In Appendix B.3, we give details on the augmented Lagrangian
procedure and show the learning process in details with a concrete example.

The gradient of the likelihood part of ŜI∗(Λ) w.r.t. Λ is estimated using the Straight-Through Gumbel
estimator. This amounts to using Bernoulli samples in the forward pass and Gumbel-Softmax samples
in the backward pass which can be differentiated w.r.t. Λ via the reparametrization trick [20, 29]. This
approach was already shown to give good results in the context of continuous optimization for causal
discovery in the purely observational case [32, 21]. We emphasize that our approach belongs to the
general framework presented in Section 2.3 where the global parameter θ is {φ,Λ}, the weighted
adjacency matrix Aθ is σ(Λ) and the regularizing term Ω(θ) is ||σ(Λ)||1.

3.3 Interventions with unknown targets

Until now, we have assumed that the ground truth interventional family I∗ is known. We now consider
the case were it is unknown and, thus, needs to be learned. To do so, we propose a simple modification
of score (8) which consists in adding regularization to favor sparse interventional families.

S(G, I) := sup
φ

K∑
k=1

EX∼p(k) log f (k)(X;MG , RI , φ)− λ|G| − λR|I| , (11)

where |I| =
∑K
k=1 |Ik|. The following theorem, proved in Appendix A.3, extends Theorem 1 by

showing that, under the same assumptions, maximizing S(G, I) with respect to both G and I recovers
both the I∗-Markov equivalence class of G∗ and the ground truth interventional family I∗.

Theorem 2 (Unknown targets identification) Suppose I∗ is such that I∗1 := ∅. Let G∗ be the
ground truth DAG and (Ĝ, Î) ∈ arg maxG∈DAG,I S(G, I). Under the same assumptions as Theorem 1
and for λ, λR > 0 small enough, Ĝ is I∗-Markov equivalent to G∗ and Î = I∗.

Proof idea. We simply append a few steps at the beginning of the proof of Theorem 1 which show
that whenever I 6= I∗, the resulting score is worse than S(G∗, I∗), and hence is not optimal. This is
done using arguments very similar to Theorem 1 and choosing λ and λR small enough. �

2In practice, we observe that σ(Λ) tends to become deterministic as we optimize.
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Theorem 2 informs us that ignoring which nodes are targeted during interventions does not affect
identifiability. However, this result assumes implicitly that the learner knows which data set is the
observational one.

Similarly to the development of Section 3.2, the score S(G, I) can be relaxed by treating entries
of MG and RI as independent Bernoulli random variables parameterized by σ(αij) and σ(βkj),
respectively. We thus introduced a new learnable parameter β. The resulting relaxed score is
similar to (9), but the expectation is taken w.r.t. to M and R. Similarly to Λ, the Straight-Through
Gumbel estimator is used to estimate the gradient of the score w.r.t. the parameters βkj . For perfect
interventions, we adapt this score by masking all inputs of the neural networks under interventions.

The related work of Ke et al. [23], which also support unknown targets, bears similarity to DCDI but
addresses a different setting in which interventions are obtained sequentially in an online fashion. One
important difference is that their method attempts to identify the single node that has been intervened
upon (as a hard prediction), whereas DCDI learns a distribution over all potential interventional
families via the continuous parameters σ(βkj), which typically becomes deterministic at convergence.
Ke et al. [23] also use random masks to encode the graph structure but estimates the gradient w.r.t.
their distribution parameters using the log-trick which is known to have high variance [39] compared
to reparameterized gradient [29].

3.4 DCDI with normalizing flows

In this section, we describe how the scores presented in Sections 3.2 & 3.3 can accommodate powerful
density approximators. In the purely observational setting, very expressive models usually hinder
identifiability, but this problem vanishes when enough interventions are available. There are many
possibilities when it comes to the choice of the density function f̃ . In this paper, we experimented
with simple Gaussian distributions as well as normalizing flows [38] which can represent complex
causal relationships, e.g., multi-modal distributions that can occur in the presence of latent variables
that are parent of only one variable.

A normalizing flow τ(·;ω) is an invertible function (e.g., a neural network) parameterized by ω with
a tractable Jacobian, which can be used to model complex densities by transforming a simple random
variable via the change of variable formula:

f̃(z;ω) :=

∣∣∣∣det

(
∂τ(z;ω)

∂z

)∣∣∣∣ p(τ(z;ω)) , (12)

where ∂τ(z;ω)
∂z is the Jacobian matrix of τ(·;ω) and p(·) is a simple density function, e.g., a Gaussian.

The function f̃(·;ω) can be plugged directly into the scores presented earlier by letting the neural
networks NN(·;φ(k)

j ) output the parameter ωj of the normalizing flow τj for each variable xj . In our
implementation, we use deep sigmoidal flows (DSF), a specific instantiation of normalizing flows
which is a universal density approximator [18]. Details about DSF are relayed to Appendix B.2.

4 Experiments

We tested DCDI with Gaussian densities (DCDI-G) and with normalizing flows (DCDI-DSF) on
a real-world data set and several synthetic data sets. The real-world task is a flow cytometry data
set from Sachs et al. [40]. Our results, reported in Appendix C.1, show that our approach performs
comparably to state-of-the-art methods. In this section, we focus on synthetic data sets, since these
allow for a more systematic comparison of methods against various factors of variation (type of
interventions, graph size, density, type of mechanisms).

We consider synthetic data sets with three interventional settings: perfect/known, imperfect/known,
and perfect/unknown. Each data set has one of the three different types of causal mechanisms: i)
linear [42], ii) nonlinear additive noise model (ANM) [4], and iii) nonlinear with non-additive noise
using neural networks (NN) [21]. For each data set type, graphs vary in size (d = 10 or 20) and
density (e = 1 or 4 where e ·d is the average number of edges). For conciseness, we present results for
20-node graphs in the main text and report results on 10-node graphs in Appendix C.7; conclusions
are similar for all sizes. For each condition, ten graphs are sampled with their causal mechanisms and
then observational and interventional data are generated. Each data set has 10 000 samples uniformly
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Figure 2: Perfect interventions. SHD and SID (lower is better) for 20-node graphs

distributed in the different interventional settings. A total of d interventions were performed, each by
sampling up to 0.1d target nodes. For more details on the generation process, see Appendix B.1.

Most methods have an hyperparameter controlling DAG sparsity. Although performance is sensitive to
this hyperparameter, many papers do not specify how it was selected. For score-based methods (GIES,
CAM and DCDI), we select it by maximizing the held-out likelihood as explained in Appendix B.5
(without using the ground truth DAG). In contrast, since constraint-based methods (IGSP, UT-
IGSP, JCI-PC) do not yield a likelihood model to evaluate on held-out data, we use a fixed cutoff
parameter (α = 1e−3) that leads to good results. We report additional results with different cutoff
values in Appendix C.7. For IGSP and UT-IGSP, we always use the independence test well tailored to
the data set type: partial correlation test for Gaussian linear data and KCI-test [50] for nonlinear data.

The performance of each method is assessed by two metrics comparing the estimated graph to
the ground truth graph: i) the structural Hamming distance (SHD) which is simply the number of
edges that differ between two DAGs (either reversed, missing or superfluous) and ii) the structural
interventional distance (SID) which assesses how two DAGs differ with respect to their causal
inference statements [34]. In Appendix C.6, we also report how well the graph can be used to
predict the effect of unseen interventions [13]. Our implementation is available here and additional
information about the baseline methods is provided in Appendix B.4.

4.1 Results for different intervention types

Perfect interventions. We compare our methods to GIES [15], a modified version of CAM [4]
that support interventions and IGSP [47]. The conditionals of targeted nodes were replaced by the
marginal N (2, 1) similarly to [15, 42]. Boxplots for SHD and SID over 10 graphs are shown in
Figure 2. For all conditions, DCDI-G and DCDI-DSF shows competitive results in term of SHD and
SID. For graphs with a higher number of average edges, DCDI-G and DCDI-DSF outperform all
methods. GIES often shows the best performance for the linear data set, which is not surprising given
that it makes the right assumptions, i.e., linear functions with Gaussian noise.

Imperfect interventions. Our conclusions are similar to the perfect intervention setting. As shown in
Figure 3, DCDI-G and DCDI-DSF show competitive results and outperform other methods for graphs
with a higher connectivity. The nature of the imperfect interventions are explained in Appendix B.1.

Perfect unknown interventions. We compare to UT-IGSP [42], an extension of IGSP that deal with
unknown interventions. The data used are the same as in the perfect intervention setting, but the
intervention targets are hidden. Results are shown in Figure 4. Except for linear data sets with sparse
graphs, DCDI-G and DCDI-DSF show an overall better performance than UT-IGSP.

Summary. For all intervention settings, DCDI has overall the best performance. In Appendix C.5,
we show similar results for different types of perfect/imperfect interventions. While the advantage
of DCDI-DSF over DCDI-G is marginal, it might be explained by the fact that the densities can be
sufficiently well modeled by DCDI-G. In Appendix C.2, we show cases where DCDI-G fails to detect
the right causal direction due to its lack of capacity, whereas DCDI-DSF systematically succeeds.
In Appendix C.4, we present an ablation study confirming the advantage of neural networks against
linear models and the ability of our score to leverage interventional data.
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Figure 3: Imperfect interventions. SHD and SID for 20-node graphs
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Figure 4: Unknown interventions. SHD and SID for 20-node graphs

4.2 Scalability experiments

So far the experiments focused on moderate size data sets, both in terms of number of variables (10
or 20) and number of examples (≈ 104). In Appendix C.3, we compare the running times of DCDI
to those of other methods on graphs of up to 100 nodes and on data sets of up to 1 million examples.

The augmented Lagrangian procedure on which DCDI relies requires the computation of the matrix
exponential at each gradient step, which costs O(d3). We found this does not prevent DCDI from
being applied to 100 nodes graphs. Several constraint-based methods use kernel-based conditional
independence tests [50, 12], which scale poorly with the number of examples. For example, KCI-test
scales in O(n3) [43] and HSIC in O(n2) [51]. On the other hand, DCDI is not greatly affected by
the sample size since it relies on stochastic gradient descent which is known to scale well with the
data set size [3]. Our comparison shows that, among all considered methods, DCDI is the only one
supporting nonlinear relationships that can scale to as much as one million examples. We believe that
this can open the way to new applications of causal discovery where data is abundant.

5 Conclusion

We proposed a general continuous-constrained method for causal discovery which can leverage
various types of interventional data as well as expressive neural architectures, such as normalizing
flows. This approach is rooted in a sound theoretical framework and is competitive with other state-
of-the-art algorithms on real and simulated data sets, both in terms of graph recovery and scalability.
This work opens interesting opportunities for future research. One direction is to extend DCDI to
time-series data, where non-stationarities can be modeled as unknown interventions [37]. Another
exciting direction is to learn representations of variables across multiple systems that could serve as
prior knowledge for causal discovery in low data settings.
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Broader impact

Causal structure learning algorithms are general tools that address two high-level tasks: understanding
and acting. That is, they can help a user understand a complex system and, once such an understanding
is achieved, they can help in recommending actions. We envision positive impacts of our work in
fields such as scientific investigation (e.g., interpreting and anticipating the outcome of experiments),
policy making for decision-makers (e.g., identifying actions that could stimulate economic growth),
and improving policies in autonomous agents (e.g., learning causal relationships in the world via
interaction). As a concrete example, consider the case of gene knockouts/knockdowns experiments
in the field of genomics, which aim to understand how specific genes and diseases interact [55].
Learning causal models using interventions performed in this setting could help gain precious insight
into gene pathways, which may catalyze the development of better pharmaceutic targets and broaden
our understanding of complex diseases such as cancer. Of course, applications are likely to extend
beyond these examples which seem natural from our current position.

Like any methodological contribution, our work is not immune to undesirable applications that could
have negative impacts. For instance, it would be possible, yet unethical for a policy-maker to use our
algorithm to understand how specific human-rights violations can reduce crime and recommend their
enforcement. The burden of using our work within ethical and benevolent boundaries would rely on
the user. Furthermore, even when used in a positive application, our method could have unintended
consequences if used without understanding its assumptions.

In order to use our method correctly, it is crucial to understand the assumptions that it makes about
the data. When such assumptions are not met, the results may still be valid, but should be used as a
support to decision rather than be considered as the absolute truth. These assumptions are:

• Causal sufficiency: there are no hidden confounding variables

• The samples for a given interventional distribution are independent and identically distributed

• The causal relationships form an acyclic graph (no feedback loops)

• Our theoretical results are valid in the infinite-data regime

We encourage users to be mindful of this and to carefully analyze their results before making decisions
that could have a significant downstream impact.
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