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Abstract

Over-parametrization is an important technique in training neural networks. In both
theory and practice, training a larger network allows the optimization algorithm to
avoid bad local optimal solutions. In this paper we study a closely related tensor
decomposition problem: given an l-th order tensor in (Rd)⊗l of rank r (where
r � d), can variants of gradient descent find a rank m decomposition where
m > r? We show that in a lazy training regime (similar to the NTK regime for
neural networks) one needs at least m = Ω(dl−1), while a variant of gradient
descent can find an approximate tensor when m = O∗(r2.5l log d). Our results
show that gradient descent on over-parametrized objective could go beyond the
lazy training regime and utilize certain low-rank structure in the data.

1 Introduction

The success of training neural networks has sparked theoretical research in understanding non-convex
optimization. Over-parametrization – using more neurons than the number of training data or than
what is necessary for expressivity – is crucial to the success of optimizing neural networks (Livni
et al., 2014; Jacot et al., 2018; Mei et al., 2018). The idea of over-parametrization also applies to other
related or simplified problems, such as matrix factorization and tensor decomposition, which are of
their own interests and also serve as testbeds for analysis techniques of non-convex optimization.
We focus on over-parameterized tensor decomposition in this paper (which is closely connected to
over-parameterized neural networks (Ge et al., 2018)).

Concretely, given an order-l symmetric tensor T ∗ in (Rd)⊗l with rank r, we aim to decompose it into
a sum of rank-1 tensors with as few components as possible. Finding the low-rank decomposition
with the smallest possible rank r is known to be NP-hard (Hillar and Lim, 2013). The problem
becomes easier if we relax the goal to finding a decomposition with m components where m is
allowed to be larger than r. The natural approach is to optimize the following objective using gradient
descent

min
ui∈Rd,ci∈R

∥∥∥∥∥
m∑
i=1

ciu
⊗l
i −

r∑
i=1

c∗i [u
∗
i ]
⊗l

∥∥∥∥∥
2

F

. (1)

When m = r, gradient descent on the objective above will empirically get stuck at a bad local
minimum even for orthogonal tensors (Ge et al., 2015). On the other hand, when m = Ω(dl−1),
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gradient descent provably converges to a global minimum near the initialization. This result follows
straightforwardly from the Neural Tangent Kernel (NTK) technique (Jacot et al., 2018), which was
originally developed to analyze neural network training, and is referred to as the “lazy training” regime
because essentially the algorithm is optimizing a convex function near the initialization (Chizat and
Bach, 2018a).

The main goal of this paper is to understand whether we can go beyond the lazy training regime for
the tensor decomposition problem via better algorithm design and analysis. In other words, we aim to
use a much milder over-parametrization than m = Ω(dl−1) and still converge to the global minimum
of objective (1). We view the problem as an important first step towards analyzing neural network
training beyond the lazy training regime.

We build upon the technical framework of mean-field analysis (Mei et al., 2018), which was developed
to analyze overparameterized neural networks. It allows the parameters to move far away from the
initialization and therefore has the potential to capture the realistic training regime of neural networks.
However, to date, all the provable optimization results with mean-field analysis essentially operate in
the infinite or exponential overparameterization regime (Chizat and Bach, 2018b; Wei et al., 2019),
and applying these techniques to our problem naively would require m to be exponentially large in
d, which is even worse than the NTK result. The exponential dependency is not surprising because
the mean-field analyses in (Chizat and Bach, 2018b; Wei et al., 2019) do not leverage or assume any
particular structures of the data so they fail to produce polynomial-time guarantees on the worst-case
data. Motivated by identifying problem structure that allows for polynomial-time guarantees, we
study the mean-field analysis applied to tensor decomposition.

The main contribution of this paper is to attain nearly dimension-independent over-parametrization
for the mean-field analysis in Wei et al. (2019) by leveraging the particular structure of the tensor
decomposition problem, and to show that with m = O∗(r2.5l log d), a modified version of gradient
descent on a variant of objective (1) converges to the global minimum and recovers the ground-
truth tensor. This is a significant improvement over the NTK requirement of m = Ω(dl−1) and
an exponential improvement upon the existing mean-field analysis that requires m = exp(d). Our
analysis shows that unlike the lazy training regime, gradient descent with small initialization and
appropriate regularizer can identify the subspace that the ground-truth components lie in, and
automatically exploit such structure to reduce the number of necessary components. As shown
in Ge et al. (2018), the population-level objective of two-layer networks is a mixture of tensor
decomposition objectives with different orders, so our analysis may be extendable to improve the
over-parametrization necessary in analysis of two-layer networks.

1.1 Related work

Neural Tangent Kernel There has been a recent surge of research on connecting neural networks
trained via gradient descent with the neural tangent kernel (NTK) (Jacot et al., 2018; Du et al.,
2018a,b; Chizat and Bach, 2018a; Allen-Zhu et al., 2018; Arora et al., 2019a,b; Zou and Gu, 2019;
Oymak and Soltanolkotabi, 2020). This line of analysis proceeds by coupling the training dynamics
of the nonlinear network with the training dynamics of its linearization in a local neighborhood of the
initialization, and then analyzing the optimization dynamics of the linearization which is convex.

Though powerful and applicable to any function class including tensor decomposition, NTK is not
yet a completely satisfying theory for explaining the success of over-parametrization in deep learning.
Neural tangent kernel analysis is essentially dataset independent and requires at least number of
neurons m ≥ n

d = dl−1 to find a global optimum (Zou and Gu, 2019; Daniely, 2019)2.

Beyond NTK approach The gap between linearized models and the full neural network has
been established in theory by (Wei et al., 2019; Allen-Zhu and Li, 2019; Yehudai and Shamir,
2019; Ghorbani et al., 2019; Dyer and Gur-Ari, 2019; Woodworth et al., 2020) and observed in
practice (Chizat and Bach, 2018a; Arora et al., 2019a; Lee et al., 2019). Higher-order approximations
of the gradient dynamics such as Taylorized Training (Bai and Lee, 2019; Bai et al., 2020) and the
Neural Tangent Hierarchy (Huang and Yau, 2019) have been recently proposed towards closing this
gap. Unlike this paper, existing results mostly try to improve the sample complexity instead of the
level of over-parametrization for the NTK approach.

2Here n is the number of samples which is effectively Θ(dl) in our setting.
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Mean field approach For two-layer networks, a series of works used the mean field approach to
establish the evolution of the network parameters (Mei et al., 2018; Chizat and Bach, 2018b; Wei
et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2018). In the mean
field regime, the parameters move significantly from their initialization, unlike NTK regime, so it
is a priori possible for the mean field approach to exploit data-dependent structure to utilize fewer
neurons. However the current analysis techniques for mean field approach need either exponential in
dimension or exponential in time number of neurons to attain small training error and do not exploit
any data structure. One of the main contributions of our work is to show that gradient descent can
benefit from the low-rank structure in T ∗.

Tensor decomposition Tensor decomposition is in general an NP-hard problem (Hillar and Lim,
2013). There are many algorithms that find the exact decomposition (when m = r) under various
assumptions. In particular Jenrich’s algorithm (Harshman, 1970) works when r ≤ d and the compo-
nents are linearly independent. In our setting, the components may not be linearly independent, this
is similar to the overcomplete tensor decomposition problem. Although there are some algorithms for
overcomplete tensor decomposition (e.g., Cardoso (1991); Ma et al. (2016)), they require nondegen-
eracy conditions which we are not assuming. When the number of components m is allowed to be
larger than r, one can use spectral algorithms to find a decomposition where m = Θ(rl−1). In this
paper our focus is to achieve similar guarantees using a direct optimization approach.

Neural network with polynomial activations Another model that sits between tensor decomposi-
tion and standard ReLU neural network is neural network with polynomial activations. Livni et al.
(2013) gave an algorithm for training network with quadratic activations with specific algorithm.
Andoni et al. (2014) gave a way to learn degree l polynomials over d variables using Ω(dl) neurons,
which is similar to the guarantee of (much later) NTK approach.

2 Notations

We use [n] as a shorthand for {1, 2, · · · , n}. We use O(·),Ω(·) to hide constant factor dependencies.
We use O∗(·) to hide constant factors and also the dependency on accuracy ε. We use poly(·) to
represent a polynomial on the relevant parameters with constant degree.

Tensor notations: We use⊗ as the tensor product (outer product). An l-th order d-dimensional tensor
is defined as an element in space Rd⊗· · ·⊗Rd, succinctly denoted as (Rd)⊗l. For any i1, · · · , il ∈ [d],
we use Ti1,··· ,il to refer to the (i1, · · · , il)-th entry of T ∈ (Rd)⊗l with respect to the canonical basis.
For a vector v ∈ Rd, we define v⊗l as a tensor in (Rd)⊗l such that

(
v⊗l
)
i1,··· ,il

= vi1vi2 · · · vil . A
tensor is symmetric if the entry values remain unchanged for any permutation of its indices. We
define vec(·) to be the vectorize operator for tensors, mapping a tensor in (Rd)⊗l to a vector in Rdl :
vec(T )(i1−1)dl−1+(i2−1)dl−2+···+(il−1−1)d+il := Ti1,i2,··· ,il .

A tensor T ∈ (Rd)⊗l is rank-1 if it can be written as T = w · v1 ⊗ v2 ⊗ · · · ⊗ vl for some
w ∈ R and v1, · · · , vl ∈ Rd, and the rank of a tensor is defined as the minimum integer k such that
this tensor equals the sum of k rank-1 tensors.

Norm and inner product: We use ‖v‖ to denote the `2 norm of a vector v. For l-th order tensors
T, T ′ ∈ (Rd)⊗l (vectors and matrices can be viewed as tensors with order 1 and 2, respectively),
we define the inner product as 〈T, T ′〉 :=

∑
i1,··· ,il∈[d] Ti1,··· ,ilT

′
i1,··· ,il and the Frobenius norm as

‖T‖F =
√∑

i1,··· ,il∈[d] T
2
i1,··· ,il .

3 Problem setup and challenges

In this section we discuss the objective for over-parameterized tensor decomposition and explain the
challenges in optimizing this objective.
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We consider tensor decomposition problems with general order l ≥ 3. Throughout the paper we
consider l as a constant. Specifically, we assume that the ground-truth tensor is T ∗ of rank at most r:

T ∗ :=

r∑
i=1

c∗i [u
∗
i ]
⊗l,

where ∀i ∈ [r], c∗i ∈ R and u∗i ∈ Rd. Without loss of generality, we assume that ‖T ∗‖F = 1. We
focus on the low rank setting where r is much smaller than d. Note we don’t assume that u∗i ’s are
linearly independent.

The vanilla over-parameterized model we use consists of m components (where m ≥ r):

Tv :=

m∑
i=1

ciu
⊗l
i ,

where ∀i ∈ [m], ci ∈ R and ui ∈ Rd. We use U ∈ Rd×m to denote the matrix whose i-th column is
ui, and denote C ∈ Rm×m as the diagonal matrix with Ci,i = ci. The vanilla loss function we are
considering is the square loss:

fv(U,C) =
1

2
‖Tv − T ∗‖2F =

1

2

∥∥∥∥∥
m∑
i=1

ciu
⊗l
i −

r∑
i=1

c∗i [u
∗
i ]
⊗l

∥∥∥∥∥
2

F

. (2)

In other words, we are looking for a rank m approximation to a rank r tensor. When m = r, the
problem of finding a decomposition is known to be NP-hard. Therefore, our goal is to get a small
objective value with small m (which corresponds to the rank of Tv). In the following sub-sections,
we will see that there are many challenges to directly optimize the vanilla over-parameterized model
over the vanilla objective, so we will need to modify the parametrization of the tensor Tv and the
optimization algorithm to overcome them.

3.1 Challenge 0: lazy training requires immense over-parameterization

We show lazy training requires Ω(dl−1) components to fit a rank-one tensor in the following theorem.

Theorem 1. Suppose the ground truth tensor T ∗ = [u∗]⊗l, where u∗ is uniformly sampled from the
unit sphere Sd−1. Lazy training (defined as below) requires Ω(dl−1) components to achieve o(1)
error in expectation.

In the lazy training regime, all the ui’s stay very close to the initialization. Assuming the final u′i is
equal to ui+δi, all the higher-order terms in δi can be ignored. Therefore, the model can only capture
tensors in the linear subspace SU = span{Psymvec(u⊗l−1

i ⊗ δi)}mi=1 (here Psym is the projection to
the space of vectorized symmetric tensors, ui’s are the initialization and δi’s are arbitrary vectors in
Rd). The dimension of this subspace is upperbounded by dm. Let Wl be the space of all vectorized
symmetric tensors in (Rd)⊗l (with dimension Ω(dl)), and S⊥U be the subspace of Wl orthogonal to
SU . We show that for a random rank-1 tensor T ∗, it will often have a large projection in S⊥U unless
m = Ω(dl−1). Basically, the subspace SU has to cover the whole space Wl to approximate a random
rank-1 tensor. The proof of Theorem 1 is in Appendix A.

3.2 Challenge 1: zero is a high-order saddle point for vanilla objective

As Chizat and Bach (2018a) pointed out, lazy training regime corresponds to the case where the
initialization has large norm. A natural way to get around lazy training is to use a much smaller
initialization. However, for the vanilla objective, 0 will be a saddle point of order l on the loss
landscape. This makes gradient descent really slow at the beginning. In Section 4, we fix this issue
by re-parameterizing the model into a 2-homogeneous model.

3.3 Challenge 2: existence of bad local minima far away from 0

It was shown that no bad local minima exist in matrix decomposition problems (Ge et al., 2016).
Therefore, (stochastic) gradient descent is guaranteed to find a global minimum. In this section, we
show that in contrary tensor decomposition problems with order at least 3 have bad local minima.
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Theorem 2. Let fv(U,C) be as defined in Equation 2. Assume l ≥ 3, d > r ≥ 1 and m ≥
r(l + 1) + 1. There exists a symmetric ground truth tensor T ∗ with rank at most r(l + 1) + 1 such
that a local minimum with function value l(l − 1)r/4 exists while the global minimum has function
value zero.

In the construction, we set all the ui’s to be e1/m
1/l so that T = e⊗l1 . We define the ground truth

tensor by setting the residual T − T ∗ to be
∑r+1
j=2 e

⊗2
j ⊗ e

⊗l−2
1 plus its

(
l
2

)
permutations. At this

point, the gradient equals zero, so there is no first order change to the function value. Furthermore,
we show if any component moves in one of the missing direction ej for 2 ≤ j ≤ r+ 1, it will incur a
second order function value increase. So the tensor can only moves along e1 direction, which cannot
further decrease the function value because e⊗l1 is orthogonal with the residual. Note this is a bad
local min but not a strict bad local min because we can shrink one component to zero and meanwhile
increase another component so that the tensor does not change. When we have a zero component (it’s
a saddle point), we can add a missing direction to decrease the function value.

In Appendix B, we prove Theorem 2 and also construct a bad local minimum for 2-homogeneous
model defined in Section 4. To escape these spurious local minima, our algorithm re-initializes one
component after a fixed number of iterations.

4 Algorithms and main results

In this section, we introduce our main algorithm, a modified version of gradient descent on a
non-convex objective, and state our main results.

To address the high-order saddle point issue in Section 3.2, we introduce a new variant of the
parameterized models.

T :=

m∑
i=1

aic
l−2
i u⊗li ,

where ∀i ∈ [m], ai ∈ {−1, 1}, ci = 1
‖ui‖ and ui ∈ Rd.

Note that since u⊗li is homogeneous, there is a redundancy in the vanilla parametrization between
the coefficient and the norm of ‖u‖. Here we do the rescaling to make sure that the model T is a
2-homogeneous function of ui’s. Using the new formulation of T , 0 will no longer be a high order
saddle point.

Recall that we use U ∈ Rd×m to denote the matrix whose i-th column is ui. We use C,A ∈ Rm×m
to denote the diagonal matrices with Cii = ci, Aii = ai. The loss function we are considering is the
square loss plus a regularization term:

f(U,C, Ĉ, A) ,
1

2

∥∥∥∥∥
m∑
i=1

aic
l−2
i u⊗li − T

∗

∥∥∥∥∥
2

F

+ λ

m∑
i=1

ĉl−2
i ‖ui‖l ,

where ∀i ∈ [m], ĉi ∈ R+ and we use Ĉ ∈ Rm×m to denote the diagonal matrix with Ĉii = ĉi.
For simplicity, we use C̄ to denote the tuple (C, Ĉ, A). Therefore, we can write f(U,C, Ĉ, A) as
f(U, C̄).

The algorithm contains K epochs, where each epoch includes H iterations. At the initialization, we
independently sample each ui from δUnif(Sd−1), where the radius δ will be set to be poly(ε, 1/d).

Denote the subspace of span{u∗i } as S and its orthogonal subspace in Rd as B. Let PS , PB be the
projection matrices onto subspace S and B, respectively. Since the components of the ground-truth
tensor lies in the subspace S, ideally we want to make sure that the components of tensor T lies in the
same subspace S. We also want to make sure ci roughly equals 1/‖PSui‖ to ensure the improvement
in S subspace is large enough. However, the algorithm does not know the subspace S. We address
this problem using the observation that ‖PSui‖ ≈

√
r√
d
‖ui‖ at initialization; and ‖PSui‖ ≈ ‖ui‖ if

norm of ui is large, but its projection in B has not grown larger. In our algorithm we introduce a
"scalar mode switch" step between these two regimes by the separation between C and Ĉ: For the i-th
component, the coefficients ci and ĉi are initialized as

√
d(m+K)/ ‖ui‖ and 1/ ‖ui‖, respectively,
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and we reduce ci by a factor of
√
d(m+K) (ci will be equal to ĉi afterwards) when ‖ui‖ exceeds

2
√
m+Kδ for the first time. For each i ∈ [m], ai is i.i.d. sampled from Unif{1,−1}.

We also re-initialize one component at the beginning of each epoch. At each iteration, we first update
U by gradient descent: U ′ ← U − η∇Uf(U, C̄). Note that when taking the gradient over U , we treat
ci’s and ĉi’s as constants. Then we update each ci and ĉi using the updated value of ui to preserve
2-homogeneity, i.e., c′i = ‖ui‖

‖u′i‖
ci and ĉ′i = ‖ui‖

‖u′i‖
ĉi. We fix ai’s during the algorithm except for the

initialization and re-initialization steps.

The pseudocode is given in Algorithm 1. Using this variant of gradient descent, we can recover the
ground truth tensor T ∗ with high probability using only O

(
r2.5l

ε5 log(d/ε)
)

number of components.
The formal theorem is stated below.

Algorithm 1 Variant of Gradient Descent for Tensor Decomposition
Input: number of epochs K, number of iterations in one epoch H , initialization size δ, step size
η.
For each i ∈ [m], initialize ui i.i.d. from δUnif(Sd−1); initialize ai i.i.d. from Unif{1,−1};
initialize ci as

√
d(m+K)

‖ui‖ and ĉi as 1
‖ui‖ .

for epoch k := 1 to K do
Let uj be any vector with the smallest `2 norm among all columns of U .
Re-initialize uj from δUnif(Sd−1), re-initialize aj from Unif{1,−1} and set cj =√

d(m+K)

‖uj‖ , ĉj = 1
‖uj‖ .

for iteration t := 1 to H do
U ′ ← U − η∇Uf(U, C̄).
for i := 1 to m do

c′i ←
‖ui‖
‖u′i‖

ci; ĉ
′
i ←

‖ui‖
‖u′i‖

ĉi.

if ‖ui‖ ≤ 2
√
m+Kδ < ‖u′i‖ holds for the first time since it was (re)-initialized

then
c′i ←

c′i√
d(m+K)

. . Scalar Mode Switch

U ← U ′, C ← C ′, Ĉ ← Ĉ.
Output: T :=

∑m
i=1 aic

l−2
i u⊗li .

Theorem 3. Given any target accuracy ε > 0, there exists m = O
(
r2.5l

ε5 log(d/ε)
)
, λ =

O
(

ε
r0.5l

)
, δ = poly(ε, 1/d), η = poly(ε, 1/d), H = poly(1/ε, d) such that with probability at

least 0.99, our algorithm finds a tensor T satisfying

‖T − T ∗‖F ≤ ε,

within K = O
(
r2l

ε4 log(d/ε)
)

epochs.

5 Summary of our techniques

In this section, we discuss the high-level ideas that we need to prove Theorem 3. The full proof is
deferred into Appendix C.

Generally, doing gradient descent never increases the objective value (though this is not obvious for
our algorithm as it is slightly different in handling the normalization ci, ĉi’s). Our main concern is to
address Challenge 2, namely, the algorithm might get stuck at a bad local minimum. We will show
that this cannot happen with the re-initialization procedure.

More precisely, we rely on the following main lemma to show that as long as the objective is large,
there is at least a constant probability to improve the objective within one epoch.
Lemma 1. In the setting of Theorem 3, let (U ′0, C̄

′
0) and (UH , C̄H) be the parameters at the beginning

of an epoch and the parameters at the end of the same epoch. Assume ‖T ′0 − T ∗‖F ≥ ε, where T ′0 is
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tensor with parameters (U ′0, C̄
′
0). Then with probability at least 1/6, we have

f(UH , C̄H)− f(U ′0, C̄
′
0) = −Ω

(
ε4

r2l log(d/ε)

)
.

We complement this lemma by showing that even if an epoch does not decrease the objective, it will
not overly increase the objective.
Lemma 2. In the setting of Theorem 3, let (U ′0, C̄

′
0) and (UH , C̄H) be the parameters at the beginning

of an epoch and the parameters at the end of the same epoch. Assume f(U ′0, C̄
′
0) ≥ ε2, where ε is the

target accuracy in Theorem 3. Then, we have f(UH , C̄H)− f(U ′0, C̄
′
0) = O( 1

λm ).

From these two lemmas, we know that in each epoch, the loss function can decrease by
Ω
(

ε4

r2l log(d/ε)

)
with probability at least 1

6 , and even if we fail to decrease the function value,

the increase of function value is at most O
(

1
λm

)
. By our choice of parameters in Theorem 3,

m = Θ
(
r2.5l

ε5 log(d/ε)
)
, λ = Θ

(
ε

r0.5l

)
and then O( 1

λm ) = O( ε4

r2l log(d/ε)
). Choosing a large con-

stant factor in m, we can ensure that the function value decrease will dominate the increase. This
allows us to prove Theorem 3.

In the next two subsections, we will discuss how to prove Lemma 1 and Lemma 2, respectively.

5.1 Proof sketch for Lemma 2 - upper bound on function increase

To prove the increase of f is bounded in one epoch, we identify all the possible ways that the loss
can increase and upper bound each of them. We first show that a normal step (without scalar mode
switch) of the algorithm will not increase the objective function
Lemma 3. In the setting of Theorem 3, let (U, C̄) be the parameters at the beginning of one
iteration and let U ′, C̄ ′ be the updated parameters (before potential scalar mode switch). Assuming
f(U, C̄) ≤ 10, we have f(U ′, C̄ ′)− f(U, C̄) ≤ −ηl

∥∥∇Uf(U, C̄)
∥∥2

F
.

Note that we treat C and Ĉ as constants when taking gradient with respect to U and then update C
and Ĉ according to the updated value of U , so this lemma does not directly follow from standard
optimization theory. The gradient descent on U decreases the function value when the step size is
small enough while updating C, Ĉ can potentially increase the function value. In order to show that
overall the function value decreases, we need to bound the function value increase due to updating
C, Ĉ. We are able to do this because of the special regularizer we choose. In particular, our regularizer
guarantees that the change introduced by updating C and Ĉ is proportional to the change of the
gradient step, and is smaller in scale. Therefore we maintain the decrease in the gradient step.

Since we already know that the function value cannot increase in a normal iteration (before potential
scalar mode switch), the only causes of the function value increase are the re-initialization or scalar
mode switches. According to the algorithm, we only switch the scalar mode when the norm of a
component reaches 2

√
m+Kδ for the first time, so the number of scalar mode switches in each

epoch is at most m. Choosing δ to be small enough, the effects of scalar mode switches should
be negligible. In the re-intialization, we remove the component with smallest `2 norm, which can
increase the function value by at most O( 1

λm ). This is proved in Lemma 4.
Lemma 4. In the setting of Theorem 3, let (U ′0, C̄

′
0) and (U0, C̄0) be the parameters before and after

the reinitialization step, respectively. Assume f(U ′0, C̄
′
0) ≥ ε2, where ε comes from Theorem 3. Then,

we have f(U0, C̄0)− f(U ′0, C̄
′
0) = O( 1

λm ).

In the proof, we can show the function value is at most a constant and then
∑m
i=1 ‖ui‖

2
= O(1/λ)

due to the regularizer. Since we choose the reinitialized component u as one of the component with
smallest `2 norm, we know ‖u‖2 = O( 1

λm ). This then allows us to bound the function value change
from reinitialization by O( 1

λm ). Lemma 2 follows from Lemma 3 and Lemma 4.

5.2 Proof sketch for Lemma 1 - escaping local minima

In this section, we will show how we can escape local minima by re-initialization. Intuitively, we will
show that when a component is randomly re-initialized, it has a positive probability of having a good
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correlation with the current residual T − T ∗. However, there is a major obstacle here: because the
component is re-initialized in the full d-dimensional space, the correlation of this new component
with T − T ∗ is going to be of the order d−l/2. If every epoch can only improve the objective function
by d−l/2 we would need a much larger number of epochs and components.

We solve this problem by observing that both T and T ∗ are almost entirely in the subspace S. If we
only care about the projection in S, the random component will have a correlation of r−l/2 with the
residual T − T ∗. We will show that such a correlation will keep increasing until the norm of the new
component is large enough, therefore decreasing the objective function.

First of all, we need to show that the influence coming from the subspace B (the orthogonal subspace
of the span of {u∗i }) is small enough so that it can be ignored.

Lemma 5. In the setting of Theorem 3, we have ‖PBU‖2F ≤ (m+K)δ2 throughout the algorithm.

We prove Lemma 5 by showing the norm of PBU only increases at the (re-)initializations, so it will
stay small throughout this algorithm. This lemma is also the motivation of our algorithm, i.e., we
treat C and Ĉ as constants when taking the gradient so that the gradient of U will never have negative
correlation with PBU .

Now let us focus on the subspace S. We denote the re-initialized vector at t-th step as ut, and its sign
as a ∈ {±1}, and we will take a look at the change of PSut. Our analysis focuses on the correlation
between PSut and the residual tensor: 〈(PS⊗lTt − T ∗), a(PSut

⊗l
)〉. Here PSut is the normalized

version PSut. We will show that the norm of ut will blow up exponentially if this correlation is
significantly negative at every iteration.

Towards this goal, first we will show that the initial point PSu0 has a large negative correlation with
the residual. We lower bound this correlation by anti-concentration of Gaussian polynomials:

Lemma 6. Suppose the residual at the beginning of one epoch is T ′0 − T ∗. Suppose acl−2
0 u⊗l0 is the

reinitialized component. With probability at least 1/5,〈
PS⊗lT ′0 − T ∗, aPSu0

⊗l〉 ≤ −Ω

(
1

r0.5l

)
‖PS⊗lT ′0 − PS⊗lT ∗‖F ,

where PSu0 = PSu0/ ‖PSu0‖ .

Our next step argues that if this negative correlation is large in every step, then the norm of ut blows
up exponentially:

Lemma 7. In the setting of Theorem 3, within one epoch, let T0 be the tensor after the reinitilization
and let Tτ be the tensor at the end of the τ -th iteration. Assume ‖PSu0‖ ≥ Ω(δ/

√
d). For any t ≥ 1,

as long as
〈
PS⊗lTτ − T ∗, aPSuτ

⊗l〉 ≤ −Ω
(

ε
r0.5l

)
for all t− 1 ≥ τ ≥ 0, we have

‖PSut‖2 ≥
(

1 + Ω
( ηε

r0.5l

))t
‖PSu0‖2 .

Therefore the final step is to show that PSut always have a large negative correlation with Tt − T ∗,
unless the function value has already decreased. The difficulty here is that both the current reinitialized
component ut and other components are moving, therefore Tt is also changing.

We can bound the change of the correlation by separating it into two terms, which are the change of
the re-initialized component and the change of the residual:〈

PS⊗lTt − T ∗, aPSut
⊗l〉− 〈PS⊗lT0 − T ∗, aPSu0

⊗l〉
≤

t∑
τ=1

(〈
PS⊗lTτ−1 − T ∗, PSuτ

⊗l〉− 〈PS⊗lTτ−1 − T ∗, PSuτ−1
⊗l〉)

+
t∑

τ=1

‖Tτ − Tτ−1‖F .

The change of the re-initialized component has a small effect on the correlation because the change
in S subspace can only improve the correlation, and the influence of the B subspace can be bounded.
This is formally proved in the following lemma.
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Lemma 8. In the setting of Theorem 3, suppose at the beginning of one iteration, the tensor T
has parameters (U, C̄). Suppose u is one column vector in U with ‖PSu‖ = Ω( δ√

d
) and u′ =

u− η∇uf(U, C̄). We have〈
PS⊗lT − T ∗, aPSu′

⊗l〉 ≤ 〈PS⊗lT − PS⊗lT ∗, aPSu
⊗l〉

+ ηδpoly(d),

where poly(d) does not hide any dependency on η, δ.

Therefore, the only way to change the residual term by a lot must be changing the tensor T , and
the accumulated change of T is strongly correlated with the decrease of f . This is similar to the
technique of bounding the function value decrease in Wei et al. (2019). The connection between them
are formalized in the following lemma:

Lemma 9. In the same setting of Lemma 7, within one epoch, let (U0, C̄0) be the parameters after
the reinitialization step and let (UH , C̄H) be the parameters at the end of this epoch. We have

H∑
τ=1

‖Tτ − Tτ−1‖F ≤ O

(√
ηH

λ

)√
f(U0, C̄0)− f(UH , C̄H) + δ2poly(d) + δ2poly(d),

where poly(d) does not hide dependency on δ.

Intuitively, Lemma 9 is true because a large accumulated change of T indicates large gradients along
the trajectory, which suggests a large decrease in the function value. In fact, we choose the parameters
such that λ = Θ( ε

r0.5l
), ηH = Θ( r

0.5l

ε log(d/ε)). If the accumulated change of T is larger than
Ω( ε

r0.5l
), the function value decreases by at least Ω( ε4

r2l log(d/ε)
), as stated in Lemma 1.

Combining all the steps, we show that either the function value has already decreased (by Lemma 9),
or the correlation remains negative and the norm ‖PSut‖ blows up exponentially (by Lemma 7). The
norm cannot grow exponentially because of the regularizer, so the function value must eventually
decrease. This finishes the proof of Lemma 1.

6 Conclusion

In this paper we show that for an over-parameterized tensor decomposition problem, a variant of
gradient descent can learn a rank r tensor using O∗(r2.5l log(d/ε)) components. The result shows
that gradient-based methods are capable of leveraging low-rank structure in the input data to achieve
lower level of over-parametrization. There are still many open problems, in particular extending
our result to a mixture of tensors of different orders which would have implications for two-layer
neural network with ReLU activations. We hope this serves as a first step towards understanding what
structures can help gradient descent to learn efficient representations.
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