
We thank the reviewers for a careful reading and the feedback of our submission. We were happy to hear the overall1

positive nature of the reviews and constructive critiques provided. In addition to fixing the typos suggested, we will try2

to address the concerns that were raised in the review.3

Reviewer 1:4

• We introduce PIA (Proximal Iterate Average) primarily because it is a natural way of parallelizing the APROX family.5

The performance guarantees we prove do not apply to this method because PIA does not operate on a model of the6

minibatch-average function F̄ , instead averaging conditionally independent updates. Our main results are bounds7

that depend on the variance of the modeled function at every step. Since PAM and PMA (Proximal Average Model8

and Proximal Model of the Average) both model the minibatch-average F̄ , as the minibatch size grows, the modeled9

function’s variance decreases, in turn leading to better upper bounds. We provide a visual/intuitive explanation of the10

differences in Figure 1, which shows how iterate averaging (PIA) picks a good direction but cannot progress as far as11

PAM or PMA does. We did not pursue theoretical results for PIA because of its lackluster empirical performance.12

• In Line 99, we will change the gradient to subgradient.13

• (Now) standard techniques indeed give martingale-based high probability results; we omit such results for lack of14

space, focusing instead on empirical results to highlight the methods’ applicability. If the reviewers feel that such15

results are more important than empirics, we are happy to change emphasis.16

• The definitions of interpolation we use are in [3].17

• We call the gains linear as we obtain speedup proportional to minibatch size m (distinct from linear convergence): the18

iterations K(ε,m) to achieve ε accuracy with minibatches of size m approximately satisfies K(ε, 1)/K(ε,m) = m.19

• We cap the iterations in the simulations at 1000; we will note this in the final version of the paper.20

Reviewer 2: The reviewer points out that the paper could better differentiate itself from previous work (particularly Asi21

& Duchi 2019 [AD]); we will clarify this in the final version. Briefly, [AD] do not consider parallelization or anything22

beyond single observations per iteration. Their work does not show the gains of proximal methods with minibatches23

and the advantages over stochastic gradient methods in this setting (e.g. speedup for non-smooth functions).24

• Demonstrating provable speedup from minibatching almost always require assumptions like smoothness. The25

restriction on minibatch sizes to achieve linear speedup is natural: improvements from minibatching saturate once26

the gradients become sufficiently low noise, as the problem complexity approaches deterministic optimization lower27

bounds. This saturation behaviour of iteration complexity with minibatch size has been observed (e.g., [3]).28

• Regarding speedups for non-smooth functions with restricted strong convexity, we note that the speedup in this29

setting improves known results for stochastic gradient methods, which obtain no speedups for non-smooth functions30

without substantial care [2]. Without smoothness, additional assumptions are necessary; information theoretic lower31

bounds [1, Thm. V.1] show worst-case complexity 1/
√
k even for deterministic (0 noise) problems.32

Reviewer 3: We agree with the reviewer about the importance of parallel implementation. In our experiments, we33

report complexity in terms of function value/gradient/proximal point calculations and iterations, as (except for extremely34

large minibatch sizes m) these are the most expensive part of the calculation—more expensive than broadcast and35

gather steps. This also reduces the noise in measuring real-time results.36

Reviewer 4:37

• Please see the first bullet below “Reviewer 1” to address comments on why the proposed variants enjoy speedups.38

• In line 143, when m =
9kσ2

0

L2R2 , the second term equals the first term; thus, when m� kσ2
0

L2R2 , the second term is larger.39

• The experiments in Figures 3–5 illustrate each method’s sensitivity to stepsizes, which introduce the same scaling as40

modifying Lipschitz constants. To further illustrate the sensitivity of our methods, we will include experiments with41

varying condition number in the final version of the paper.42
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