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Abstract

The ability to disassemble the features of objects and background is crucial for
many machine learning tasks, including image classification, image editing, visual
concepts learning, and so on. However, existing (semi-)supervised methods all need
a large amount of annotated samples, while unsupervised methods can’t handle real-
world images with complicated backgrounds. In this paper, we introduce the One-
sample Guided Object Representation Disassembling (One-GORD) method, which
only requires one annotated sample for each object category to learn disassembled
object representation from unannotated images. For the annotated one-sample, we
first adopt some data augmentation strategies to generate some synthetic samples,
which can guide the disassembling of the object features and background features.
For the unannotated images, two self-supervised mechanisms: dual-swapping
and fuzzy classification are introduced to disassemble object features from the
background with the guidance of annotated one-sample. What’s more, we devise
two metrics to evaluate the disassembling performance from the perspective of
representation and image, respectively. Experiments demonstrate that the One-
GORD achieves competitive dissembling performance and can handle natural
scenes with complicated backgrounds.

1 Introduction

Learning disassembled object representation is a vital step in many machine learning tasks, including
image editing, image classification, few/zero-shot learning, and visual concepts learning. For example,
many image editing [4} 21} 26] for objects typically rely on image segmentation techniques and
human labor, which only handles object in image level. The existing classification works [15} 18]
usually train classifiers with large amounts of annotated samples to extract specific object features
and identify them, which also has a serious cost of labor, time, and memory. For the few/zero-shot
learning problem, most of works [2, 22,27, 130] adopt representations extracted by pre-trained deep
models as the features of specific objects. However, the representations extracted by pre-trained
models usually contain many irrelevant features, which will disturb the performance of models. So,
an object representation learning method that can learn the pure and entire features of the specific
object with a few annotated data is desperately needed.
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Until now, most object representation learning methods [6, 8, [12} |13} 23] are proposed to handle
simple scenes with multiple objects in an unsupervised manner. However, those methods can’t
handle real-world images with complicated backgrounds, which limits their application in many
machine learning tasks. On the other hand, the existing supervised object representation learning
methods are rarer. Some (semi-)supervised disentangling methods [11} 25]] can be transferred to learn
disassembled object representation through annotating the object information as labels. However, it
still requires many annotated samples. Another line of works [14} 28] is concerned with obtaining
the segmentation of objects and does not learn structured object representations.

In this paper, we propose the One-sample Guided Object Representation Disassembling (One-GORD)
method, which only requires one annotated sample for each object category to learn disassembled
object representation from a large number of unannotated images. The proposed One-GORD is
composed of two modules: the augmented one-sample supervision module and the guided self-
supervision module. In the one-sample guided module, we first generate some synthetic sample pairs
with data augmentation strategies. Then, following the “encoding-swapping-decoding" architecture,
we swap the parts of their representations to reconstruct the synthetic ground-truth pairs, which guides
the features of objects and backgrounds to be decoded into different parts of the representations.

In the guided self-supervision module, we introduce two self-supervised mechanisms: fuzzy classifi-
cation and dual swapping. For the dual swapping, given a pair of samples that are composed of the
annotated one-sample and an unannotated image, we swap the first halves of their representations to
reconstruct the hybrid images. Then, the first halves of the hybrids’ representations are swap back to
reconstruct the original pair samples, which formats the self-supervision loss for the disassembling of
unannotated images with the guidance of annotated one-sample. Meanwhile, the fuzzy classification
supervises the first and latter halves of representation to extract features of any object category and
background, respectively.

Furthermore, to verify the effectiveness of the proposed method, we devise two metrics to evaluate
the modularity of representations and the integrity of images. The former measures the modularity
and portability of the latent representations, while the latter evaluates the visual completeness of
the reconstructed images. As will be demonstrated in our experiments, the proposed One-GORD
achieves truly promising performance.

Our contribution is the proposed One-GORD, which only requires one annotated sample for learning
disassembled object representation. Two self-supervised mechanisms format self-supervised losses for
the disassembling of unannotated image representations with the guidance of annotated one-sample.
Meanwhile, We also introduce two disassembling metrics, upon which the proposed One-GORD
achieves truly encouraging results.

2 Related Work

Representation learning [5]] has achieved several breakthroughs. This includes representation disen-
tangling [[7 [16, [17], which disentangle attribute features into different parts of representation. Part of
(semi-)supervised disentangling methods [25, [11] can be transferred to learn disassembled object
representation through annotating the object information as labels. However, it still requires a lot of
annotated samples. Another line of works is concerned with obtaining the segmentation of objects
without considering representation learning. Most current approaches [28, [14] require explicitly
annotated segmentations in the dataset, which limits the generalization of these models. Furthermore,
these methods typically only segment images and don’t learn structured object representations.

Works for learning disassembled object representation are relatively rarer. Burgess ef al. [6] proposed
the MONet, where a VAE is trained end-to-end together with a recurrent attention network to provide
attention masks around regions of images. The MONet can decompose 3D scenes into objects and
background elements. Greff ef al. [12]] developed an amortized iterative refinement based method,
which can segment scenes and learn disentangled object features. Van Steenkiste et al. [23]] proposed
the R-NEM that learns to discover objects and model their physical interactions from raw visual
images, which is the extension of N-EM [13]]. Dittadi and Winther [8]] proposed the probabilistic
generative model for learning of structured, compositional, object-based representations of visual
scenes. Engelcke et al. [10] proposed the GENESIS for rendered 3D scenes, which decomposes and
generates scenes by capturing relationships between scene components. Lin ef al. [20] proposed
the SPACE, which factorizes object representations of foreground objects while also decomposing
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Figure 1: The architecture of the proposed One-GORD. It comprises two modules: the augmented
one-sample supervision module and the guided self-supervision module. The former one is employed
for the augmented annotated one-samples (Z,, Z!,) while the latter is for unannotated image Z,, and
the annotated image Z,. fs4, fy and f, denote the encoder, decoder, and classifier, respectively. /o,

I, and [}, denote the background label, the k-th object category label and the k-th unknown object
category label. Ia, I and 7, denotes the reconstructed images. I I Ia » and Iu o denote the
hybrid images. Z,, and Ia denote the dual reconstructed images.

background segments of complex morphology. All the above methods learn disassembled object
representation in an unsupervised manner. However, those methods work on synthetic images only
but not real-world ones.

3 The Proposed Method

In this section, we give more details of our proposed One-GORD model (Fig. [I). We start by
introducing the augmented one-sample supervision module, which disassembles the object features
from the background with the supervision information of augmented annotated one-samples. Then,
we describe the self-supervision module, which disassembles the object representation with two
self-supervised mechanisms under the guidance of the annotated one-sample. Finally, we summarize
the complete algorithm.

3.1 Augmented One-sample Supervision Module

Annotated One-sample The natural scene images are usually composed of complicated things,
which results in that unannotated object representation leaning methods can’t work well. To distin-
guish the foreground objects from the background, there must be one annotated sample for each object
category that is intended to be disassembled. In this paper, we choose one image for each object
category and annotate the category label I, k € {1,2,3, ..., K} and mask of the object, where K is
the number of object categories. To enhance the influence of one-samples’ supervision, some data
augmentation strategies are adopted to generated augmented images. The augmentation strategies
include mirroring, adding noise, and changing background, which are usually optional for different
datasets. For the augmented images, we randomly choose two samples Z,, and Z,, then get the

ground-truth images 7, and f{l by swapping their objects with the masks.

Supervision Disassembling The supervision information contains two parts: classification super-
vision and reconstruction supervision. With encoder f,4 and decoder f, the input images Z,, and Z,

. . . . . = =
are encoded into the representations R, and R/, which are decoded into the images Z,, and Z,,. The
latent representations are constrained to contain all the features of input images with the following
basic reconstruction loss Lyec:

— —
Erec - HIa *IaH% + ||I(/z 71.(1”%
Then, the representations R, and R/, are divided into two parts: [r,, 7] and [r, 7} ], respectively.

For the classification supervision, the object label I, k € {1,2,3, ..., K'} supervises 7, and r/, to
extract object features while the background label [, supervises 7, and r} extracting background



features with the classification loss Leia:

K wvec

Ecla = - Z Zlk X 1Og(p)a

k=0
where [}, is a one-hot label vector, p is the predicted probability of classifier f,, with one part of the
1 / / . vec . . .
representations {r,, rp, 1, rb} as the input, > °“" denotes the summation of n-dimension vector.

For the reconstruction supervision, through swapping the object parts r, and r/, the hybrid rep-
resentations [r/,, 7] and [r,, 7] are decoded into the hybrid images Z, and 7, respectively. The

ground-truth images 7Z,, and Z, supervise the first half and latter half to extract features of object and
background with the following reconstruction supervision loss £

rec-

Lree = 1T = Lall3 + |1Zq - Zo15.

rec

3.2 Guided Self-supervision Module

For large amounts of unannotated images, we introduce two self-supervised mechanisms: dual swap-
ping and fuzzy classification. Dual swapping swaps parts of the unannotated image representation
back and forth to reconstruct the original image, which generates the self-supervised information.
The fuzzy classification supervises the features of unknown objects and background to be encoded
into different parts of the representations with the fuzzy classification loss.

Dual Swapping For the unannotated image Z,,, the same autoencoder reconstructs it as image Z,,

with the following unsupervised reconstruction loss L.

= 2
‘Crl'lec = ||Iu - Iu||2
Similarly, the encoded representation R,, = f,(Z,,) is divided into two parts [r¥, r/]. To bring the
guidance of annotated one-samples, we swap the representations’ first parts of annotated one-samples
and unannotated images. Then, the hybrid representations [r¥, r] and [r,, r/] are decoded into the
hybrid images Z,_,, and Z,,_,. Following the “encoding-swapping-decoding" process again, the
hybrid images Z,_,, and Z,_, are reconstructed into Z,, and Z, by swapping the representations’

first parts back. If the representation is well disassembled, the dual reconstructed image Z,, should
reconstruct the original image Z,,. So, the dual swapping loss £2 _ is defined as follows:

rec
d
‘Crec

= ||Iu _Iu”%'

Meanwhile, to ensure that the object features are encoded into the first part of one-sample, the

hybrid image fa_u should have the same object with the annotated one-sample Z,. So, the object
reconstruction loss L2, is defined as follows:

rec
‘Clc"ec = Mg % HIafu *IaH%v

where M, is the object mask of the one-sample Z,,. The interaction between the unannotated images
and annotated images will enhance the guidance of the annotated one-sample.

Fuzzy Classification For the unannotated images, the object labels are unknown. It’s hard to
supervise the fixed part to extract specific object features. Nevertheless, the object features of the
unannotated images are still discriminative and the features of the background should be different
from them. If the first half of the representation containing pure object features, it will be classified
into the particular object category easily. So we devise the fuzzy classification loss, which can
constrain that the features of unknown objects be classified into their original categories. What’s
more, the fixed label [ is also adopted to differentiate the background features from object features.

So, fuzzy classification loss L%, is defined as follows:

vec K vec

LZa=—log{[1 = > [ =t x )} =7 _lo x log(qo),
k=1

where [}; is one-hot object label, ¢ = f,,(r%) is the predicted probability of classifier f, with the first
half of the representation r as input, go = f,,(r}/) is the predicted probability of classifier f, with
the latter half of the representation r; as input, Z”ec denotes summation of multi-dimension vector,
and 7 is the balance parameter.



3.3 Complete Algorithm

In summary, the total loss £ contains all the loss terms in the above two modules. In the supervision
module, the loss terms disassemble the object representation with the classification supervision
and reconstruction supervision; In the self-supervision module, the loss terms disassemble the
object representation with two self-supervision mechanisms under the guidance of the annotated
one-samples. The total loss L is given as follows:

L= alrec + Bﬁcla + ’y‘crec + n‘crec + )‘E?'ec + pﬁrec + 5521;1»

where «, 3, v, 1, A, p, and J are the balance parameters. It is noticeable that all the encoders,
decoders, and classifiers share the same parameters, respectively.

4 Disassembling Metric

It’s essential to measure the disassembling performance of different methods. To the very best of our
knowledge, there is no quantitative metric for evaluating the disassembling performance directly. To
measure the disassembling performance fairly, we begin by defining the properties that we expect
the disassembled object representation to have. It should consider the latent representation and the
reconstructed image. If the object representation is disassembled perfectly, the extracted object
representation should be equally for different images with the same object. On the other hand, for the
images reconstructed with the same object representation, objects should keep the same.

Therefore, we devise two disassembling metrics to measure the modularity on the latent representation
and the integrity of the reconstructed image, respectively. For modularity, we run inference on images
that contain the fixing object and different backgrounds. If the modularity property holds for
the inferred representations, there will be less variance in the inferred latent representations that
correspond to the fixed object. For the T D test images that are composed of 7" kinds of object and
D image for each object category, the Modularity Score M (T, D) is calculated as follows:

T D wec

TXDZZZ|Zd Dzzdl

t=1d=1

M(T, D)

where Y "““ denotes summation of n-dimension vector, z; denotes the object part of the representation
extracted from the d-th image 7, of the ¢-th object category.

For integrity, we reconstruct the image fé through swapping the background part of the test image Z},
with other background parts. Giving the test images {Z%,¢t € {1,2,3,...,T},d € {1,2,3,...,D}},
the Integrity Score V (T, D), which measures the object integrity of reconstructed images, is defined

as follows:
T D W

V(T,D) = TxDX WZZZM@W

t=1 d=1

where W is the pixel number of the image, ZYV denotes summation of image pixel difference value.
MY, is the object mask of the test image Z?,.

S Experiments

In the experiment, One-GORD is compared with the unsupervised method, the semi-supervised
method, and the supervised method. Those methods are validated on five datasets qualitatively and
quantitatively. What’s more, experiments demonstrate the comparative performance in the practical
application: classification and image editing.

5.1 Implementation Details

Dataset To verify the effectiveness of the proposed One-GORD, we adopt five datasets: SVHN [29],
CIFAR-10 [3], COCO [19], Mugshot [[11]], and mini-ImageNet [24]], which are composed of different
objects and complex backgrounds. For the COCO dataset, we choose ten object categories (bird,
bottle, cat, dog, laptop, truck, tv, tie, sink and book). For the rest of datasets, all the categories are



adopted in the experiment. The training and testing sample numbers are (20000,1000), (20000,1000),
(40000,1000), (30000,1000), (10000,1000) for SVHN, CIFAR-10, COCO, Mugshot, and mini-
ImageNet, respectively.

Network architectures The encoders and decoders have the same architecture as ResNetE] o .
The classifier network is the two-layer MLP with 20 and N neurons for each layer, where N is
determined by the category number for each dataset. The Adam algorithm is adopted. The learning
rate is set to 0.0005.

Parameters settings In the experiment, the balance parameters 7, «, 7y, 7, A are set to 1, and
is set to 10, p is set to 1000, and 9 is set to 5. Through large experiments, we find that the crucial
parameter are /3, p and §. Tuning 3, p and § may lead to better performance under the condition that
T, Q, 7y, n, Aare set to 1.

5.2 Qualitative Evaluation

In the qualitative evaluation experiments, our methods are compared with AE, S-AE, DSD [11],
MONet [6l] and IODINE [[12], which are shown in Fig. @ AE is the basic autoencoder architecture.
S-AE is the AE with a classifier, which supervises different parts of latent representation to extract
object-related features with object labels. For DSD, the annotated input pairs are generated with the
augmented annotated one-samples.

From Fig. 2] we can see that the object swapped images reconstructed by the AE have overlapping
features of the two input images. It indicates that the latent representations extracted by AE have
mix features of objects and background. In the object swapped images reconstructed by the DSD,
the objects have object features of two input images, which demonstrates that the DSD fails in
disassembling object features from the background with the same annotated one-samples. For the
MONet [6]] and IODINE [12]], the splitted objects and backgrounds of SVHN dataset are wrong.
What’s more, they fail on the CIFA-10, COCO and Mugshot, which verifies that the existing
unsupervised methods fail in handling real-world images with complicated background. It’s noticeable
that the corresponding objects are swapped successfully in the results of One-GORD for the above five
datasets, which verifies that One-GORD can handle real-world images with complicated background
effectively. Even the reconstructed images lost some details, the swapped object and background
only contain their corresponding features. In the second row of Fig. 2] the images reconstructed
by autoencoder also not achieve perfect reconstructed results. The image reconstruction quality is
usually decided by the dataset and network architecture, which will be optimized in our future works.

5.3 Quantitative Evaluation

To compare different methods quantitatively, we adopt the Modularity Score and Integrity Score
(SectionE]) to measure the disassembling performance of our methods with S-AE, DSD [11], MON-
et [6] and IODINE [12]. In the experiments, T and D are set to 10 and 100, respectively. We sample
5 kinds of representation length ({10, 20, 30,40, 50}) and test all methods in those length setting.
Table[I] gives the average modularity score (AMS) and average integrity score (AIS) on the SVHN
dataset (the first three rows) and the CIFA-10 dataset (the last two rows).

For the modularity score, One-GORD has the smallest score than other methods, which shows that the
disassembled object representations extracted by One-GORD are more similar than other methods’
for the images with the same object and different backgrounds. O-G;,0-G; and O-G; achieves
the larger score than One-GORD on two datasets, which indicates the necessity of One-GORD’s
each component. What’s more, S-AE, DSD, MONet and IODINE achieve larger scores than One-
GORD. It means that existing methods can’t disassemble object representation effectively, which is
in accordance with the reconstructed visual results in Section[5.21

For the integrity score, MONet and IODINE achieves the larger score than other methods, which
verifies that MONet and IODINE fails in disassembling object representation for the real-world
image with a complicated background. The average integrity score of S-AE is higher than the score
of One-GORD, which shows that the supervision of the object label is not enough for disassembling

https://github.com/cianeastwood/qedr
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Figure 2: The qualitative results of different methods on five datasets. For each dataset, given two
input images, we show the images reconstructed with the object parts swapped representations.
For MONet [[6]] and IODINE [12], we show the splitted objects and backgrounds. ‘Rec.’” denotes
reconstructed results of original images by AE. O-G{,0-G; and O-G, denote the One-GORD
without supervision module, fuzzy classification, and object reconstruction loss. ‘ob.” and ‘bg.
denote object and background. 'm-ob.” and ‘m-bg.” denote masked object and masked background.
’comb.” denotes the combined result of *'m-ob.” and ‘m-bg.’.

Table 1: The Average Modularity Score (AMS) and Average Integrity Score (AIS) in five representa-
tion length setting on SVHN (the first three rows) and CIFA-10 (the last two rows) datasets.

Metric ‘S—AE DSD [T1] MONet [6] IODINE [12] One-GORD O-G; 0-G; O-G;

AMS 13.69 12.38 11.52 15.78 591 1158 17.01  13.30
AIS 6.51 3.02 10.31 14.31 2.05 4.05 5.67 2.45
AMS 15.82 14.97 16.83 19.04 8.43 1243 1821 1531
AIS 8.21 6.94 11.96 15.34 5.21 7.92 9.37 7.94

object features from background integrally. One-GORD achieves the smallest score among all
methods, which indicates that the reconstructed objects are more intact than other methods’.

5.4 Ablation Study

In the One-GORD, the total loss £ is composed of loss terms from two modules: augmented one-
sample supervision module and guided self-supervision module. To verify the necessity of the
augmented one-samples, we remove the loss terms in the supervision module, which is denoted as
O-G; . Meanwhile, we also do the ablation study by removing the fuzzy classification loss L%, and
Ob]CCt reconstruction loss L9, from the guided self-supervision module, which are denoted as O-G
and O-G ., respectively.

Table gives the average modularity and average integrity scores of One-GORD, O-G;’, O-G; and

O-G, in five representation lengths ({10, 20, 30, 40, 50}). It’s noticeable that O-G; achieves the
largest average modularity and integrity scores than O-G]T, O-G_ , One-GORD, which demonstrates

the necessity of the annotated one-sample. O-G_ achieves a relatively high modularity score and a
relatively small visual integrity score. The reason is that the object reconstruction loss can effectively



Table 2: The classification performance on SVHN and CIFA-10 (All scores in %).

Dataset \ Metric‘ S-AE  DSD([I] MONet[6] IODINE[I2] One-GORD O-G; 0-G; O-G,

C-P 5691  45.66 54.56 43.86 60.94 58.27 57776 57.46
SVHN C-R 57.87  46.60 54.86 42.78 59.18 58.11 58.04 57.40
O-P 5727  45.20 54.67 43.89 61.47 57.60 5793 57.17
O-R 5737 4531 54.97 44 .81 60.47 57.69 5733 5726
C-P 4493  41.27 43.59 39.43 46.23 39.61 43.17 4421
CIFA-10 C-R 4581  41.26 42.71 38.81 47.38 38.83 43.82 43.96
O-P 4593  41.27 43.83 37.49 46.31 40.82  41.62 4281
O-R 4593  41.26 41.86 38.26 46.73 4296 4421 4197

promote the reconstruction quality of the object. However, it affects the modularity of latent repre-
sentation negatively, which leads to a higher modularity score. Without fuzzy classification, O-G
achieves a higher score than One-GORD, which verifies the effectiveness of the fuzzy classification
loss.

Table shows the classification performance of One-GORD, O-G, O-G; and O-G, on SVHN
and CIFA-10, respectively. We can see that One-GORD achieves the best classification performance
than other methods, which demonstrates that fuzzy classification, object reconstruction loss, and
supervision module can enhance the disassembling performance effectively.

5.5 Application

As described above, our method can be applied to many machine learning tasks, including image
classification, image editing, visual concepts learning, and so on. In this section, we test the
performance on two basic applications: image editing and image classification.

For image editing, given one image, objects in the other seven images are swapped into it. The object
swapped results are shown in Fig.[3] where we can see that the corresponding objects are successfully
swapped for the five datasets. However, there are still some details lost in the reconstructed images,
which will be studied in our future work. The benefit of image editing in the latent representation
space is that the obscured backgrounds by the objects can be reconstructed well.

For image classification, we compare our methods with other methods on SVHN and CIFA-10 with
1000 test samples. The per-class and overall precision (C-P and O-P) and recall scores (C-R and
O-R) are calculated for the above methods, where the average score is taken over all classes and
all test samples, respectively. To compare fairly, after obtaining the disassembled representation
for each method, we adopt the same linear SVM [[1] to train and test the classification performance.
The classification performance on SVHN and CIFA-10 are shown in Table 2} respectively . We
can see that our method achieves a higher score than other methods, which demonstrates that the
object features extracted by our method are more intact and independent. Meanwhile, the O—GJT

and O-G_ achieve the lower scores than other methods, which verifies the effectiveness of the fuzzy
classification and object reconstruction loss once again. It’s noticeable that even with the supervised
label, the S-AE still achieves lower accuracy and recall scores than One-GORD, which indicates that
disassembled object representation can effectively improve the classification performance.

6 Conclusion

In this paper, we propose the One-GORD, which only requires one annotated sample for each object
category to learn disassembled object representation from unannotated images. One-GORD is com-
posed of two modules: the augmented one-sample supervision module and the guided self-supervision
module. In the supervision module, we generate some augmented one-samples with data augmenta-
tion strategies. Then, the annotated mask and object label supervise the disassembling between the
features of the object and background. In the self-supervision module, two self-supervised mecha-
nisms (fuzzy classification and dual swapping) are adopted to generate self-supervised information,
which can disassemble object representation of unannotated images with the guidance with annotated
one-samples. What’s more, we devise two disassembling metrics to measure the modularity of
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Figure 3: The image editing results on different datasets.

representations and the integrity of images, respectively. A large number of experiments demonstrate
that the proposed One-GORD achieve competitive dissembling performance and can handle natural
scenes with complicated backgrounds. In future work, we will focus on disassembling objects into
different parts and optimizing network architecture to solve the details lost.
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Broader Impact

This research belongs to the image representation learning area. Positive: the proposed method can
be applied to many machine learning tasks, including image editing, image classification, few/zero-
shot learning, and visual concepts learning. It supplies a universal tool for other downstream tasks.
Negative: the research can be adopted to generate some fake image, which also can be used for
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