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Figure 1. Localizing partially different
attributes, e.g. “white head” v.s. “black head”.

Method CUB AWA2 SUN
[A] 49.5 43.5 53.4
[B] 68.9 65.2 43.1
[C] 47.5 66.7 -
APN+[A] (Ours) 67.3 46.5 56.7
APN+[B] (Ours) 70.0 65.6 43.7
APN+[C] (Ours) 67.7 71.0 -

Table 1. Results of applying our learned APN features to [A], [B]
and [C] in GZSL (harmonic mean reported). We did not reproduce
results of [C] on SUN due to time limit (will include in final paper).
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R1, R2, R3: novelty. We thank the reviewers for mentioning a few pioneering works [8, 58, D] that learn to localize2

object parts. Here we compare our work with these papers and clarify our novelty. [8] learns multiple prototypes for3

each object class with image labels to improve the model interpretability but is not tailed for ZSL. However, we aim to4

improve the image representation for ZSL by learning attribute prototypes with class-level attributes. [58] proposes to5

improve the image features by learning channel-wise part attention. Similarly, [D] uses the channel grouping model6

[52] to learn part-based representations and part prototypes. In contrast, we treats each channel equally, and we use7

spatial features associated with input image patches to learn prototypes for attributes (see Fig.1 in the main paper). We8

argue that these methods are limited when localizing object parts and visual attributes. Specifically, they learn latent9

attention/prototypes during training, whose meaning is posteriorly inducted by observation, which is not deterministic.10

Besides, they can only localize a small number of object parts, i.e., [58] for 2 parts, [D] for 4 parts, and are not able to11

localize attributes, which play an important role for ZSL. Very different from these publications, our work is innovative12

in two aspects which overcome the above mentioned limitations. 1) We improve the attribute localization and image13

features by learning prototypes to regress attributes, where each prototype corresponds to a specific attribute. Therefore,14

our model can localize all the attributes and parts, which is essential in building trustworthy ZSL model to associate15

attributes with correct image regions. Our claim can be supported by the results in Fig. 1 and other results (Fig. 2, 3,16

Tab. 3) in main paper. 2) We decorrelate prototype learning and enforce the localization compactness. In R2’s words,17

“the employment of these ideas together for attribute localization and ZSL is quite interesting and seems to lead to18

consistent good performance” (see Tab. 1 for improvement over SOTA). The discussion will be added in the final paper.19

R1: differences with CAM. CAM is a post-hoc method to investigate the model attention by computing the channel-20

wise weighted sum of last layer CNN feature maps, which didn’t improve the image feature. In contrast, our APN21

aims to improve the image representation for zero-shot learning by learning prototypes that predict attributes from22

intermediate features. Besides, while the original CAM generates one global attention map for predicting an object23

class in a given image, our APN can generate multiple attention maps that localize different attributes in an image. Our24

APN can obtain attention maps that better localize visual attributes compared to CAM (See Fig. 3 in the main paper).25

R2: impact of binary and continuous attributes. We follow [21] to generate class binary attributes by thresholding the26

continuous attributes. Our method works equally well for both kinds of attributes in terms of ZSL accuracy (continuous27

73.3% vs binary 73.1% on CUB) and part localization accuracy (continuous 52.8% vs binary 52.1% on CUB).28

R2: evaluate attribute prediction As suggested by R2, we build an attribute prediction baseline by training a standard29

CNN to predict binary attributes without prototypes. Our APN (also trained with binary attributes) can classify binary30

attributes with a threshold of 0.5. The evaluation is conducted on the image-level attributes of test images on CUB31

dataset. Our APN achieves attribute prediction accuracies of 87% on unseen classes and 90% on seen classes, which32

significantly outperforms the baseline model without prototype that obtains 82% (unseen) and 84% (seen).33

R3: ProtoMod needs more evaluation. For each attribute, we learn a prototype on intermediate CNN features to34

regress the desired attribute. So it is expected to learn specific attributes rather than just the color or parts, which is35

empirically confirmed by the attribute prediction accuracy which is higher than the attribute prediction model (See36

previous response to R2), and the qualitative results in Figure. 1, where our APN is able to precisely localize “white37

head”, “black head” and “black belly” in the first image and “yellow belly”, “white leg” and “white belly” in the second.38

R2: comparing with [A], [B] and [C]. While [A], [B] and [C] propose strong ZSL classifiers with fixed ImageNet-39

pretrained (or finetuned) features, our APN aims to improve the image features for ZSL. In Table 1, we show new SOTA40

GZSL results when applying the image features extracted from our learned APN to [A], [B] and [C]. For example,41

on SUN, our APN+[A] achieves 56.7% vs 53.4% of [A]. On CUB, our APN+[B] obtains 70.0% vs 68.9% of [B]. On42

AWA, our APN+[C] reaches 71.0% vs 66.7% of [C]. We will include these papers and results in the final paper.43
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