
Supplementary Material for - SEVIR : A Storm
Event Imagery Dataset for Deep Learning

Applications in Radar and Satellite Meteorology

Mark S. Veillette∗
MIT Lincoln Laboratory
Lexington, MA 02420

mark.veillette@ll.mit.edu

Siddharth Samsi∗
MIT Lincoln Laboratory
Lexington, MA 02420
sid@ll.mit.edu

Christopher Mattioli
Amazon Web Services †

cmmattio@amazon.com

1 SEVIR Dataset

This section contains additional information about the SEVIR dataset, including details of the SEVIR
catalog, information regarding geo-referencing events and data encoding.

1.1 SEVIR Catalog

The SEVIR catalog contains relevant information about each event in SEVIR. Table 1 includes a
list of the catalogs columns, with a short description of each. When extracting data from SEVIR, it
is helpful to first group the catalog by the id column. After doing so, the size of each group will
represent the number of image types that are available for each event. This is useful for building
training datasets that utilize multiple image types (such as the synthetic radar problem). The catalog
also allows for efficient filtering of SEVIR by time, geographic location, or by statistic for more
focused training and testing sets.

The grayscale images that make up SEVIR events are associated with a 384 km x 384 km patch on
the Earth’s surface. This patch can be exactly geo-referenced using the patch’s map projection, along
with a specification of the corner latitudes and longitudes. In order to perform this geo-referencing
(as in done in e.g. Figure 1. of the main paper), the columns llcrnrlat, llcrnrlon, urcrnrlat,
urcrnrlon and proj can be used. The map projection proj is defined as a PROJ string [1] which
contains the name of the projection, Earth model, and other parameters required for defining the
projection. As of this writing, all images in SEVIR use a Lambert azimuthal equal-area projection
centered over the US, which was chosen to minimize distortion of the data.

1.2 Performance of HDF5

SEVIR data is available as a set of HDF large files. A commonly used approach in model training is
to organize data (especially images) into directories that correspond to class labels. Other approaches
include combining data into TFRecord files (compatible with TensorFlow) or HDF5 files. We chose
HDF5 because of the availability of open source libraries for reading this data format in a variety
of languages such as python, MATLAB, C/C++, JAVA, Fortran, etc. While it’s possible to stream
data from SEVIR for model fitting, randomized reads from HDF5 files can be slow. In addition,
HDF5-specific choices (such as the chuck size), made during file creation can also affect the speed of
file reads. A comprehensive analysis of HDF5 File I/O is beyond the scope of this work, but based on
our experiments, it is recommended that when using SEVIR, the data first be read into one or more
interim files where the data is shuffled a-priori and written to file sequentially. This removes the need

∗Equal contributors to this work
†Contributions to this work were made prior to affiliation with AWS

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Table 1: Contents of SEVIR catalog

Column Description
id Unique id given to each event in SEVIR.
file_name Name of the HDF5 file containing the image data
file_index File index within file_name where the data is located
img_type Image or sensor type
time_utc UTC Timestamp of the event, which typically corresponds

to the middle frame in the event
minute_offsets Colon separated values denoting time offset in minutes of

each frame relative to time_utc
episode_id Storm Event EPISODE_ID associated to the SEVIR event

(NOAA Storm Events only)
event_id Storm Event EVENT_ID associated to the SEVIR event

(NOAA Storm Events only)
llcrnrlat Latitude of the lower left corner
llcrnrlon Longitude of the lower left corner
urcrnrlat Latitude of the upper right corner
urcrnrlon Longitude of the upper right corner
proj Proj software library style string describing the map pro-

jection underlying images in the event
size_x X Size of the images in pixels
size_y Y Size of the images in pixels
height_m X Size of the images in meters
width_m Y Size of the images in meters
data_min Minimum data value across all frames of the event
data_max Maximum data value across all frames of the event
pct_missing Percentage of missing values across all the frames

Table 2: SEVIR linear scaling factors

Type SCALING_FACTOR Decoded units
vis 1e-4 Reflectance factor
ir069 1e-2 Degrees C
ir107 1e-2 Degrees C

for data randomization during training and also ensures that each data access results in a sequential
read from the file, resulting in improved read performance during fitting.

1.3 Data encoding

For efficient storage, data is saved in HDF5 files as an integer type. Depending on the sensor type,
these integers can be decoded into floating type so they represent the actual values captured by each
sensor type. This decoding is done using either a simple linear scaling, or using an exponential
transformation, as described below.

The satellite images (vis,ir069 and ir107) use a linear scaling to encode their values. To convert
the integer data stored in the file to floating types, apply the formula

decoded_data = encoded_data ∗ SCALING_FACTOR (1)

where SCALING_FACTOR is provided in Table 2, along with the units of the decoded data. Missing
pixels for the satellite imagery is represented by the minimum int16 value.

2



The VIL images in SEVIR are stored as integers in the range 0-255. It is often convenient to work
directly with these encoded units (which was done in the main paper). To convert these into units of
kg/m2, which are the true units of vertically integrated liquid, apply the following rule:

decoded_vil =


0 if X ≤ 5

(X − 2)/90.66 if 5 < X ≤ 18

exp(X − 83.9)/38.9 if X > 18

(2)

,

where X is the integer value stored in the HDF file. This non-linear scaling rule was developed to
make better use of the range 0-255 for storing VIL. The reason for this is that VIL data exhibits
histograms that quite skewed, and the non-linear encoding provides better precision and lessens the
skewness. Missing, or nan pixels are represented by the value 255 for the vil type.

2 Model Architecture

The Nowcast and Synthetic Weather Radar models use variants of the U-Net architecture [3]. Figure 1
shows the sizes of the encoding and decoding blocks and the details of each block. Our implemetnation
used four encoder blocks with 32, 64, 128 and 256 filters of size 3x3, followed by a bottleneck
layer with 1024 Conv2D filters with a 3x3 receptive field. Each encoder block consists of two
Conv2D, BatchNorm, Relu activation, and finalized with a 2x2 MaxPool2d layer. The decoder
portion of the network consists of 4 decoder blocks for nowcasting, and 5 in the case of synthetic radar
in order to match the target resolution. Each decoder block consists of a Conv2DTranspose followed
by skip connection with the parallel encoder block, followed by two Conv2D, BatchNorm, Relu
sequences. The final layer of the network is Conv2D with linear activation, configured with the
appropriate number of outputs depending on the application. The final layer of the network is Conv2D
with linear activation, configured with the appropriate number of outputs.

Figure 1: U-Net model architecture used in this paper: This example shows the Nowcast workflow
where the inputs consist of an hour of weather in 13 time steps and the output is the predicted weather
for the next hour as represented in 12 images.

3 Model Training

All models were trained at the MIT Supercloud high-performance computing system. The compute
nodes had two 32GB NVIDIA Volta V100 GPUs and dual 2.5 GHZ Intel Xeon Gold 6130 processor
with 20-cores per CPU and a total 384GB of system RAM. Models were trained on a total of 8 GPUs
across 4 compute nodes using data distributed training implemented using Horovod [4].

Training effective deep models requires the tuning of hyperparamters which includes learning rates,
batch sizes, number of encoder and decoder layers, number of filters per layer, filter sizes per
layer, and many other configurable model parameters. A comprehensive analysis of all possible
combinations of these parameters is not possible in any reasonable amount of time and we used best
practices from prior work to inform our choices. However, the choice of the batch size was dictated
by the data sizes used in our study and the loss function used to implement the model. This was
particulary important in the Nowcast problem, where the output data sizes are significantly large.
Using large batch sizes would lead to out-of-memory (OOM) errors on the GPU and so our choice of

3



Table 3: Batch sizes and training epochs used for training Nowcast models: The batch size listed in
the table is per GPU. Since models were trained across 8 GPUs, the aggregate batch size is 8 times
the numbers listed here.

Nowcast Loss Batch Size Training Epochs Time per epoch

MSE 32 100 227 sec.
Style & Content loss 4 100 2467 sec.
MSE + Style & Content loss 4 100 3052 sec.
Adversarial loss 32 300 233 sec.

0 20 40 60 80 100
Epoch

0.05

0.10

0.15

0.20

Lo
ss

0.18

0.20

0.22

0.24

Va
l. 

Lo
ss

MSE Loss
test loss

0 20 40 60 80 100
0

1

2

3
1e15

2

3

4

5

6

7

Va
l. 

Lo
ss

1e14Style+Content
test loss

0 20 40 60 80 100

0.1

0.2

0.3

0.25

0.30

0.35

0.40

Va
l. 

Lo
ss

MSE and Style+Content
test loss

Figure 2: Training loss for Nowcast model

batch size was the largest possible for the successful training of the model. The batch sizes used for
Nowcast models with different loss functions are listed in Table 3. For the Nowcast application, when
using the MSE or adversarial loss, the largest batch size possible per GPU was found to be 32. If data
is converted to float16 data type, a batch size of 48 can be also used in these cases. When the style
and content loss was used, the maximum batch size possible was 4. This was due to the fact that the
memory usage on the GPU increases significantly due to the use of a VGG network for calculating
style and content matrices. The increased memory requirement comes from the requirement that the
VGG network is trained on RGB images. Thus, each of the 12 single-channel images in the Nowcast
model output must be converted into a three channel pseudo-RGB image. The same operation must
be repeated for the truth data, leading to a tripling of the data used to calculate the loss at the end of
each batch. This pseudo-RGB data is then passed through the VGG network before the Style and
Content features are calculated. The style features consist of the Gram matrices of the output of
block5_conv1 of VGG16 and the content features is the output of block5_conv2. The final loss is
the mean squared error between the style and Gram matrices of the truth and predictions.

4 Metrics

Meterology domain specific metrics for evaluating the performance of the Nowcast and Synthetic
Radar applications were calculated on binarized truth and predictions from the models. Figure 4
illustrates one example of a series of vil images from SEVIR binarized at different pixel lev-
els. Thresholds for vil were chosen based on the 6 Video Integrator and Processor (VIP) inten-
sity levels [2] which correspond to pixel values [16, 74, 133, 160, 181, 219]. Binarized pixels are
scored as "Hits" if prediction=truth=1, "Misses" if prediction=0,truth=1, "False Alarms" if
prediction=1,truth=0 and "Correct Rejection" otherwise. The following summary statistics are
computed by aggregating these counts over the test set:

Probability of detection (POD) = #Hits
#Hits+#Misses

Success Ratio (SUCR) = #Hits
#Hits+#F.Alarm

Critical Success Index (CSI) = #Hits
#Hits+#Misses+#F.Alarms

BIAS = #Hits+#F.Alarms
#Hits+#Misses

In the Nowcast applciation, metrics were averages over the 12 steps in the output. Metrics reported in
the paper were calculated on an independent valiation set consisting of 12,144 vil sequences.

4



0 50 100 150 200 250 300
Epochs

17.5

20.0

22.5

25.0

27.5

Lo
ss

Gen. total loss

0 50 100 150 200 250 300
Epochs

0

2

4

Lo
ss

Gen. gan loss

0 50 100 150 200 250 300
Epochs

0.18
0.20
0.22
0.24
0.26

Lo
ss

Gen. L1 loss

0 50 100 150 200 250 300
Epochs

0.5

1.0

1.5

2.0

Lo
ss

Discriminator loss

Figure 3: Training loss for Nowcast model with GAN loss

VI
L

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11

16
74

13
3

16
0

18
1

21
9

Figure 4: Example of thresholding process used to calculate metrics: Figure shows 12 time steps
from the Nowcast dataset created using SEVIR and the output of thresholding the image at each time
step. Each row represents thresholded output for a unique threshold value. The binarized images also
illustrate the motion in the images.

References
[1] PROJ contributors. PROJ coordinate transformation software library. Open Source Geospatial

Foundation, 2020. URL https://proj.org/.

[2] Michael Robinson, James Evans, and Bradley Crowe. En route weather depiction benefits of the
nexrad vertically integrated liquid water product utilized by the corridor integrated weather system.
In 10th Conference on Aviation, Range and Aerospace Meteorology, American Meteorological
Society, Portland, OR, 2002.

[3] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing and
computer-assisted intervention, pages 234–241. Springer, 2015.

[4] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in
tensorflow. CoRR, abs/1802.05799, 2018. URL http://arxiv.org/abs/1802.05799.

5

https://proj.org/
http://arxiv.org/abs/1802.05799

	SEVIR Dataset
	SEVIR Catalog
	Performance of HDF5
	Data encoding

	Model Architecture
	Model Training
	Metrics

