
Supplementary Material:
Extrapolation Towards Imaginary 0-Nearest Neighbour
and Its Improved Convergence Rate

A Related works

Györfi (1981) is the first work that proves the convergence rate O(n−γ/(2γ+d)) for unweighted k-NN classifier by assuming
the γ-neighbour average smoothness, and the rate is improved by Chaudhuri & Dasgupta (2014), by additionally imposing
the α-margin condition.

For choosing adaptive k = k(X∗) with non-negative weights wi = 1/k, i.e., k depending on the query X∗, Balsubramani
et al. (2019) considers the confidence interval of the k-NN estimator from the decision boundary, and Cannings et al.
(2017) considers the asymptotic expansion used in Samworth (2012) and obtains the rate of O(n−4/(4+d)), same rate as
unweighted k-NN up to constant factor. Anava & Levy (2016) considers adaptive non-negative weights and k = k(X∗) but
the approach is rather heuristic.

B Other classifiers and their convergence rates

In this section, we describe Nadaraya-Watson (NW) classifier, Local Polynomial (LP) classifier and their convergence
rates (Audibert & Tsybakov, 2007). In what follows, K : X → R represents a kernel function, e.g., Gaussian kernel
K(X) := exp(−‖X‖22), and h > 0 represents a bandwidth.
Definition 6. Nadaraya-Watson (NW) estimator is defined as

η̂
(NW)
n,h (X∗) :=

∑n
i=1 YiK

(
Xi−X∗

h

)∑n
i=1K

(
Xi−X∗

h

)
if the denominator is nonzero, and it is zero otherwise. ĝ(NW)

n,h (X) := g(plug-in)(X; η̂
(NW)
n,h ) is called NW-classifier.

Here, we define a loss function

Ln,h(f,X∗) :=
n∑
i=1

{Yi − f(Xi −X∗)}2K
(
Xi −X∗

h

)
(18)

for f : X → R; Using a constant function f(x) ≡ θ, NW estimator can be regarded as a minimizer θ ∈ R of (Ln,h(f,X∗)).
NW estimator is then generalized to the local polynomial (LP) estimator when Yi is predicted by a polynomial function.
Definition 7. Let Fq denotes the set of polynomial functions f : X → R of degree q ∈ N0. Considering the function

f̂X∗n,h,q := arg min
f∈Fq

Ln,h(f,X∗), (19)

local polynomial (LP) estimator of degree q is defined as η̂(LP)
n,h,q(X∗) := f̂X∗n,h,q(0) if f̂X∗n,h,q is the unique minimizer of

Ln,h(f,X∗) and it is zero otherwise. The corresponding ĝ(LP)
n,h,q(X) := g(plug-in)(X; η̂

(LP)
n,h,q) is called LP classifier.

Note that LP classifier is computed via polynomial function of degree q; they contain 1 + d+ d2 + · · ·+ dq terms therein,
and it results in high computational cost if d, q are large.
Proposition 3 (Audibert & Tsybakov (2007) Th. 3.3). Let X be a compact set, and assuming that (i) η satisfies α-margin
condition and is β-Hölder, and (ii) µ satisfies strong densitiy assumption. Then, the convergence rate of the LP classifier
with the bandwidth h∗ = hn � n−1/(2β+d) is

E(ĝ
(LP)
n,h∗,bβc) = O(n−(1+α)β/(2β+d)).

The above Proposition 3 indicates that, the convergence rate for the LP classifier is faster than O(n−1/2) for αβ > d/2, and
the rate is even faster than O(n−1) for (α− 1)β > d, though such inequalities are rarely satisfied since the dimension d is
large in many practical situations.

Rigorously speaking, Audibert & Tsybakov (2007) considers the uniform bound of the excess risk over all the possible (η, µ),
and Audibert & Tsybakov (2007) Theorem 3.5 proves the optimality of the rate, i.e., sup(η,µ) E(g) ≥ ∃C ·n−(1+α)β/(2β+d)
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for any classifier g when αβ < d. LP classifier is thus proved to be an optimal classifier in this sense. However, the
optimality is for uniform evaluation sup(η,µ) E(·), but not the non-uniform evaluation E(·), that is considered in this paper;
it remains unclear whether the (non-uniform) evaluation is still lower-bounded by n−(1+α)β/(2β+d) if sup is removed. In
particular, the uniform bound of NW classifier (i.e., LP classifier with bβc = 0 ) is O(n−2/(2+d)) for α = β = 1, but it is
slower than the convergence rate O(n−4/(4+d)) of NW classifier.

We last note that the LP classifier leverages the polynomial of degree q, that is defined in Definition 7; it contains
1 + d+ d2 + · · ·+ dq terms, resulting in high computational cost as the dimension d of feature vectors is usually not that
small.

C A Note on Proposition 1

Regarding the symbols, (α, β) in Chaudhuri & Dasgupta (2014) correspond to (γ̃, α) in this paper, where γ̃ := γ/d is
formally defined in the following. Chaudhuri & Dasgupta (2014) in fact employs “(α,L)-smooth” condition

|η(X∗)− η(∞)(B(X∗; r))| ≤ L

(∫
B(X∗;r)

µ(X)dX

)γ̃
, (20)

which is different from our definition of the γ-neighbour average smoothness, i.e.,

|η(X∗)− η(∞)(B(X∗; r))| ≤ Lγrγ . (21)

However, their definition (20) can be obtained from our definition (21), by imposing an additional assumption µ(X) ≥ µmin

for all X ∈ X . The proof is straightforward: the integrant in (20) is lower-bounded by∫
B(X∗;r)

µ(X)dX ≥ µmin
πd/2

Γ(1 + d/2)
rd =: Drd,

then

|η(X∗)− η(∞)(B(X∗; r))|
(21)

≤ Lγr
γ ≤ Lγ

(
1

D

∫
B(X∗;r)

µ(X)dX

)γ/d
= L

(∫
B(X∗;r)

µ(X)dX

)γ̃
by specifying L := Lγ/D

γ/d, γ̃ = γ/d. Therefore, Chaudhuri & Dasgupta (2014) Theorem 4(b) proves Proposition 1, by
considering the above correspondence of the symbols and the assumption.

D Samworth (2012) Theorem 6

For each s ∈ (0, 1/2),Wn,s denotes the set of all sequences of real-valued weight vectors wn := (w1, w2, . . . , wn) ∈ Rn
satisfying

n∑
i=1

wi = 1,
n2u/d

∑n
i=1 δ

(`)
i wi

n2`/d
∑n
i=1 δ

(u)
i wi

≤ 1

log n
(∀` ∈ [u− 1]),

n∑
i=1

w2
i ≤ n−s,

n−4u/d(

n∑
i=1

δ
(u)
i wi)

2 ≤ n−s,

∃k2 ≤ bn1−sc s.t.
n2u/d

∑n
i=k2+1 |wi|∑n

i=1 δ
(u)
i wi

≤ 1

log n
and

k2∑
i=1

δ
(u)
i wi ≥ βk2u/d

2 ,∑n
i=k2+1 w

2
i∑n

i=1 w
2
i

≤ 1

log n
,∑n

i=1 |wi|3

(
∑n
i=1 w

2
i )

3/2
≤ 1

log n
,

where δ(`)
i := i1+2`/d − (i− 1)1+2`/d for all ` ∈ [u− 1].

For the rigorous proof, Samworth (2012) considers the following assumptions.
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(i) X ⊂ Rd is a compact d-dimensional manifold with boundary ∂X ,

(ii) S := {x ∈ X | η(x) = 1/2} is nonempty. There exists an open subset U0 ⊂ Rd that contains S and such that the
following properties hold: (1) η is continuous on U \ U0, where U is an open set containing X , (2) restrictions of
P0(X) := P(X | Y = 0), P1(X) := P(X | Y = 1) to U0 are absolutely continuous w.r.t. Lebesgue measure, with
2u-times continuously differentiable (C2u) Radon-Nikodym derivatives f0, f1, respectively. Since f0, f1 ∈ C2u, we
also have η(x) = P(Y = 1)f1(x)/(P(Y = 0)f0(x) + P(Y = 1)f1(x)) is C2u.

(iii) There exists ρ > 0 such that
∫
Rd ‖x‖

ρdP(x) <∞. Moreover, for sufficiently small r > 0, the ratio P(B(x; r))/(adr
d)

is bounded away from zero, uniformly for x ∈ X .

(iv) ∂η(x)/∂x 6= 0 for all x ∈ X and its restriction to S is also nonzero for all x ∈ S ∩ ∂X .

Proposition 4 (Samworth (2012) Theorem 6). Assuming that (i)–(iv), it holds for each s ∈ (0, 1/2) that

E(ĝ
(kNN)
n,k,w) =

B1

n∑
i=1

w2
i +B2

(
n∑
i=1

δ
(u)
i wi
n2u/d

)2


︸ ︷︷ ︸
=:γn(wn)

{1 + o(1)}

for some constants B1, B2 > 0, as n→∞, uniformly for w ∈ Wn,s, and δ(`)
i := i1+2`/d − (i− 1)1+2`/d, ` ∈ [u− 1].

Whereas the weights are constrained as
n∑
i=1

wi = 1,

n∑
i=1

δ
(`)
i wi = 0 (∀` ∈ [u− 1]), (22)

and wi = 0 for i = k∗ + 1, . . . , n with k∗ � n2β/(2β+d). Samworth (2012) eq. (4.3) shows that the optimal weight should
be in the form

w∗i :=

{
(a0 + a1δ

(i)
1 + · · ·+ auδ

(u)
i )/k∗ (i ∈ [k∗])

0 (otherwise.)
. (23)

Coefficients a = (a0, a1, . . . , au) are determined by solving the equations (22) and (23) simultaneously; then the optimal
weights are obtained by substituting it to (23).

They also show the asymptotic solution of the above equations, in the case of u = 2; the solution is

a1 =
1

(k∗)2/d

{
(d+ 4)2

4
− 2(d+ 4)

d+ 2
a0

}
, a2 =

1− a0 − (k∗)2/da1

(k∗)4/d
.

E Real-valued Weights Obtained via MS-k-NN

Let X∗ ∈ X any given query, and let denote k-NN estimator by ϕn,k := η̂
(kNN)
n,k (X∗). Considering

ϕn,k = ϕn,k(X∗) := (ϕn,k1
, ϕn,k2

, . . . , ϕn,kV ) ∈ RV , (24)

R = R(X∗) :=


r2
1 r4

1 · · · r2C
1

r2
2 r4

2 · · · r2C
2

...
...

. . .
...

r2
V , r4

V · · · r2C
V

 ∈ RV×C , (25)

A = A(X∗) := (1R) ∈ RV×(C+1), (26)

b = b(X∗) := (b0, b1, b2, . . . , bC) ∈ RC+1, (27)

the minimization problem (12) becomes

b̂ = arg min
b∈RC+1

V∑
v=1

(
η̂

(kNN)
n,k (X∗)−

C∑
c=0

bcr
2c
v

)
= arg min

b∈RC+1

‖ϕk,n −Ab‖22 = (A>A)−1A>︸ ︷︷ ︸
(?)

ϕk,n.

Therefore, denoting the first row of the matrix (?) by the vector z> = (z1, z2, . . . , zV )> ∈ RV , MS-k-NN estimator is
η̂MS-kNN
k,n (X∗) = b̂0 = z>ϕk,n. To obtain the explicit form of z, we hereinafter expand the matrix (?).
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Considering the inverse of block matrix(
A B
C D

)−1

=

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

)
(see, e.g., Petersen & Pedersen (2012) Section 9.1.3.), we have

(?) =

(
V 1>R

R>1 R>R

)−1

(1R)>

=

(
1
e − 1

e1
>R(R>R)−1

− 1
e (R>R−1)−1R>1 (R>R)−1 + 1

e (R>R)−1R>11>R(R>R)−1

)
(1R)>, where

e := A−BD−1C = V − 1>R(R>R)−1R>1 ∈ R.

Therefore, its first column is,

z =
1

e

{
I −R(R>R)−1R>

}
1 =

1

V − 1>R(R>R)−1R>1

{
I −R(R>R)−1R>

}
1 =

(I − PR)1

V − 1>PR1
,

where PR := R(R>R)−1R> represents a projection matrix; the equation (15) is proved.

In addition, using the vector z,

η̂MS-kNN
k,n (X∗) = z>ϕk,n =

V∑
v=1

zv η̂
(kNN)
k,n =

V∑
v=1

zv
1

kv

kv∑
i=1

Y(i) =

kV∑
i=1

w∗i Y(i) = η̂
(kNN)
n,kV ,w∗

(X∗),

where

w∗i :=
∑
v:i≤kv

zv
kv
∈ R, (∀i ∈ [kV ]),

is the real-valued weight obtained via MS-k-NN. Thus (16) is proved.

F Proof of Theorem 1

We first prove Proposition 6 and its Corollary in the following Section F.1; subsequently, applying the Corollary proves
Theorem 1.

F.1 Preliminaries

In this section, we first formally define Taylor expansion of the multivariate function in the following Definition 8; Taylor
expansion can approximate the function as shown in the following Proposition 5. Subsequently, we consider integrals of
functions over a ball, in Proposition 6 and Corollary 2, for proving Theorem 1 in Section F.2.
Definition 8 (Taylor expansion). Let d ∈ N and q ∈ N ∪ {0}. For q-times differentiable function f : X → R, the Taylor
polynomial of degree q ∈ N ∪ {0} at point X∗ = (x∗1, x∗2, . . . , x∗d) ∈ X is defined as

Tq,X∗ [f ](X) :=

q∑
s=0

∑
|i|=s

(X −X∗)i

i!
Dif(X∗),

where i = (i1, i2, . . . , id) ∈ (N ∪ {0})d represents multi-index, |i| = i1 + i2 + · · · + id, Xi = xi11 x
i2
2 · · ·x

id
d , i! =

i1!i2! · · · id! and Di = ∂|i|

∂x
i1
1 ∂x

i2
2 ···∂x

id
d

.

Proposition 5. Let d ∈ N, β > 0. If f : X → R is β-Hölder, there exists a function εβ,X∗ : X → R such that

f(X) = Tbβc,X∗ [f ](X) + εβ,X∗(X),

and |εβ,X∗(X)| ≤ Lβ‖X − X∗‖β2
(
≤ Lβrβ , ∀X ∈ B(X∗; r)

)
, where Lβ is a constant for β-Hölder condition

described in Definition 2.

Proof of Proposition 5. This Proposition 5 immediately follows from the definition of β-Hölder condition (Definition 2). �
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Proposition 6. Let d ∈ N, β > 0 and let f : X → R be a β-Hölder function. Then, for any query X∗ ∈ X , there
exists ε̃β ∈ R such that∫

B(X∗;r)

f(X)dX =
∑

u∈(N∪{0})d
|u|≤bβ/2c

D2uf(X∗)

(2u)!

g(u)

2|u|+ d
r2|u|+d + ε̃β , |ε̃β | ≤ Lβrβ+d

∫
B(0;1)

dx

where g(u) := 2Γ(u1+1/2)Γ(u2+1/2)···Γ(ud+1/2)
Γ(u1+u2+···+ud+d/2) and Γ(u) is Gamma function.

Proof of Propotision 6. Let q := bβc. In this proof, we first calculate the Taylor expansion Tq,X∗ [η](X). Then we integrate
it over the ball B(X∗; r), by referring to Folland (2001),

Proposition 5 indicates that, there exists a function εβ,X∗(X) such that

f(X) = Tq,X∗ [f ](X) + εq,X∗(X) =

q∑
s=0

∑
|i|=s

(X −X∗)i

i!
Dif(X∗) + εβ,X∗(X)

and |εβ,X∗(X)| ≤ Lβrβ , for all X ∈ B(X∗; r). Therefore, we have∫
B(X∗;r)

f(X)dX =

q∑
s=0

∑
|i|=s

Dif(X∗)

i!

∫
B(X∗;r)

(X −X∗)idX︸ ︷︷ ︸
(?)

+

∫
B(X∗;r)

εβ,X∗(X)dX︸ ︷︷ ︸
=:ε̃β

.

We first evaluate the term (?) in the following.

(a) If at least one entry of i = (i1, i2, . . . , id) is odd number, i.e., there exists j ∈ [d], u ∈ N ∪ {0} such that ij = 2u+ 1,
it holds that

(?1) =

∫
B(X∗;r)

(X −X∗)idX =

∫
B(0;r)

XidX =

∫
B(0;r′)
r′∈[−r,r]

X
i−j
−j

{∫ √r2−r′2

−
√
r2−r′2

x
ij
j dxj

}
︸ ︷︷ ︸

=0

dx−j = 0,

where X−j := (x1, . . . , x(j−1), x(j+1), . . . , xd) ∈ Rd−1, i−j = (i1, . . . , i(j−1), i(j+1), . . . , id) ∈ (N ∪ {0})d−1.

(b) Therefore, in the remaining, we consider the case that all of entries in i = (i1, i2, . . . , id) are even numbers, i.e., there
exist uj ∈ N ∪ {0} such that ij = 2uj for all j ∈ [d]. It holds that

(?1) =

∫
B(X∗;r)

(X −X∗)idX =

∫
B(0;r)

XidX

=

∫ r

0

r̃|i|+d−1

∫
∂B(0;r̃)

X̃idσ(X̃)︸ ︷︷ ︸
=g(u) (∵ Folland (2001))

dr̃, (∵ polar coordinate)

= g(u)

∫ r

0

r̃|i|+d−1dr̃ =
1

|i|+ d
g(u)

where ∂B(X; r̃) denotes a surface of the ball B(X; r̃), σ represents (d− 1)-dimensional surface measure, g(u) :=
2Γ(u1+1/2)Γ(u2+1/2)···Γ(ud+1/2)

Γ(u1+u2+···+ud+d/2) and Γ(u) is Gamma function.

Considering above (a) and (b), we have∫
B(X∗;r)

f(X)dX =
∑
|i|≤q

i=2u,u∈(N∪{0})d

Dif(X∗)

i!

g(u)

|i|+ d
r|i|+d + ε̃β

=
∑

|u|≤bβ/2c

D2uf(X∗)

(2u)!

g(u)

2|u|+ d
r2|u|+d + ε̃β ,

where ε̃β is evaluated by leveraging Proposition 5, i.e.,

|ε̃β | ≤
∫
B(X∗;r)

|εβ,X∗(X)|dX ≤ sup
X∈B(X∗;r)

|εβ,X∗(X)|
∫
B(X∗;r)

dx ≤ Lβrβ
∫
B(0;r)

dx.

Therefore, the assertion is proved. �
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Corollary 2. Symbols and assumptions are the same as those of Proposition 6. Then, there exists ε̃β ∈ R such that∫
B(X∗;r)

f(X)dX =
g(0)rd

d
f(X∗) +

bβ/2c∑
c=1

bcr
2c+d + ε̃β , |ε̃β | ≤ Lβrβ+d

∫
B(0;1)

dx,

where bc = bc(f,X∗) := 1
2c+d

∑
|u|=c

D2uf(X∗)
(2u)! g(u).

Proof of Corollary 2. Proposition 6 immediately proves the assertion. �

F.2 Main body of the proof

For the function

η(∞)(B(X∗; r)) =

∫
B(X∗;r)

η(x)µ(x)dx∫
B(X∗;r)

µ(x)dx
, (28)

Corollary 2 indicates that there exist

a1 = b1(ηµ,X∗), a2 = b2(ηµ,X∗), . . . , abβ/2c = bbβ/2c(ηµ,X∗) ∈ R,
b1 = b1(µ,X∗), b2 = b2(µ,X∗), . . . , bbβ/2c = bbβ/2c(µ,X∗) ∈ R (29)

and ε̃(1)
β , ε̃

(2)
β ∈ R such that

(28) =

g(0)rd

d η(X∗)µ(X∗) +
∑bβ/2c
c=1 acr

2c+d + ε̃
(1)
β

g(0)rd

d µ(X∗) +
∑bβ/2c
c=1 bcr2c+d + ε̃

(2)
β

, |ε̃(1)
β |, |ε̃

(2)
β | ≤ Lβr

β+d

∫
B(0;1)

dx, (30)

since µ and ηµ are β-Hölder. Both the numerator and denominator are divided by rd, then for sufficiently small r > 0, the
asymptotic expansion is of the form

(30) = η(X∗) +

bβ/2c∑
c=1

b∗c(X∗)r
2c + δβ,r(X∗), (31)

where δβ,r(X∗) = O(r2bβ/2c+2) + O(rβ). The two error terms are in fact combined as δβ,r(X∗) = O(rβ), because
2bβ/2c+ 2 ≥ β. Thus, by specifying a sufficiently small r̃ > 0, the error term is bounded as δβ,r(X∗) < L∗β(X∗)r

β for
r ∈ (0, r̃] with a continuous function L∗β(X∗). For L∗β = supX∈S(µ) L

∗
β(X∗) <∞, we have

(31) = η(X∗) +

bβ/2c∑
c=1

b∗c(X∗)r
2c + δβ,r(X∗), |δβ,r(X∗)| < L∗βr

β , (∀r ∈ (0, r̃], X∗ ∈ S(µ)).

Thus proving the assertion. Note that, by rearranging the terms of order r2+d, we obtain the equation

g(0)

d
µ(X∗)b

∗
1 + η(X∗)b1 = a1,

where a1 := 1
2+d

∑
|u|=1

D2u(η(X∗)µ(X∗))
(2u)! g(u), b1 := 1

2+d

∑
|u|=1

D2uµ(X∗)
(2u)! g(u); subsequently, solving the equation

yields

b∗1 =
d

2 + d

1

µ(X∗)

∑
|u|=1

{
D2u(η(X∗)µ(X∗))

(2u)!
− η(X∗)D

2uµ(X∗)

(2u)!

}
g(u)

g(0)

=
d

2 + d

1

µ(X∗)

1

2
{∆η(X∗)µ(X∗) + η(X∗)∆µ(X∗)}

2Γ(1/2)d−1Γ(3/2)/Γ(1 + d/2)

2Γ(1/2)d/Γ(d/2)︸ ︷︷ ︸
=

Γ(3/2)/Γ(1+d/2)
Γ(1/2)/Γ(d/2)

=
1/2
d/2

= 1
d

=
1

2d+ 4

1

µ(X∗)
{∆[η(X∗)µ(X∗)] + η(X∗)∆µ(X∗)}.

In general, b∗1 6= 0, thus γ = 2 for β > 2. For the case of β = 2, we have bβ/2c = 0, thus (30) = η(X∗)+O(rβ), meaning
γ = 2. �
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G Proof of Theorem 2

We basically follow the proof of Chaudhuri & Dasgupta (2014) Theorem 4(b). In Section G.1, we first define symbols
used in this proof. In Section G.2, we describe the sketch of the proof and main differences between our proof and that of
Chaudhuri & Dasgupta (2014) 4(b). Section G.3 shows the main body of the Proof, by utilizing several Lemmas listed in
Section G.4.

G.1 Definitions of symbols

• k and radius r: We first specify a real-valued vector ` = (`1, `2, . . . , `V )> ∈ RV satisfying `1 = 1 < `2 <
· · · < `V . k1,n � n−2β/(2β+d) is assumed in (C-1), and in (C-2), {kv,n} are specified so that

kv,n = min{k ∈ [n] | ‖X(k) −X∗‖2 ≥ `vr1,n}, ∀v ∈ {2, 3, . . . , V }

from r1,n := ‖X(k1,n) −X∗‖2. Then, for rv,n := ‖X(kv,n) −X∗‖2, v = 2, . . . , V , we have rv,n/r1,n → `v .
• Estimators: Similarly to Supplement E, we denote the k-NN estimators and MS-k-NN estimator by where

(Finite k-NN) ϕn,k = ϕn,k(X∗) := 1
k

∑k
i=1 Y(i;X∗) ∈ R

(Finite k-NN vector) ϕn,k = ϕn,k(X∗) := (ϕn,k1
(X∗), ϕn,k2

(X∗), . . . , ϕn,kV (X∗))
> ∈ RV ,

(Finite MS-k-NN) ρn,k = ρn,k(X∗) := zn,k(X∗)
>ϕn,k(X∗) ∈ R,

zn,k(X∗) ∈ RV denotes vectror z considered in Supplement E, i.e.,

zn,k(X∗) :=
(I − PRn,k(X∗))1

V − 1>PRn,k(X∗)1

where PR := R(R>R)−1R> and the (i, j)-th entry of the matrixRn,k(X∗) is r2j
ki

= ‖X(ki)−X∗‖
2j
2 . Whereas

the vector zn,k(X∗) is simply denoted by z in the above discussion, here we emphasize the dependence to the
sample Dn, parameters k = (k1, k2, . . . , kV ) and the query X∗.
We here define the asymptotic variants of the estimators by where r = (r1, r2, . . . , rV ),

(Asymptotic k-NN) ϕ
(∞)
r = ϕ

(∞)
r (X∗) := η(∞)(B(X∗; r)) ∈ R,

(Asymptotic k-NN vector) ϕ
(∞)
r = ϕ

(∞)
r (X∗) := (ϕ

(∞)
r1 (X∗), ϕ

(∞)
r2 (X∗), . . . , ϕ

(∞)
rV (X∗)) ∈ RV ,

(Asymptotic MS-k-NN) ρ
(∞)
r = ρ

(∞)
r (X∗) := z>r ϕ

(∞)
r (X∗) ∈ R,

zr =
(I − PR)1

V − 1>PR1
,

and the (i, j)-th entry of the matrixR is r2j
i .

• Point-wise errors for (X∗, Y∗) ∈ X × {0, 1} are defined as

Rn,k(X∗, Y∗) := 1( ρn,k(X∗)︸ ︷︷ ︸
Finite MS-k-NN

6= Y∗), R∗(X∗, Y∗) := 1(g∗(X∗) 6= Y∗),

where g∗(X) := 1(η(X) ≥ 1/2) is the Bayes-optimal classifier equipped with η(X) := E(Y | X).
• A minimum radius whose measure of the ball is larger than t > 0, i.e.,

r̃t(X) := inf

{
r > 0

∣∣∣∣ ∫
B(X∗;r)

µ(X)dX ≥ t

}
.

• Sets for the decision boundary with margins are defined as

X+
t,∆ :=

{
X ∈ S(µ) | η(X) >

1

2
, ρ

(∞)
r` (X) ≥ 1

2
+ ∆, ∀r ≤ r̃t(X)

}
,

X−t,∆ :=

{
X ∈ S(µ) | η(X) <

1

2
, ρ

(∞)
r` (X) ≤ 1

2
−∆, ∀r ≤ r̃t(X)

}
,

∂t,∆ := X \ (X+
t,∆ ∪ X

−
t,∆),

where S(µ) is defined in (5), and r is meant for r1.
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G.2 Sketch of the proof

Sketch of the proof: We mainly follow the proof of Chaudhuri & Dasgupta (2014) Theorem 4(b), that proves the
convergence rate for the unweighted k-NN estimator. Similarly to Chaudhuri & Dasgupta (2014) Lemma 7, we first consider
decomposing the difference between point-wise errors Rn,k(X∗, Y∗)−R∗(X∗, Y∗) as shown in the following Lemma 1;
this Lemma plays an essential role for proving Theorem 1.

Subsequently, we consider the following two steps using Lemma 1–7:

(i) taking expectation of the decomposition w.r.t. sample Dn for showing point-wise excess risk,
(cf. Chaudhuri & Dasgupta (2014) Lemma 20)

(ii) further taking expectation w.r.t. the query (X∗, Y∗), and evaluate the convergence rate.
(cf. Chaudhuri & Dasgupta (2014) Lemma 21)

Then, the assertion is proved.

Main difference between the Proof of Chaudhuri & Dasgupta (2014) and ours is bias evaluation. Chaudhuri & Dasgupta
(2014) leverages the γ-neighbour average smoothness condition

(asymptotic bias of k-NN) | ϕ(∞)
r (X∗)︸ ︷︷ ︸

(asymptotic) k-NN

−η(X∗)| ≤ Lγrγ ,

that represents the asymptotic bias of the k-NN, where γ is upper-bounded by 2 even if highly-smooth function is
employed (β � 2; Theorem 1). However, MS-k-NN asymptotically satisfies an inequality

(asymptotic bias of MS-k-NN) | ρ
(∞)
r` (X∗)︸ ︷︷ ︸

(asymptotic) MS-k-NN

−η(X∗)| ≤ L∗∗β rβ

for any β > 0, as formally described in Lemma 2. By virtue of the smaller asymptotic bias, Lemma 4 proves that smaller
margin is required for the decision boundary, in order to evaluate the convergence rate; it results in the faster convergence
rate.

Although the the bias evaluation is different, variance evaluation for MS-k-NN is consequently almost similar to the k-NN,
as MS-k-NN can be regarded as a linear combination of several k-NN estimators, i.e.,

ρn,k(X∗)︸ ︷︷ ︸
MS-k-NN estimator

= zn,k(X∗)
> ϕn,k(X∗)︸ ︷︷ ︸
k-NN estimators

;

we adapt several Lemmas in Chaudhuri & Dasgupta (2014) to our setting, for proving our Theorem 2.

G.3 Main body of the proof

See the following Section G.4 for Lemma 1–7 used in this proof. Throughout this proof, we assume that X∗ ∈ S(µ), as
Cover & Hart (1967) proves that P(X∗ ∈ S(µ)) = 1; the remaining X∗ /∈ S(µ) can be ignored.

Let n ∈ N, k1,n � n2β/(2β+d), tn := 2k1,n/n,∆o := L∗∗∗β tβ/d where L∗∗∗β ∈ (0,∞) is a constant defined in Lemma 4,
and let ∆(X) := |η(X) − 1/2| denotes the difference between the underlying conditional expectation η(X) from the
decision boundary 1/2.

By specifying arbitrary io ∈ N and ∆io := 2io∆o, we consider the following two steps (i) and (ii) for proving Theorem 2.
In step (i), queries are first classified into two different cases, i.e., ∆(X∗) ≤ ∆io and ∆(X∗) > ∆io . Thus io regulates

the margin near the decision boundary, and it will be specified as io = max{1, dlog2

√
2(α+2)
k1,n∆2

o
e}. For each case, we

take expectation of the difference between point-wise errors Rn,k(X∗, Y∗)−R∗(X∗, Y∗) with respect to the sample Dn.
Subsequently, (ii) we further take its expectation with respect to the query (X∗, Y∗); the assertion is then proved. Note that
these steps (i) and (ii) correspond to Chaudhuri & Dasgupta (2014) Lemma 20 and 21, respectively.

(i) We first consider the case ∆(X∗) ≤ ∆io . Then, we have

EDn(Rn,k(X∗, Y∗)−R∗(X∗, Y∗)) ≤ |1− 2η(X∗)|EDn{1(ρn,k(X∗) 6= g∗(X∗))}
(∵ Devroye et al. (1996) Theorem 2.2)

≤ |1− 2η(X∗)|
≤ 2∆(X∗)

≤ 2∆io . (32)
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We second consider the case ∆(X∗) > ∆io . Assuming that η(X∗) > 1/2 without loss of generality, it holds for
r = r1,n := ‖X(k1,n) −X∗‖2 that

EDn {Rn,k(X∗, Y∗)−R∗(X∗, Y∗)}
≤ |1− 2η(X∗)|EDn {1(ρn,k(X∗) 6= g∗(X∗))}

(∵ Devroye et al. (1996) Theorem 2.2)

≤ 2∆(X∗)EDn {1(ρn,k(X∗) 6= g∗(X∗))}
(∵ |1− 2η(X∗)| ≤ 2∆(X∗))

≤ 2∆(X∗)EDn
{
1(X∗ ∈ ∂tn,∆(X∗)−∆io

)

+ 1

(
|ρn,k(X∗)− ρ(∞)

r` (X∗)| ≥
∆(X∗)−∆io

2

)
+ 1

(
|ρn,k(X∗)− η(X∗)| ≥

∆(X∗)−∆io

2

)
+ 1(‖X(k1,n) −X∗‖2 > r̃tn(X∗))

}
(∵ Lemma 1 with ∆ := ∆(X∗)−∆io ∈ [0, 1/2])

≤ 2∆(X∗)EDn
{
1

(
|ρn,k(X∗)− ρ(∞)

r` (X∗)| ≥
∆(X∗)−∆io

2

)
+ 1

(
|ρn,k(X∗)− η(X∗)| ≥

∆(X∗)−∆io

2

)
+ 1(‖X(k1,n) −X∗‖2 > r̃tn(X∗))

}
(∵ Lemma 4, i.e., X∗ /∈ ∂tn,∆(X∗)−∆io

)

≤ 2∆(X∗)

{
PDn

(
|ρn,k(X∗)− ρ(∞)

r` (X∗)| ≥
∆(X∗)−∆io

2

)
+ PDn

(
|ρn,k(X∗)− η(X∗)| ≥

∆(X∗)−∆io

2

)
+ PDn(‖X(k1,n) −X∗‖2 > r̃tn(X∗))

}
(∵ EDn(1(A)) = PDn(A) for any event A)

. ∆(X∗)

{
exp

(
−C1k1,n(∆(X∗)−∆io)

2
)

+ exp
(
−C2k1,n(∆(X∗)−∆io)

2
)

+ exp(−L`nβ/(β+d)(∆(X∗)−∆io)) + exp(−3k1,n/2)(1 + o(1))

+ exp(−n) + exp

(
−k1,n

2

(
1− k1,n

ntn

)2
)}

(∵ Lemma 5, 6 and 7 with δ = k1,n/nt)

. ∆(X∗) exp
(
−C2k1,n(∆(X∗)−∆io)

2
)

+ + exp(−3k1,n/2)(1 + o(1)) + exp(−k1,n/8) (33)(
∵ tn = 2(k1,n/n) indicates that

k1,n

2

(
1− k1,n

ntn

)2

=
k1,n

2

(
1− 1

2

)2

=
k1,n

8

)
,

. ∆(X∗) exp
(
−C2k1,n(∆(X∗)−∆io)

2
)

+ exp(−3k1,n/2)(1 + o(1)),

where C2 = C1/2 = 1/16V 2L2
z is defined in Lemma 6.

(ii) Excess risk of the misclassification error rate is then evaluated by
ε(ρn,k) = EX∗,Y∗ {EDn (Rn,k(X∗, Y∗)−R∗(X∗, Y∗))}

= PX∗,Y∗(∆(X∗) ≤ ∆io)︸ ︷︷ ︸
≤Lα∆α

io
(∵α-margin cond.)

EX∗,Y∗(EDn {Rn,k(X∗, Y∗)−R∗(X∗, Y∗)}︸ ︷︷ ︸
≤2∆io (∵ineq. (32))

| ∆(X∗) ≤ ∆io)

+ PX∗,Y∗(∆(X∗) > ∆io)︸ ︷︷ ︸
≤1

EX∗,Y∗(EDn {Rn,k(X∗, Y∗)−R∗(X∗, Y∗)} | ∆(X∗) > ∆io)

. ∆1+α
io

+ EX∗,Y∗(EDn {Rn,k(X∗, Y∗)−R∗(X∗, Y∗)}︸ ︷︷ ︸
(evaluated by ineq. (33)

| ∆(X∗) > ∆io)

. ∆1+α
io

+ EX∗,Y∗
(
∆(X∗) exp(−C2k1,n(∆(X∗)−∆o)

2)1(∆(X∗) > ∆io)
)︸ ︷︷ ︸

.∆1+α
io

(∵similarly to Proof of Lemma 20 in Chaudhuri & Dasgupta (2014))

+ exp(−3k1,n/2)(1 + o(1))
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. ∆1+α
io

+ exp(−3k1,n/2)(1 + o(1)).

If we set i0 = max{1, dlog2

√
2(α+2)
k1,n∆2

o
e},

ε(η̂
(MS-kNN)
n,k ) = ε(ρn,k)

. ∆1+α
o + exp(−3k1,n/2)(1 + o(1))

. (2io)1+α∆1+α
o + exp(−3k1,n/2)(1 + o(1))

.

(
max

{
1,

√
2(α+ 2)

k1,n∆2
o

})1+α

∆1+α
o + exp(−3k1,n/2)(1 + o(1))

. max

{
∆o,

√
1

k1,n

}1+α

+ exp(−3k1,n/2)(1 + o(1))

. max

{
tβ/dn ,

√
1

k1,n

}1+α

+ exp(−3k1,n/2)(1 + o(1)) (∆o � tβ/dn )

. max

{(
k1,n

n

)β/d
,

√
1

k1,n

}1+α

+ exp(−3k1,n/2)(1 + o(1)) (∵ tn � k1,n/n).

Recalling that k1,n � n2β/(2β+d), the assertion is proved as

ε(η̂
(MS-kNN)
n,k ) . n−(1+α)β/(2β+d).

�

G.4 Lemmas

We here list Lemma 1–7 used in the proof for Theorem 2. Roughly speaking,

• Lemma 1 indicates the decomposition of the point-wise error.
(cf. Chaudhuri & Dasgupta (2014) Lemma 7)

• Lemma 2 indicates the bias evaluation of MS-k-NN.

• Lemma 3 indicates the convergence rate of ‖zn,k(X∗)− zr`‖∞.

• Lemma 4 adapts the first part of Chaudhuri & Dasgupta (2014) Lemma 20 from unweighted k-NN to MS-k-NN.

• Lemma 5 and 6 indicate the convergence rates related to the bias and variance evaluation of the MS-k-NN.
(cf. Chaudhuri & Dasgupta (2014) Lemma 9)

• Lemma 7 indicates how fast the radius r > 0 decreases to 0 as k increases.
(cf. Chaudhuri & Dasgupta (2014) Lemma 8)

Similarly to Chaudhuri & Dasgupta (2014) Lemma 7, we prove the following Lemma 1, that decomposes the point-wise
error into four different parts.

Lemma 1. Let gn,k be the MS-k-NN classifier based on sample Dn, and let X∗ ∈ S(µ), t ∈ [0, 1],∆ ∈ [0, 1/2].
Then, it holds for r = r1,n := ‖X(k1,n) −X∗‖2 that

1(gn,k(X∗) 6= g∗(X∗)) ≤ 1(X∗ ∈ ∂t,∆) (34)

+ 1(|ρn,k(X∗)− ρ(∞)
r` (X∗)| ≥ ∆/2) (35)

1(|ρn,k(X∗)− η(X∗)| ≥ ∆/2) (36)
+ 1(r > r̃t(X∗)). (37)

Proof of Lemma 1. Let A be an event that gn,k(X∗) 6= g∗(X∗), and let B1,B2,B3,B4 be events defined by the indicator
functions (34)–(37), respectively. Then, it suffices to proveA ⇒ [B1∨B2∨B3∨B4] or its contrapositive [(¬B1)∧ (¬B2)∧
(¬B3) ∧ (¬B4)]⇒ ¬A, where ¬ represents the negation. Here, we prove the contrapositive.

¬B1 indicates that X∗ ∈ X+
t,∆ or X∗ ∈ ∪X−t,∆.
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• We here consider the former case X∗ ∈ X+
t,∆; then, ¬B4, i.e., r ≤ r̃t(X), indicates that

ρ
(∞)
r` (X∗) ≥

1

2
+ ∆(> 1/2). (38)

¬B2 and ¬B3 represent

|ρn,k − ρ(∞)
r` (X∗)| < ∆/2, |ρn,k − η(X∗)| < ∆/2, (39)

respectively; above inequalities (38) and (39) indicate

η(X∗) ≥ ρ(∞)
r` (X∗)− |ρn,k − ρ(∞)

r` (X∗)| − |ρn,k − η(X∗)| >
1

2
+ ∆−∆/2−∆/2 = 1/2. (40)

(38) and (40) prove that both of corresponding classifiers output the same label 1, whereupon ¬A.

• Similarly, for the latter case X∗ ∈ X−t,∆, both classifiers output 0 and thus ¬A.

Therefore, the assertion is proved. �

Lemma 2. Assuming the assumption (C-3), i.e., there exists Lz ∈ (0,∞) such that ‖z`‖∞ < Lz . Then, there exist
r̃, L∗∗β ∈ (0,∞) such that

|ρ(∞)
r` (X∗)− η(X∗)| ≤ L∗∗β rβ , (∀X∗ ∈ X , r ∈ (0, r̃]).

Proof of Lemma 2. Theorem 1 proves

ϕ(∞)
r (X∗)︸ ︷︷ ︸

asymptotic k-NN

= η(X∗) +

bβ/2c∑
c=1

b∗cr
2c + δr(X∗), |δr(X∗)| ≤ L∗βrβ ,

for all X∗ ∈ S(µ), r ∈ (0, r̃], for some r̃ ∈ (0,∞); we have a simultaneous equation

ϕ
(∞)
r` (X∗) = Ar`(X∗)b∗(X∗) + δr(X∗), ‖δr(X∗)‖∞ ≤ L∗βrβ (∀X∗ ∈ X , r ∈ (0, r̃]),

where Ar` = Ar`(X∗) = (1 R(X∗)) ∈ RV×(C+1) is defined as same as A in (26) with the radius vector r =
(r1, r2, . . . , rV ) = r`, and the entries in b∗(X∗) = (η(X∗), b

∗
1, b
∗
2, . . . , b

∗
bβ/2c) are specified in Theorem 1. Denoting the

first entry of the vector b by [b]1,

| ρ
(∞)
r` (X∗)︸ ︷︷ ︸

asymptotic MS-k-NN

−η(X∗)| ≤ |[(A>A)−1A>ϕ
(∞)
r` ]1 − η(X∗)|

≤
∣∣∣∣[(A>A)−1A> {A(X∗)b∗(X∗) + δr(X∗)}]1 − η(X∗)

∣∣∣∣
= | [b∗(X∗)]1︸ ︷︷ ︸

=η(X∗)

+ [(A>A)−1A>δr(X∗)]1︸ ︷︷ ︸
=z>r`δr(X∗)

−η(X∗)|

= |z>r`δr(X∗)|
≤ ‖zr`‖∞︸ ︷︷ ︸

≤Lz

‖δr(X∗)‖∞︸ ︷︷ ︸
≤L∗βrβ

(∵ zr` = z`, ∀r > 0)

≤ LzL∗βrβ .

Specifying L∗∗β := LzL
∗
β leads to the assertion. �

Lemma 3. Assuming that X∗ ∈ S(µ), (C-1) k1,n � n2β/(2β+d) and (C-2) kv,n = min{k ∈ [n] | ‖X(k) −X∗‖2 ≥
`vr1,n} where r = r1,n := ‖X(k1,n) −X∗‖2. Then, for sufficiently large n ∈ N, there exists L` > 0 such that

P (‖zn,k(X∗)− zr`‖∞ > ∆) . exp(−L`nβ/(β+d)∆) + exp(−3k1,n/2)(1 + o(1)).
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Proof of Lemma 3. In this proof, (i) we first evaluate the probability

PDn
(∣∣∣∣rv,nr1,n

− `v
∣∣∣∣ ≥ ∆

)
(41)

Subsequently, (ii) evalute
PDn (‖zn,k(X∗)− zr`‖∞ > ∆) (42)

by leveraging (41).

(i) For any positive sequence {bn}n≥1 ⊂ R>0, we define k′v,n := min{k ∈ [n] | ‖X(k) −X∗‖2 ≥ `vbn}. Although
the corresponding radius r′v,n := ‖X(k′v,n) − X∗‖2 is computed through the sequence {bn}, it coincides with
rv,n := ‖X(kv,n) −X∗‖2 as bn = r1,n will be specified later.

For any v ∈ {2, 3, . . . , V }, it holds that

PDn
(∣∣∣∣r′v,nbn − `v

∣∣∣∣ ≥ ∆

)
= PDn

(
r′v,n − bn`v ≥ bn∆

)
= PDn

(
r′v,n ≥ bn(`v + ∆)

)
= PDn(∀i ∈ [n], Xi /∈ B(X∗; r

′
v,n) \B(X∗; bn`v))

≤ PDn(∀i ∈ [n], Xi /∈ B(X∗; bn(`v + ∆)) \B(X∗; bn`v)). (43)

Considering a random variable Zi := 1(Xi /∈ B(X∗; bn(`v + ε)) \ B(X∗; bn`v)), that i.i.d. follows a Bernoulli
distribution whose expectation is

qn = 1−
∫
B(X∗;bn(`v+ε))\B(X∗;bn`v)

µ(X)dX

≤ 1− µmin

∫
B(X∗;bn(`v+∆))\B(X∗;bn`v)

dX

≤ 1− µmin
πd/2

Γ(d/2 + 1)
bdn{(`v + ∆)d − `dv}

≤ 1− µmin
πd/2

Γ(d/2 + 1)
d`d−1
v︸ ︷︷ ︸

=:Lv

bdn∆,

(43) can be evaluated as
(43) = P(Zi = 1,∀i ∈ [n]) = P(Zi = 1)n = qnn ≤ (1− Lvbdn∆)n. (44)

By leveraging (44) and specifying bn = r1,n, we hereinafter evaluate (41). For any sequence {an}n≥1 ⊂ R>0,

PDn
(∣∣∣∣rv,nr1,n

− `v
∣∣∣∣ ≥ ∆

)
=

∫ ∞
0

PDn
(∣∣∣∣r′v,nbn − `v

∣∣∣∣ ≥ ∆

)
PDn (r1,n = bn) dbn

≤
{∫ an

0

+

∫ ∞
an

}
PDn

(∣∣∣∣r′v,nbn − `v
∣∣∣∣ ≥ ∆

)
PDn (r1,n = bn) dbn

≤ PDn
(∣∣∣∣rv,nbn − `v

∣∣∣∣ ≥ ∆ | bn > an

)
︸ ︷︷ ︸

≤(1−L1adn∆)n

PDn(r1,n > an)

+ PDn
(∣∣∣∣rv,nbn − `v

∣∣∣∣ ≥ ∆ | bn ≤ an
)
PDn(r1,n ≤ an)

. (1− Lvadn∆)n︸ ︷︷ ︸
(?1)

+PDn(r1,n ≤ an)︸ ︷︷ ︸
(?2)

.

By specifying an := n−1/(β+d), the terms (?1), (?2) are evaluated as follows.

(a) Regarding (?1), it holds that

(?1) = (1− L1n
−d/(β+d)∆)n ≤ exp

(
−nβ/(β+d)L1∆

)
,

as (1− 1/a)b ≤ ((1− 1/a)a)b/a ≤ exp(−1)b/a = exp(−b/a) for all a, b > 0.
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(b) Here we evaluate the second term (?2): considering a random variable Zi := 1(Xi ∈ B(X∗; an)) that i.i.d.
follows a Bernoulli distribution whose expectation is

q′n :=

∫
B(X∗;an)

µ(X)dX ≤ µmin

∫
B(X∗;an)

dX ≤ µmin
πd/2

Γ(d/2 + 1)
adn . n

−d/(β+d),

we have an inequality

P(r1,n ≤ an) = P

(
n∑
i=1

Zi ≥ k1,n

)
= P

(
n∑
i=1

Zi ≥ nq′n + λ

)
(where λ := k1,n − nq′n)

≤ exp

(
− λ2

2(nqn + λ/3)

)
≤ exp

(
− (k1,n − nq′n)2

2(nq′n + (k1,n − nq′n)/3)

)
. exp(−3k1,n/2)(1 + o(1)) (∵ nq′n = o(k1,n))

by referring to a Chernoff bound (Chung & Lu, 2006, Theorem 2.4) with EDn(
∑n
i=1 Zi) = nq′n.

Therefore, above (a) and (b) yield

PDn
(∣∣∣∣rv,nr1,n

− `v
∣∣∣∣ ≥ ∆

)
. exp

(
−nβ/(β+d)L1∆

)
+ exp (−3k1,n/2) (1 + o(1)). (45)

(ii) We second evaluate (42). As it holds that

(1>(I − PRn,k)1)(1>(I − PR)1)‖zn,k − zr1,n`‖

= (1>(I − PRn,k)1)(1>(I − PR)1)

∥∥∥∥ I − PRn,k
1>(I − PRn,k)1

− I − PR
1>(I − PR)1

∥∥∥∥
∞

= ‖(1>(I − PRn,k)1)(I − PR)− (1>(I − PR)1)(I − PRn,k)‖∞
≤ ‖(1>(I − PRn,k)1)(I − PR)− (1>(I − PR)1)(I − PR)‖∞

+ ‖(1>(I − PR)1)(I − PR)− (1>(I − PR)1)(I − PRn,k)‖∞
≤ |1>(PRn,k − PR)1|‖(I − PR)‖∞ + |1>(I − PR)1|‖PRn,k − PR‖∞.
≤ ‖1‖2∞‖I − PR‖∞‖PR − PRn,k‖∞,

there exist constants L(1), L(2) > 0 such that

‖zn,k(X∗)− zr`‖ ≤ L(1)‖PRn − PR‖∞ ≤ L(2)‖rn/r1,n − `‖∞,

where rn = (r1,n, r2,n, . . . , rV,n) ∈ RV .

Consequently, above (i) and (ii) yield

P (‖zn,k(X∗)− zr`‖∞ > ∆) ≤ P(L(2)‖rn/r1,n‖∞ > ∆)

. exp(−L`nβ/(β+d)∆) + exp(−3kn/2)(1 + o(1)).

for some constant L` > 0. �

Lemma 4 (Evaluation for (34)). Let

• X∗ ∈ S(µ), β > 0, t ∈ [0, 1], io ∈ N,

• L∗∗∗β := L∗∗β L̃
−β/d, where L̃ := (supX∈X µ(X)) πd/2

Γ(d/2+1) and L∗∗β is defined in Lemma 2.

• ∆o := L∗∗∗β tβ/d,∆io := 2io∆o.

If ∆(X∗) > ∆io , it holds that X∗ /∈ ∂t,∆(X∗)−∆io
.
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Proof of Lemma 4. For any r ∈ (0, r̃t(X∗)],

t ≤
∫
B(X∗;r)

µ(X)dX ≤
(

sup
X∈X

µ(X)

)∫
B(X∗;r)

dX =

(
sup
X∈X

µ(X)

)
πd/2

Γ(d/2 + 1)
rd = L̃rd. (46)

Assuming that η(X∗) > 1/2 without loss of generality, we have

ρ
(∞)
r` (X∗) ≥ η(X∗)− L∗∗β rβ (∵ Lemma 2)

≥ η(X∗)− L∗∗β (L̃−1/dt1/d)β (∵ ineq. (46))

= η(X∗)− (L∗∗β L̃
−β/d)tβ/d

= η(X∗)−∆o (∵ ∆o = (L∗∗β L̃
−β/d)tβ/d)

= η(X∗)− 2−io∆io (∵ ∆io = 2io∆o)

=
1

2
+ (∆(X∗)− 2−io∆io) (∵ ∆(X∗) = |η(X∗)− 1/2|, η(X∗) > 1/2)

≥ 1

2
+ (∆(X∗)−∆i0) (∵ ∆io ≥ 2−io∆io)

for any r ∈ (0, r̃t(X∗)]; it means that X∗ ∈ X+
t,∆(X∗)−∆io

, whereupon X∗ /∈ ∂t,∆(X∗)−∆io
. Similar holds for the case

η(X∗) < 1/2. Thus we have proved X∗ /∈ ∂t,∆(X∗)−∆io
. �

Lemma 5 (Evaluation for (35)). Let X∗ ∈ X ,∆ ∈ [0, 1/2] and r1,n := ‖X(k1,n) − X∗‖2. Then, it holds for
C1 = 1/8V 2L2

z that

PDn
(
|ρn,k(X∗)−ρ(∞)

r1,n`
(X∗)| ≥ ∆/2

)
. exp(−C1k1,n∆2) + exp(−L`nβ/(β+d)∆) + exp(−3k1,n/2)(1 + o(1)).

Proof of Lemma 5. By simply decomposing the terms, we have

|ρn,k(X∗)− ρ(∞)
r1,n`

(X∗)| = | zn,k(X∗)
>ϕn,k(X∗)︸ ︷︷ ︸

=ρn,k(X∗)

−z>r1,n`ϕn,k(X∗)| (47)

+ |z>r1,n`ϕn,k(X∗)− z>r1,n`ϕ
(∞)
r1,n`

(X∗)| (48)

where the terms (47), (48) are evaluated as follows.

(i) Regarding the first term (47),

(47) = |{zn,k(X∗)− zr1,n`}ϕn,k(X∗)| ≤ ‖zn,k(X∗)− zr1,n`‖∞ ‖ϕn,k(X∗)‖∞︸ ︷︷ ︸
≤1

.

Therefore, Lemma 3 leads to

P((47) ≥ ∆/4) ≤ P(‖zn,k(X∗)− zr1,n`‖∞ ≥ ∆/4)

. exp(−L`nβ/(β+d)∆) + exp(−3kn/2)(1 + o(1)),

for some constant L` > 0.

(ii) Regarding the second term (48),

(48) = |z>r`{ϕn,k(X∗)−ϕ(∞)
r` (X∗)}| ≤ ‖zr`‖∞︸ ︷︷ ︸

≤Lz

V∑
v=1

|ϕn,kv (X∗)− ϕ(∞)
rhv(X∗)

(X∗)|,

and Chaudhuri & Dasgupta (2014) Lemma 9 proves that

P
(
|ϕn,kv (X∗)− ϕ(∞)

rv (X∗)| ≥ ∆/4V Lz

)
. exp(−2kv(∆/4V Lz)2).

Therefore, we have

P((48) ≥ ∆/4) . P

(
Lz

V∑
v=1

|ϕn,kv (X∗)− ϕ(∞)
rv (X∗)| ≥ ∆/4

)
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≤
V∑
v=1

P
(
|ϕn,kv (X∗)− ϕ(∞)

rv (X∗)| ≥ ∆/4V Lz

)
. exp(−2k1∆2/(4V Lz)2) = exp(−k1C1∆2),

with C1 := 1/8V 2L2
z .

Considering above evaluations, we have

P(|ρn,k(X∗)− η(X∗)| ≥ ∆/2) ≤ P((47) ≥ ∆/4) + P((48) ≥ ∆/4)

. exp(−C1k1∆2) + exp(−L`nβ/(β+d)∆) + exp(−3kn/2)(1 + o(1)).

The assertion is proved. �

Lemma 6 (Evaluation for (36)). Let X∗ ∈ X and ∆ ∈ [0, 1/2]. Then, it holds for C2 = 1/(2V Lz)2(= C1/2) that

PDn (|ρn,k(X∗)− η(X∗)| ≥ ∆/2) . exp
(
−C2k1,n∆2

)
+ exp(−n).

Proof of Lemma 6. By simply decomposing the terms, we have

|ρn,k(X∗)− η(X∗)| ≤ |ρn,k(X∗)− ρ(∞)
r1,n`

(X∗)|︸ ︷︷ ︸
(?1)

+ |ρ(∞)
r1,n`

(X∗)− η(X∗)|︸ ︷︷ ︸
(?2)

. (49)

• Regarding the first term (?1), applying Lemma 5 immediately leads to

P((?1) ≥ ∆/4) . exp(−C2k1,n∆2),

where C2 := C1/2 = 1/16V 2L2
z .

• Here, we consider the second term (?2). As Lemma 2 shows that |ρ(∞)
r` (X∗)− η(X∗)| ≤ L∗∗β r

β
1,n, we have

P(|ρ(∞)
r1,n`

(X∗)− η(X∗)| ≥ ∆/2) ≤ P(L∗∗β r
β
1,n ≥ ∆/2) = P(r1,n ≥ (∆/2L∗∗β )1/β) (50)

(50) represents the probability that less than k1,n out of n feature vectors lie in a region B(X∗; ∆∗) with
∆∗ := (∆/2L∗∗β )1/β ; considering a random variable Zi := 1(Xi ∈ B(X∗; ∆∗)), that i.i.d. follows a Bernoulli
distribution whose expectation is q∗ :=

∫
B(X∗;∆∗)

µ(X)dX > 0,

(50) = P
(
Z̄n <

k1,n

n

)
≤ P

(
|Z̄n − q∗| ≥ q∗ −

k1,n

n

)
≤ 2 exp

(
−2n

(
q∗ −

k1,n

n

)2
)

by Höeffding’s inequality. As k1,n

n � n−d/(2β+d) ≤ q∗/2 for sufficiently large n, we have (50) . exp(−n).

Considering above (?1) and (?2)

P(|ρn,k(X∗)− η(X∗)| ≥ ∆) ≤ P((?1) ≥ ∆/2) + P((?2) ≥ ∆/2) . exp(−C2k1,n∆2) + exp(−n)

for some C2 > 0; the assertion is then proved. �

Lemma 7 (Evaluation for (37)). Let X∗ ∈ X , t, δ ∈ [0, 1] and k ∈ [(1− δ)nt]. Then,

PDn(‖X(k) −X∗‖2 > r̃t(X∗)) . exp(−kδ2/2).

Proof of Lemma 7. The assertion is obtained by Chaudhuri & Dasgupta (2014) Lemma 8. �
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