
Minibatch Stochastic Approximate Proximal Point
Methods

Hilal Asi∗
Stanford University
asi@stanford.edu

Karan Chadha∗
Stanford University

knchadha@stanford.edu

Gary Cheng∗
Stanford University

chenggar@stanford.edu

John C. Duchi
Stanford University

jduchi@stanford.edu

Abstract

We extend the Approximate-Proximal Point (APROX) family of model-based
methods for solving stochastic convex optimization problems, including stochastic
subgradient, proximal point, and bundle methods, to the minibatch setting. To do
this, we propose two minibatched algorithms for which we prove a non-asymptotic
upper bound on the rate of convergence, revealing a linear speedup in minibatch
size. In contrast to standard stochastic gradient methods, these methods may
have linear speedup in the minibatch setting even for non-smooth functions. Our
algorithms maintain the desirable traits characteristic of the APROX family, such as
robustness to initial step size choice. Additionally, we show improved convergence
rates for "interpolation" problems, which (for example) gives a new parallelization
strategy for alternating projections. We corroborate our theoretical results with
extensive empirical testing, which demonstrates the gains provided by accurate
modeling and minibatching.

1 Introduction

We develop parallel stochastic approximate proximal point methods (APROX) for solving the stochas-
tic optimization problem

minimize f(x) = EP [F (x;S)] =

∫
S
F (x; s)dP (s)

subject to x ∈ X .
(1)

Here the set S is a sample space, and for each s ∈ S, the function F (·; s) : Rn → R is a closed
convex function, subdifferentiable on the closed convex set X ⊂ Rn. While stochastic gradient
methods (SGM) are the de facto choice for problem (1) [32, 22, 8, 29]—enjoying several convergence
guarantees [32], with straightforward parallel extensions that make them practically attractive [18,
11, 13]—they are very sensitive to the objective f , noise, and hyperparameter tuning [19, 1, 2]. For
example, stochastic gradient methods are extremely sensitive to stepsize, and they may even diverge
for objectives that do not satisfy their convergence criteria [2].

Motivated by these limitations, several researchers [6, 16, 10, 12, 2] have developed stochastic
(approximate) proximal-point and model-based methods as a more robust alternative to standard
gradient methods. These APROX methods, as we explain more carefully in Section 1.1, construct a
model of the function at each iterate and update by minimizing a regularized version of the model.
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Recent results demonstrate the improvements of these frameworks over standard stochastic gradient
methods, as the methods demonstrate robustness to stepsize choice, are adaptive to problem difficulty,
and converge on a broader range of problems than the stochastic gradient method [12, 2]. Yet these
APROX methods are inherently sequential, and as we hit physical limits on processor speeds, it is
becoming clear that opportunities for improvements in large-scale computation and energy use must
focus on parallelization [14]; it is not immediately apparent how to efficiently parallelize stochastic
model-based and proximal point methods.

Contributions Motivated by these advantages of APROX over SGM and the importance of parallel
computation in large scale stochastic optimization, we propose extensions of APROX to the minibatch
setting that allow fast parallelization. We show that our extensions maintain the desirable robustness
properties of APROX and enjoy significant speedups in the minibatch size. In contrast to standard
optimization methods, which can only guarantee speedups for smooth functions [18, 11], we show
that our APROX extensions have speedups even for non-smooth and non-Lipschitz functions assuming
a weak form of strong convexity. Moreover, these algorithms exhibit speedup robust to stepsize
choices, unlike naive stochastic gradient methods, which require careful stepsize tuning to achieve
the desired speedup. Finally, we show on a class of interpolation problems [4, 5] that minibatched
APROX algorithms enjoy a linear convergence that also improves linearly with minibatch size. Our
experimental investigation illustrates the importance of our APROX extensions over standard stochastic
gradient methods. Please visit github.com/garyxcheng/parallel-aprox for the code for our
methods and experiments.

1.1 Preliminaries

The starting point of our methods is the APROX framework [10, 12, 2]. The APROX algorithms rely
on creating models of the function F , where the model Fx of F at x satisfies the conditions

(C.i) The function y 7→ Fx(y; s) is convex and subdifferentiable on X .
(C.ii) The model Fx satisfies the equality Fx(x; s) = F (x; s) and Fx(y; s) ≤ F (y; s) for all y.

With said model, at iterate k, APROX algorithms perform the update

xk+1 := argmin
x∈X

{
Fxk(x;Sk) +

1

2αk
‖x− xk‖22

}
. (2)

The APROX framework builds on the idea that using better models in the update (2) results in more
stable algorithms with better guarantees. The following models are key to illustrating our methods:

• Stochastic gradient methods: for some F ′(x; s) ∈ ∂F (x; s), use the linear model

Fx(y; s) := F (x; s) + 〈F ′(x; s), y − x〉. (3)

• Proximal point methods: use the full proximal model

Fx(y; s) := F (y; s). (4)

• Truncated methods: for some F ′(x; s) ∈ ∂F (x; s), use a truncated version of the function

Fx(y; s) := max

{
F (x; s) + 〈F ′(x; s), y − x〉, inf

z∈X
F (z; s)

}
. (5)

The truncated model (5) is often easy to apply. In most machine learning applications, loss functions
are non-negative, so F is readily modeled by Fxk(x; s) = [F (xk; s) + 〈F ′(xk; s), x − xk〉]+. We
note that it is possible to use a lower bound instead of the infimum in (5). The full proximal (4) and
truncated (5) models provide more accurate approximations of F than the linear model (3); which
Asi and Duchi [2, 1], motivated by previous work in the area [16, 15, 10], show yields more robust
algorithms with better theoretical and practical convergence.

Notation For a convex function f , ∂f(x) denotes its subgradient set at x, and f ′(x) ∈ ∂f(x)
denotes an arbitrary element of the subdifferential. We let X ? = argminx∈X f(x) denote the set of
minimizers for problem (1) and x? ∈ X ? denote a single minimizer. We let Fk := σ(S1, . . . , Sk) be
the σ-field generated by the first k random variables Si, so xk ∈ Fk−1 for all k under iteration (2).
We defer proofs to the appendix.
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1.2 Related work

Stochastic gradient methods [26] are the most widely used method for solving stochastic minimiza-
tion problems; an enormous literature exists [24, 25, 32, 22, 31, 17, 3]. Several researchers also
demonstrate the improvements that minibatching and parallelization can provide stochastic gradient
methods, which can enjoy linear speedups as batch sizes increase [18, 11, 13, 23, 9]. Other works
recognize the instability of stochastic gradients methods and importance of robustness, demonstrating
situations where they can have slow convergence as a result of mis-specified stepsizes [22, 3, 1].

Rockafellar [27] introduces proximal point methods, which have seen a resurgence in applications
to stochastic optimization [16, 6, 15, 7, 20]. Of most relevance to our work are extensions of the
stochastic proximal methods that use approximate models in the proximal update [12, 10, 2, 1]. Asi
and Duchi [2] develop a stochastic approximate proximal point method, namely APROX, and establish
several convergence guarantees and stability properties that are superior to standard stochastic gradient
methods. Yet this work does not address our central challenge: how to leverage parallelization.

2 Methods

While it is usually clear how to extend standard stochastic gradient methods to parallel settings,
the same is not true for proximal methods as there are many different ways to model the function
or average the iterates. Indeed, in this section, we describe three different methods for extending
APROX—all of which are identical for linear models (SGM)—but can exhibit different behavior
as reflected by our experiments. Given a choice of model Fx(·; s) and m samples S1:m

k ∈ Sm, we
propose three methods.

Iterate averaging (IA): The most natural and direct way to extend APROX to the minibatch setting is
to average the individual updates per sample:

xk+1 =
1

m

m∑
i=1

xik+1 where xik+1 := argmin
x∈X

{
Fxk(x;Sik) +

1

2αk
‖x− xk‖22

}
. (6)

This method’s simplicity and (near) full parallelization makes it attractive. Its empirical performance,
however, is weaker than our other proposed methods’ performance.

Instead of averaging the iterates, we propose an alternative algorithm: at each iteration, perform the
update

xk+1 := argmin
x∈X

{
F xk(x;S1:m

k ) +
1

2αk
‖x− xk‖22

}
, (7)

where F xk(x;S1:m
k ) is a model of the average function

F (x;S1:m
k ) =

1

m

m∑
i=1

F (x;Sik) (8)

satisfying Conditions (C.i) and (C.ii). While our theorems hold generally for any F xk(x;S1:m
k )

satisfying Conditions (C.i) and (C.ii), we now present two instances of the model family which are of
practical interest.

Truncated Average (TruncAv): The simplest such model—beyond the naive linear model—is an
extension of the truncated model (5). Here, we set

F x(y;S1:m) := max
{
F (x;S1:m) + 〈F ′(x;S1:m), y − x〉, inf

z∈X
F (z;S1:m)

}
.

In the standard case that the functions F are nonnegative, for gk := F
′
(x;S1:m

k ), the update (7) is

xk+1 = xk −min

{
αk,

F (xk;S1:m
k )

‖gk‖
2
2

}
gk. (9)

The update (9) for the truncated models thus yields an embarrassingly parallelizable scheme: each
worker computes F (xk;Sik) and F ′(xk;Sik), which need only be averaged to apply the update (9).
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Average of Truncated Models (AvTrunc): The update (9) ignores some structural aspects of the
objectives F ; it is natural to consider an even more accurate model, which averages models of in-
dividual samples. Here we construct a model Fxk(x;Sik) = max{F (x;Sik) + 〈F ′(x;Sik), y −
x〉, infz∈X F (z;Sik)} for each sample, noting that 1

m

∑m
i=1 Fxk(·;Sik) satisfies conditions (C.i)

and (C.ii), then set

xk+1 := argmin
x∈X

{
1

m

m∑
i=1

Fxk(x;Sik) +
1

2αk
‖x− xk‖22

}
. (10)

There is an O(m)-dimensional dual problem to (10), which allows this method to be practically
parallelizable. Consider the equivalent iterative algorithm

λk = argmax
λ

max
ν
−αk

2
||

m∑
i=1

λ(i)F
′(x;Sik)||22 +

m∑
i=1

λ(i)F (xk;Sik)

subject to
1

m
+ λ(i) − ν(i) = 0, ν ≥ 0

xk+1 = xk −
m∑
i=1

λk,(i)F
′(x;Sik),

where λ(i) is the ith component of the vector λ.

Remark We note that we could easily generalize TruncAv and AvTrunc methods beyond the
truncated model. LetH denote the set of convex functions. Let G : H×X → H be some operator
which takes in a convex function F and a point y in the domain as input and constructs a model of
F at y satisfying Conditions (C.i) and (C.ii). Then the TruncAv model is more generally written as
G(F (x;S1:m), xk). The AvTrunc model is more generally

∑m
i=1G(F (x;Si), xk)/m.

Before proceeding to our theoretical guarantees, we provide a simple example to illustrate the
differences between these methods. Consider the problem of finding a point in the intersection of
convex sets C1, . . . , Ck by minimizing f(x) = k−1

∑k
i=1 dist(x,Ci). Let m = 2, and consider the

truncated model (5), which exhibits different behavior for each parallelization strategy. Figure 1
illustrates the IA, TruncAv, and AvTrunc updates given infinite stepsize (which still guarantees
convergence if there is x? ∈ ∩iCi [2]). In this case, iterate averaging (6) projects the current iterate
xk to the two sets in the batch and averages these updates. TruncAv (9) constructs an (average)
hyperplane that gives a (somewhat) good representation of the two sets and projects to this set.
AvTrunc (10) provides a more accurate representation of the two sets using two hyperplanes and
projects to this set.

(a) (b) (c)
Figure 1: Updates for (a) IA (6) with truncated model, (b) TruncAv (9), and (c) AvTrunc (10).

3 Non-asymptotic convergence guarantees and minibatch speedups

Having described our methods, we prove several convergence guarantees and minibatch speedups
for these methods. We begin in Section 3.1 with standard speedup result—which resembles known
results for SGM—which holds for any model satisfying Conditions (C.i) and (C.ii). In Section 3.2
we show that, somewhat surprisingly, our methods using the full proximal model (4) enjoy linear
speedup in minibatch size even for non-smooth functions.
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3.1 Speedup for smooth functions

We begin by proving minibatch speedup results for smooth functions. As is the case for stochastic
gradient methods [11], our results require a bound on the variance of ∇F (xk;Sk). We therefore
begin with a one-step progress guarantee for any APROX model that depends on the noise of the
estimate of∇f(x).

Lemma 3.1. Let f(·) be convex and have L-Lipschitz gradient. Define the function value errors
ek = [Fxk(x?;Sk) − f(x?)] − [F (xk, Sk) − f(xk)] and let αk = 1

L+ηk
. Let xk+1 be generated

using the update (2) using any model Fxk(x;Sk) satisfying (C.i) and (C.ii). Then

f(xk+1)− f(x?) ≤ 1

2αk

[
‖xk − x?‖22 − ‖xk+1 − x?‖22

]
+ ek +

1

2ηk
‖∇F (xk;Sk)−∇f(xk)‖22 .

By noting that E[ek] ≤ 0, Lemma 3.1 nearly immediately implies the following theorem.

Theorem 1. Let the conditions of Lemma 3.1 hold and ηk be non-decreasing. Additionally, assume
that diam(X ) = supx,x′∈X ||x− x′||2 ≤ R and E[‖∇F (x;S)−∇f(x)‖22] ≤ σ2

0 for x ∈ X . Then

k∑
i=1

E[f(xi+1)− f(x?)] ≤ LR2

2
+
R2ηk

2
+

k∑
i=1

σ2
0

2ηi
.

Having established a convergence result that depends on the noise of the gradient estimates, a speedup
guarantee for the minibatched APROX methods is nearly immediate. Equation (7) applies APROX
updates to the average (8), reducing variance by a factor of m, giving

Corollary 3.1. Let the conditions of Theorem 1 hold, let ηk = η0
√
k with η0 = σ0√

mR
, and let xk be

generated using (7) with any model satisfying (C.i) and (C.ii) with minibatch m. Then the average
xk = 1

k

∑k+1
i=2 xi satisfies

E[f(xk)− f(x?)] ≤ LR2

2k
+

3Rσ0

2
√
km

.

When the batch size m� kσ2
0

L2R2 , the second term dominates the rate of convergence. Letting T (ε)

denote the number of iterations to achieve E[f(xT (ε))− f(x?)] ≤ ε, we obtain that T (ε) . R2σ2
0

ε2m ,
that is, there is a linear speedup as a function of the minibatch of size m. This is similar to the
speedup that standard stochastic gradient methods achieve [18, 11], and it is minimax optimal.

3.2 Speedup for non-smooth functions

We turn now to a complementary look at potentially non-Lipschitz and non-smooth functions,
studying the minibatch APROX framework (7) using the full proximal model (4), that is, a minibatched
stochastic proximal point method. Here, we show a speedup as the minibatch size grows, but in
contrast to the previous section, it has the benefit that it requires only that the noise of the gradient
estimate is bounded over the optimal set X ?. Here, we consider the following restricted strong
convexity (RSC) assumption [2].

Assumption A1 (Restricted strong convexity). The functions F (·; s) are strongly convex w.r.t. the
matrix Σ(s) � 0, i.e., for arbitrary x and y, F (y; s) ≥ F (x; s) + F ′(x, s)T (y − x) + (1/2)(y −
x)TΣ(s)(y − x), for all F ′(x, s) ∈ ∂F (x; s). The matrix Σ(S) satisfies E[Σ(S)] � λminIn×n with
λmin > 0.

Fixing an (otherwise arbitrary) constant c > 1, we define

Σk = E
[

Σ(S)

1 + 2αkλmax(Σ(S))

]
and λk = λmin(Σk).

We then have the following convergence guarantee for minibatched stochastic proximal point meth-
ods (4), which is a consequence of Proposition 5 of Asi and Duchi [2].
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Corollary 3.2. Let Assumption A1 hold and assume E[‖F ′(x?;S)‖22] ≤ σ2
1 . For αk = α0k

−β with
β ∈ (0, 1), the APROX method with proximal point model (4) using batch size m guarantees

E[‖xk+1 − x?‖22] ≤ exp

(
−λ0

k∑
i=1

αi

)
‖x1 − x?‖22 + C · σ

2
1

mλ0
αk · log k,

where C is a numerical constant and λ0 = λmin(Σ0).

The second term dominates the convergence rate in Corollary 3.2, so αk = b/k for a large constant b,
we obtain E[‖xk+1 − x?‖22] ≤ O(

σ2
1 log k
mkλ0

) demonstrating the desired speedup in m. Existing results
for standard stochastic gradient methods do not exhibit a speedup in the batch size for non-smooth
functions [11].

4 Linear rates and speedups for interpolation problems

The previous section shows that minibatching produces speedups for APROX for certain families of
functions. Here, we consider a specific class of interpolation problems, where we will show linear
convergence rates and minibatch speedups for APROX.

Definition 4.1. The optimization problem (1) is an interpolation problem if there exists x? ∈ X ? :=
argminx∈X f(x) such that for P -almost all s ∈ S, we have infx∈X F (x; s) = F (x?; s).

While this restricts the class of objectives, many problems satisfy this condition [21, 28, 2], including
overdetermined linear systems, finding a point in the intersection of convex sets, and the modern
machine learning problems where it is possible to achieve zero training loss [4, 5]. For interpolation
problems, we consider bounding the noise of the gradient estimate by its suboptimality.

Assumption A2. There is σ2
2 < ∞ such that for every x ∈ X , E[‖∇f(x)−∇F (x;S)‖22] ≤

σ2
2 dist(x,X ?)2.

Assumption A2 holds for many interpolation problems. For example, consider a linear regression
problem with data s = (a, b) ∈ Rn × R, aTx? = b for all (a, b), and F (x; (a, b)) = 1

2 (aTx − b)2.
We immediately have Var(∇F (x;S)) ≤ E[‖a‖22 〈a, x− x?〉2], evidently satisfying Assumption A2.
The assumption implies linear convergence guarantees:

Proposition 1. Assume f is λ-strongly convex, has L-Lipshitz gradients, and satisfies Assumption
A2 and Def. 4.1. Let xk be generated using update (7) using any model satisfying (C.i) and (C.ii)
with minibatch m > σ2

2/(λ(L+ λ)). Set αk = (L+ η)−1. For η = max
{
L,

8σ2
2

mλ

}
, we have

E[dist(xk,X ?)2] ≤ exp

(
−kmin

{
λ

8L
,
mλ2

64σ2
2

})
E[dist(x0,X ?)2].

It is possible to relax the strong convexity condition on f into a weaker quadratic growth assumption:

Assumption A3 (Quadratic Growth). There exist λ0, λ1 > 0 such that for all x ∈ X and α > 0,

(f(x)− f(x?)) min

{
α,
f(x)− f(x?)

‖f ′(x)‖2

}
≥ min{λ0α, λ1} dist(x,X ?)2.

Functions satisfying Assumption A3 need only grow quadratically away from their minimizers, so
they are less restrictive than a global strong convexity assumption. We then have the following.

Theorem 2. Assume f has L-Lipschitz gradients and satisfies Assumptions A2, A3, and Definition 4.1.
Define the step sizes αk = (2L+ 2ηk)−1 where

∑∞
i=1 η

−1
i =∞ and

∑∞
i=1 η

−2
i <∞, and let K be

the largest value such that for all k > K, αk ≤ λ1/2λ0. If xk is generated using update (7) using
any model satisfying (C.i) and (C.ii) with minibatch m, then

E[dist(xk,X ?)2] ≤ exp

(
−(K ∧ k)λ1/2−

k∑
i=K∧k+1

λ0αk +

k∑
i=1

σ2
2

m(L+ ηi)ηi

)
dist(x0,X ?)2.
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To give some intuition for this bound, we provide a heuristic sketch for stepsizes with a given
minibatch size m, assuming for simplicity that λ0 = λ1 = 1. Take ηk = η0k

β/
√
m,

where β ∈ (1/2, 1). Then
∑k
i=1

σ2
2

m(L+ηi)ηi
. σ2

2

η20
, and K = (

√
m/η0)1/β , while for large

k we have
∑k
i=K+1 αi & k1−β

√
m/η1−β0 . This gives a heuristic convergence guarantee of

E[dist(xk,X ?)2] . exp(−k1−β
√
m/η1−β0 + σ2

2/η
2
0) dist(x0,X ?)2, which (taking the limit as

β ↓ 1
2 ) gives E[dist(xk,X ?)2] . exp(−

√
km/η0) dist(xk,X ?)2, exhibiting linear speedup in m.

5 Experiments
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Figure 2: Speed ups with best possible stepsizes vs. batch size

Our goal now is to demonstrate the speedup and robustness of APROX methods with minibatches,
comparing the relative performance of the proposed methods. We compare

1. SGM: stochastic gradient methods, i.e., the linear model (3).

2. Proximal: uses the full proximal model (4) with averaged function (8) (Prox).

3. Truncated-IA: the truncated model (5) in iterate averaging (6) (IA).

4. TruncAv (9).

5. AvTrunc (10).

We study performance on linear, absolute loss, and logistic regression. In each case, we have
data in the form of a matrix A ∈ Rn×d. We have b ∈ Rn for linear and absolute loss re-
gression, and b ∈ {−1,+1}n for logistic regression. We use n = 1000, d = 40 mini-
batch sizes m ∈ {1, 4, 8, 16, 32, 64} and initial stepsizes α0 ∈ {10−2, 10−1.5, . . . , 102.5, 103}
(α0 ∈ {10−2, 10−1.5, . . . , 104.5, 105} for logistic regression). For all experiments we run 30 trials
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Figure 3: Speed up vs. stepsizes for linear regression
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Figure 4: Time to convergence vs. stepsizes for noiseless absolute regression
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Figure 5: Time to convergence vs. stepsizes for absolute regression (noisy with σ = 0.5)
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with different seeds and plot the 95% confidence sets. We describe the objective function and noise
adding mechanism for each experiment below.

a) Linear Regression: We have f(x) = 1
2n ‖Ax− b‖

2
2. For each experiment we first generate

a random matrix A and x? ∼ N(0, Id) and then use b = Ax? + σv with v ∼ N(0, In). In
the noisy setting for our experiments, we set σ = 0.5, we get different noise levels.

b) Absolute loss regression: We have f(x) = 1
2n ‖Ax− b‖1. We generate a random matrix A,

x? ∼ N(0, Id) and use b = Ax? + v, where vi ∼ Lap(0, σ2 ) (Lap(·, ·) denotes the Laplace
distribution). In the noisy setting for our experiments, we set σ = 0.5, we get different noise
levels.

c) Logistic Regression: We have f(x) = 1
2n

∑n
i=1 log(1 + exp(−bi〈ai, x〉)). We generate a

random matrix A, x? ∈ N(0, Id) and b = sign(〈ai, x〉). To add noise, we flip each sign in b
independently with probability p. In the noisy setting for our experiments, we set p = 0.01,
we get different noise levels.

For the experiments in the main paper, we set the condition number of A to 1. Please refer to the
appendix to see experiments where the condition number of A is set to 10.

For each of the problem types, we use stepsizes αk = α0k
−1/2 and find the number Tm(α0) of

iterations k required to reach ε accuracy, f(xk)− f(x?) ≤ ε. A max iteration termination threshold
is chosen such that roughly three out of the five methods converge to ε accuracy before the threshold;
if a method does not converge in that time, we set Tm(α0) to the threshold value. We also let
T ?m = minα0

Tm(α0) denote the smallest time to convergence for a given method using batch size
m. The supplement contains our full experimental setup. We present three types of plots.

Best speedups for minibatching (Fig. 2) For each method, we plot T ?1 /T
?
m against the minibatch

size m to show the speedup minibatching provides using the best step sizes. This shows the best
possible speedup obtained by minibatching through tuning the initial step size α0. All algorithms
except the iterate averaging method IA (6) enjoy a linear speedup w.r.t. minibatch sizes for small
minibatches before it tapers off in both absolute and logistic regression. In the absolute regression
case, the full proximal model performs much better than any other model, while in logistic regression,
the behaviour of each proposed model is comparable; this is consistent with our arbitrary acceleration
results for proximal-point method (Cor. 3.2), while our results for TruncAv and AvTrunc (Thms. 1
and 2) hold for smooth functions.

Speedups w.r.t. step-size (Fig. 3) For each method and minibatch size, we plot T ?1 /Tm(α0) against
the initial step size α0. This illustrates the robustness of speedups obtained by minibatching to the
choice of step size α0. In Fig. 3, we expect the stochastic gradient method to exhibit improved
performance for good stepsizes, though this improvement is not robust: it achieves no speedup when
stepsizes are poorly chosen. For the parallel APROX methods (AvTrunc and TruncAv), however, we
observe that the speedup persists over many stepsizes, essentially perfectly in the noiseless case and
with some degradation in the noisy case.

Time to solution w.r.t. step-size: (Fig. 4 and Fig. 5) For each method and minibatch size, we plot
Tm(α0) against the initial step size α0. Whereas the previous plots explore relative performance, this
plot characterizes performance on an absolute scale. In the noiseless case (Fig. 4), we clearly observe
the robustness of model-based methods compared to SGM. IA performs better than SGM, but worse
than others; TruncAv, AvTrunc, and the full prox method have similar performance. In the noisy
case, surprisingly, IA is more robust to stepsizes, though the performance under the best stepsize is
not as good as AvTrunc or TruncAv. We believe this is a consequence of extremely conservative
updates. A natural next direction for future work here is to understand precisely which updates can
yield improvement with parallelization.
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Broader Impact

Data centers draw increasing amounts of the total energy we consume, and increasing applications
of machine learning mean that model-fitting and parameter exploration require a larger and larger
proportion of their energy expenditures [1, 14, 30]. Indeed, as Asi and Duchi [1] note, the energy to
train and tune some models is roughly on the scale of driving thousands of cars from San Francisco
to Los Angeles, while training a modern transformer network (with architecture search) generates
roughly six times the total CO2 of an average car’s lifetime [30]. It is thus centrally important to
build more efficient and robust methods, which allow us to avoid wasteful hyperparameter search but
simply work.

A major challenge in building better algorithms is that fundamental physical limits have forced CPU
speed and energy to essentially plateau; only by parallelization can we harness both increasing speed
and reduce the energy to fit models [14]. In this context, our methods take a step toward reducing the
energy and overhead to perform machine learning.

Taking a step farther back, we believe optimization and model-fitting research in machine learning
should refocus its attention: rather than developing algorithms that, with appropriate hyperparameter
tuning, achieve state-of-the-art accuracy for a given dataset, we should evaluate algorithms by
whether they robustly work. This would allow a more careful consideration of an algorithms’ costs
and benefits: is it worth 2× faster training, for appropriate hyperparameters, if one has to spend
25× as much time to find the appropriate algorithmic hyperparameters? Even more, as Strubell et al.
[30] point out, the extraordinary costs of hyperparameter tuning for fitting large-scale models price
many researchers out of making progress on certain frontiers; to the extent that we can mitigate these
challenges, we will allow more equity in who can help machine learning progress.
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