
Set2Graph: Learning Graphs From Sets:
Supplementary Material

Hadar Serviansky1 Nimrod Segol1 Jonathan Shlomi1 Kyle Cranmer2

Eilam Gross1 Haggai Maron3 Yaron Lipman1

1Weizmann Institute of Science 2New York University 3NVIDIA Research

1 Architectures and hyper-parameters

Our S2G model (as well as S2G+ for the main task) follows the formula Fk = ψ ◦ β ◦ φ, where
φ is a set-to-set model, β is a non-learnable broadcasting set-to-graph layer, and ψ is a simple
graph-to-graph network using only a single Multi-Layer Perceptron (MLP) acting on each k-edge
feature vector independently. We note that all the hyper-parameters were chosen using the validation
scores. All of the models used in the experiments are explained in section 5 in the main paper. Here,
we add more implementation details, hyper-parameters and number of parameters.

Notation. ”DeepSets / MLP of widths [256, 256, 5]” means that we use a DeepSets/MLP network
with 3 layers, and each layer’s output feature size is its corresponding argument in the array (e.g., the
first and second layers have output feature size of 256, while the third layer output feature size is 5).
Between the layers we use ReLU as a non linearity.

Partitioning for particle physics applications. For our model S2G, φ is implemented using
DeepSets Zaheer et al. (2017) with 5 layers of width [256, 256, 256, 256, 5]. ψ is implemented with
an MLP [256, 1], with output considered as edge probabilities. Instead of using a max or sum pooling
in DeepSets layers, we used a self-attention mechanism based on Ilse et al. (2018) and Vaswani et al.
(2017):

Attention (X) = softmax

(
tanh f1(X) · f2(X)T√

dsmall

)
·X, (A1)

where f1, f2 are implemented by two single layer MLPs of width
[
dsmall =

dX
10

]
. The model has

457449 learnable parameters. S2G+ is identical to S2G, except that β is defined using the full
equivariant basis Rn → Rn2

from Maron et al. (2019) that contains bell(3) = 5 basis operations. It
has 461289 learnable parameters.

We used a grid search for the following hyper-parameters: learning rate in

{1e− 5, 3e− 5, 1e− 4, 3e− 4, 1e− 3, 3e− 3} ,

DeepSets layers’ width in {64, 128, 256, 512}, number of layers in {3, 4, 5}, ψ (MLP) with widths
in {[128, 1] , [256, 1] , [512, 1] , [128, 256, 128, 1]}, and with or without attention mechanism in
DeepSets.

The following hyper-parameters choice is true for all models, unless stated otherwise. As a loss, we
used a combination of soft F1 score loss and an edge-wise binary cross-entropy loss. We use early
stopping based on validation score, batch size of 2048, adam optimizer Kingma and Ba (2014) with
learning rate of 1e− 3. Training takes place in less than 2 hours on a single Tesla V100 GPU.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

The deep learning baselines are implemented as follows: SIAM is implemented similarly to S2G,
with the exception that instead of using DeepSets as φ, we use MLP [384, 384, 384, 384, 5]. The
learning rate is 3e− 3 and SIAM has 452742 learnable parameters. SIAM-3 uses a Siamese MLP
of widths [384, 384, 384, 384, 20] to extract node features, and the edge logits are the l2 distances
between the nodes. SIAM-3 uses a triplets loss Weinberger et al. (2006) - we draw random triplets
anchor, neg, pos where anchor and pos are of the same cluster, and neg is of a different cluster, and
the loss is defined as 1

Li = min (dl2 (anchi, posi)− dl2 (anchi, negi) + 2, 0)

The learning rate is 1e− 4 and SIAM-3 has 455444 learnable parameters. Due to the triplet choice
process, training takes place in around 9 hours. MLP is a straight-forward fully-connected network
acting on the flattened feature vectors of the input sets. It uses fully-connected layers of widths[
512, 256, 512, 152

]
, and has 455649 learnable parameters. GNN is a GraphConv network Morris

et al. (2018) where the underlying graph is selected as the k-NN (k = 5) graph constructed using
the l2 distance between the elements’ feature vectors. the GraphConv layers have [350, 350, 300, 20]
features, and the edge logits between set elements are based on the inner product between the features
of each 2 elements. GNN has 455900 learnable parameters.

The dataset is made of training, validation and test set with 543544, 181181 and 181182 instances
accordingly. Each of the sets contains all three flavors: bottom, charm and light jets roughly in the
same amount, while the flavor of each instance is not part of the input. We repeat the following
evaluation 11 times: (1) training over the dataset, early-stopping when the F1 score over the validation
set does not improve for 20 epochs. (2) Predicting the clusters of the test set. (3) Separate the 3
flavors and calculate the metrics for each flavor. Eventually, we have 11 scores for each combination
of metrics, flavor and model, and we report the mean±std. Note that the AVR is evaluated only once
since it is not a stochastic algorithm. We also conducted an ablation study for this experiment, the
results for all particle types can be found in Table A1. Examples of inferred graphs can be seen in
Figure A1. Since edges are predicted, there’s a need to project the inferred graph to a connected-
components graph. The results show that in most cases, the inferred graphs are already predicted that
way.

Learning Delaunay triangulation. In our model S2G, S2G+, φ is an MLP
[500, 500, 500, 1000, 500, 500, 80]. β is broadcasting as before for models S2G and S2G+,
thus ending with 160 or 400 features per edge, respectively. ψ is an MLP [1000, 1000, 1], ending as
the edge probability. We use edge-wise binary cross-entropy loss. S2G and S2G+ have 5918742 and
6398742 learnable parameters respectively. The implementation of SIAM baseline is as follows:
φ is an MLP [700, 700, 700, 1400, 700, 700, 112], β is broadcasting as in S2G, and ψ is MLP
[1400, 1400, 1] and edge-wise binary cross-entropy loss. SIAM has 5804037 learnable parameters.
SIAM-3 uses a Siamese MLP [500, 1000, 1500, 1250, 1000, 500, 500, 80] and has 5922330 learnable
parameters. GNNk is as the previous experiment, where k ∈ {0, 5, 10}, with 3 GraphConv layers of
widths [1000, 1500, 1000], and it has 6007500 learnable parameters. We searched learning rate from
{1e− 2, 1e− 3, 1e− 4}, using 1e− 3 with Adam optimizer. All models trained for up to 8 hours
on a single Tesla V100 GPU. A qualititive result is shown in Figure A2.

Set to 3-edges. For S2G, φ is implemented using DeepSets [512, 512, 512]. In this task, the model
predicts supporting triangles of the convex hull, also referred to as faces, among triplets in the
KNN graph. Hence, we do not maintain 3-rd order tensors in the memory. For each node we
aggregate all the triangles which lie in its KNN (k = 10) neighbors. In order to be invariant to the
order of the 3 nodes in a face (i.e., the output tensor is symmetric w.r.t. permutations of the triplets’
order), each triplets is viewed as a set and fed to a DeepSets [64, 64, 64], max-pooled, and then to
an MLP of widths [256, 128, 1]. The model has 1186689 learnable parameters. As a loss, we used a
combination of soft F1 score loss and a face-wise binary cross-entropy loss. SIAM is identical except
that φ is implemented by MLP [1024, 1024, 512], and the second DeepSets is replaced by an MLP
[128, 128, 64]. It has 1718593 learnable parameters. GNN5 is implemented as in the first experiments,
with k = 5, GraphConv layers [512, 512, 512, 128] and the hyper-edge logits are computed as the
sum of the product between the corresponding 3 nodes. It has 1184384 learnable paramaters.

1A natural disadvantage of the triplets loss is that it cannot learn from sets with a single cluster, or sets with
size 2.

2

Method ψ #layers φ φ #layers d1 Attention F1 RI ARI
b jets S2G 2 DeepSets 5 2 V 0.649 0.736 0.493

S2G 2 DeepSets 5 10 V 0.642 0.739 0.488
S2G+ 2 DeepSets 5 5 V 0.658 0.745 0.510
S2G 2 Siamese 5 5 V 0.605 0.671 0.408

S2G+ 2 DeepSets 4 5 V 0.649 0.733 0.493
S2G+ 2 DeepSets 5 2 V 0.642 0.732 0.484
S2G+ 2 DeepSets 6 5 V 0.654 0.739 0.502
S2G 2 DeepSets 5 5 X 0.640 0.726 0.478
S2G 2 DeepSets 4 5 V 0.649 0.741 0.498
S2G 2 PointNetSeg 5 5 V 0.630 0.720 0.462
S2G 2 DeepSets 5 5 V 0.646 0.739 0.495

QUAD 1 DeepSets 5 5 V 0.637 0.730 0.470
S2G+ 2 DeepSets 5 10 V 0.655 0.749 0.510
S2G 2 DeepSets 6 5 V 0.660 0.753 0.516

S2G+ 2 Siamese 5 5 V 0.438 0.303 0.026
S2G+ 2 DeepSets 5 5 X 0.643 0.729 0.482
S2G 1 DeepSets 5 5 V 0.565 0.710 0.395

S2G+ 2 PointNetSeg 5 5 V 0.619 0.717 0.451
S2G+ 1 DeepSets 5 5 V 0.577 0.717 0.414

c jets S2G 2 DeepSets 5 2 V 0.749 0.727 0.458
S2G 2 DeepSets 5 10 V 0.747 0.729 0.459

S2G+ 2 DeepSets 5 5 V 0.753 0.732 0.467
S2G 2 Siamese 5 5 V 0.728 0.693 0.404

S2G+ 2 DeepSets 4 5 V 0.748 0.726 0.456
S2G+ 2 DeepSets 5 2 V 0.749 0.726 0.457
S2G+ 2 DeepSets 6 5 V 0.750 0.729 0.462
S2G 2 DeepSets 5 5 X 0.743 0.720 0.444
S2G 2 DeepSets 4 5 V 0.749 0.728 0.460
S2G 2 PointNetSeg 5 5 V 0.741 0.720 0.443
S2G 2 DeepSets 5 5 V 0.750 0.730 0.463

QUAD 1 DeepSets 5 5 V 0.750 0.734 0.469
S2G+ 2 DeepSets 5 10 V 0.752 0.735 0.470
S2G 2 DeepSets 6 5 V 0.754 0.734 0.470

S2G+ 2 Siamese 5 5 V 0.610 0.472 0.078
S2G+ 2 DeepSets 5 5 X 0.741 0.718 0.439
S2G 1 DeepSets 5 5 V 0.699 0.694 0.383

S2G+ 2 PointNetSeg 5 5 V 0.738 0.718 0.440
S2G+ 1 DeepSets 5 5 V 0.705 0.701 0.394

light jets S2G 2 DeepSets 5 2 V 0.973 0.971 0.933
S2G 2 DeepSets 5 10 V 0.970 0.968 0.927

S2G+ 2 DeepSets 5 5 V 0.973 0.970 0.932
S2G 2 Siamese 5 5 V 0.973 0.970 0.926

S2G+ 2 DeepSets 4 5 V 0.973 0.971 0.933
S2G+ 2 DeepSets 5 2 V 0.974 0.972 0.935
S2G+ 2 DeepSets 6 5 V 0.972 0.970 0.931
S2G 2 DeepSets 5 5 X 0.973 0.971 0.931
S2G 2 DeepSets 4 5 V 0.972 0.970 0.930
S2G 2 PointNetSeg 5 5 V 0.974 0.971 0.933
S2G 2 DeepSets 5 5 V 0.972 0.970 0.931

QUAD 1 DeepSets 5 5 V 0.972 0.970 0.929
S2G+ 2 DeepSets 5 10 V 0.970 0.968 0.928
S2G 2 DeepSets 6 5 V 0.972 0.971 0.932

S2G+ 2 Siamese 5 5 V 0.910 0.867 0.675
S2G+ 2 DeepSets 5 5 X 0.973 0.971 0.933
S2G 1 DeepSets 5 5 V 0.968 0.969 0.926

S2G+ 2 PointNetSeg 5 5 V 0.973 0.972 0.934
S2G+ 1 DeepSets 5 5 V 0.966 0.967 0.923

Table A1: Ablation study for particle partitioning.

3

Figure A1: Jets qualitative results. For each pair, the left side is before completing edges to a
connected-component graph. The color of the vertices refer to the GT cluster. The edges are predicted
by the model.

4

truth S2G S2G+ baseline

Figure A2: Results of Delaunay triangulation learning. Top: n = 50; Bottom: n ∈ {20, . . . , 80}.

For hyper-parameters search, we examined learning rates in

{1e− 5, 3e− 5, 1e− 4, 3e− 4, 1e− 3, 3e− 3} ,
and DeepSets models of width {64, 128, 256, 512}. We used Adam optimizers with learning rate of
1e− 3. Training took place for up to 36 hours on a single Tesla V100 GPU.

2 Proofs

Proof (of Theorem 3). The general proof idea is to consider an arbitrary equivariant set-to-k-edge
polynomial Pk and use its equivariance property to show that it has the form as in equation 6. This
is done by looking at a particular output entry Pki0 , where say i0 = (1, 2, . . . , k). Then the proof
considers two subsets of permutations: First, the subgroup of all permutations σ ∈ Sn that fixes the
numbers 1, 2, . . . , k, i.e., σ(i0) = i0, but permute everything else freely; this subgroup is denoted
stab(i0). Second, permutations of the form σ = (1 i1)(2 i2) · · · (k ik), where i ∈ [n]k. Each of
these permutation subsets reveals a different part in the structure of the equivariant polynomial Pk

and its relation to invariant polynomials. We provide the full proof next.

It is enough to prove Theorem 3 for dout = 1. Let i0 = (1, 2, . . . , k) and consider any permutation
σ ∈ stab(i0). Then from equivariance of Pk we have

Pki0(X) = Pkσ−1(i0)(X) = Pki0(σ ·X),

and σ ·X = (x1, . . . ,xk,xσ−1(k+1), . . . ,xσ−1(n))
T . That is Pki0 is invariant to permuting its last

n−k elements xk+1, . . . ,xn; we say that Pi0 is Sn−k invariant. We next prove that Sn−k invariance
can be written using a combination of Sn invariant polynomials and tensor products of x1, . . . ,xk:

Lemma A1. Let p(X) = p(x1, . . . ,xk,xk+1, . . . ,xn) be Sn−k invariant polynomial. That is
invariant to permuting the last n− k terms. Then

p(X) =
∑
α

xα
1

1 · · ·xα
k

k qα(X), (A2)

where qα are Sn invariant polynomials.

Before we provide the proof of this lemma let us finish the proof of Theorem 3. So now we know
that Pki0 has the form equation A2. On the other hand let i be an arbitrary multi-index and consider
the permutation σ = (1 i1)(2 i2) · · · (k ik). Again by permutation equivariance of Pk we have

Pki1i2···ik(X) = Pkσ−1(i0)(X) = Pki0(σ ·X)

=
∑
α

xα
1

i1 · · ·x
αk

ik
qα(X),

which is a coordinate-wise form of equation 6 with dout = 1.

5

Proof (of Lemma A1). First we expand p as

p(X) =
∑
α

xα
1

1 · · ·xα
k

k qα(xk+1, . . . ,xn), (A3)

where pα are Sn−k invariant polynomials. Since Sn−k invariant polynomials with variables
xk+1, . . . ,xn are generated by the power-sum multi-symmetric polynomials

n∑
i=k+1

xαi =

n∑
i=1

xαi −
k∑
i=1

xαi ,

with |α| ≤ n − k, see e.g., Rydh (2007), we have that each pα(xk+1, . . . ,xn) =∑
α x

α1

1 · · ·xα
k

k rα(X), for some Sn invariant polynomials rα. Plugging this in equation A3 proves
the lemma.

Proof (Lemma 1). We can assume dout = 1. The general case is proved by finding approximating
polynomial to each output feature coordinate. Let ε > 0. Using Stone-Weierstrass we can find a
polynomial Q : K → Rnk

so that maxX∈K

∥∥∥Gk(X)−Q(X)
∥∥∥
∞
< ε. Let

Pk(X) =
1

n!

∑
σ∈Sn

σ ·Q(σ−1 ·X).

Then Pk is equivariant and since Gk is also equivariant we have∥∥∥Gk(X)− Pk(X)
∥∥∥
∞

=
1

n!

∥∥∥∥∥∑
σ∈Sn

σ ·
(
Gk(σ−1 ·X)−Q(σ−1 ·X)

)∥∥∥∥∥
∞

<
1

n!

∑
σ∈Sn

ε = ε.

Approximating Pk with a network Fk. We set a target ε > 0. Let U ⊃ H(K) be a compact
ε-neighborhood of H(K). p is uniformly continuous over ∪iβ(U)i,:. Choose m so to be an ε/2-
approximation to p over ∪iβ(U)i,:. Let δ be so that for Y ,Y ′ ∈ U , ‖Y − Y ′‖∞ < δ implies
‖p(β(Y))− p(β(Y ′))‖∞ < ε/2. Now choose φ so that it is δ0-approximation toH over K where
δ0 < min {δ, ε}. This can be done since φ is a universal set-to-set model as in Segol and Lipman
(2020). Lastly, putting all the pieces together we get for all i:

|p(β(H(X))i,:)−m(β(φ(X))i,:)| ≤
|p(β(H(X))i,:)− p(β(φ(X))i,:)|+

|p(β(φ(X))i,:)−m(β(φ(X))i,:)| < ε.

Proof (Proposition 1). Consider the case k = 2 and the constant function set-to-graph function
G(X) = I , where I is the identity n× n matrix; that is G learns the constant value 1 for 1-edges
(nodes), and 0 for 2-edges. Since φ is equivariant we have that φ(1) = 1 ⊗ a = 1aT , for some
vector a ∈ Rd1 . Therefore β(φ(1))i1,i2,: = [a,a] andm(β(φ(1))) =m([a,a]) = b ∈ R. We get
that F2(1)i1,i2,: = b and

∥∥I − F2(1)
∥∥
∞ ≥ 1/2.

3 Physics background.

The Large Hadron Collider (LHC) is the world’s highest energy particle collider, located at the CERN
laboratory in Geneva, and is used to study the fundamental particles of nature and their interactions.

6

1 2 3 4 5 6
0

50k

100k

150k
light
charm
bottom

Number of Partitions

N
um

be
r o
f J
et
s

Figure A3: Distribution of the number of partitions in each type of set.

The LHC collides proton beams at high energy, and these collisions produce many new particles,
which may be unstable or lead to subsequent particle production. For instance, the production of
quarks (fundamental particles that make up protons, neutrons, and other hadrons) will lead to the
production of many hadrons and eventually be manifest as a spray of particles called a jet. The
collisions take place in a vacuum, but the collision point is surrounded by large detectors that measure
the outgoing particles that are stable enough to reach the detector several centimeters away. In order
to probe the properties of particles that are unstable, we need to infer which “flavor” of quark was the
progenitor particle that led to a jet. This classification is performed in many stages, and we focus on
a particular aspect of it known as vertex reconstruction, which we describe below.

The location of the initial proton-proton collision is referred to as the primary vertex. Several particles
emanating from the primary vertex are stable, will reach the detector, and will be part of the observed
jet. Other particles will be unstable and travel a few millimeters before decaying in what is referred
to as a secondary vertex. The unstable particles are not observed; however, the trajectories of the
stable charged particles will be measured by detectors located around the collision point. Due to the
presence of magnetic fields in the detector, the trajectories of the charged particles are helical. The
helical trajectories are called tracks, and are summarized by 6 numbers, called the perigee parameters,
along with a covariance matrix quantifying the uncertainty of their measurement.

Vertex reconstruction can be composed into two parts, vertex finding and vertex fitting. Vertex finding
refers to partitioning the tracks into vertices, and vertex fitting is computing the most likely origin
point in space for a collection of tracks. In the standard vertex reconstruction algorithms, these
two parts are often intertwined and done together. In this application we perform the partitioning
without performing the actual geometrical fit. From the physics point of view, once we improve the
partitioning, the identification of the jets flavor is naturally improved. Vertex reconstruction propagates
to a number of down-stream data analysis tasks, such as particle identification (a classification
problem). Therefore, improvements to the vertex reconstruction has significant impact on the
sensitivity of collider experiments.

Dataset. Algorithms for particle physics are typically designed with high-fidelity simulators, which
can provide labeled training data. These algorithms are then applied to and calibrated with real
data collected by the LHC experiments. Our simulated samples are created with a standard simu-
lation package called PYTHIA Sjöstrand et al. (2015) and the detector is simulated with DELPHES
de Favereau et al. (2014). We use this software to generate synthetic datasets for three types (called
”flavors”) of jets. The generated sets are small, ranging from 2 to 14 elements each. The three different
jet types are labeled bottom-jets, charm-jets, and light-jets (B/C/L). The important distinction between
the flavors is the typical number of partitions in each set. Figure A3 shows the distribution of the
number of partitions (vertices) in each flavor: bottom jets typically have multiple partitions; charm
jets also have multiple partitions, but fewer than bottom jets; and light jets typically have only one
partition.

7

AVR algorithm. We compare the model performance to a non-learning algorithm, (AVR), imple-
mented in RAVE Waltenberger (2011). The basic concept of AVR is to perform a least squares fit of
the vertex position given the track trajectories and their errors, remove less compatible tracks from
the fit, and refit them to secondary vertices.

References
de Favereau, J., Delaere, C., Demin, P., Giammanco, A., Lemaı̂tre, V., Mertens, A., and Selvaggi,

M. (2014). Delphes 3: a modular framework for fast simulation of a generic collider experiment.
Journal of High Energy Physics, 2014(2).

Ilse, M., Tomczak, J. M., and Welling, M. (2018). Attention-based deep multiple instance learning.
arXiv preprint arXiv:1802.04712.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y. (2019). Invariant and equivariant graph
networks. In International Conference on Learning Representations.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., and Grohe, M.
(2018). Weisfeiler and leman go neural: Higher-order graph neural networks. arXiv preprint
arXiv:1810.02244.

Rydh, D. (2007). A minimal set of generators for the ring of multisymmetric functions. In Annales
de l’institut Fourier, volume 57, pages 1741–1769.

Segol, N. and Lipman, Y. (2020). On universal equivariant set networks. In International Conference
on Learning Representations.

Sjöstrand, T., Ask, S., Christiansen, J. R., Corke, R., Desai, N., Ilten, P., Mrenna, S., Prestel, S.,
Rasmussen, C. O., and Skands, P. Z. (2015). An introduction to pythia 8.2. Computer Physics
Communications, 191:159–177.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need.

Waltenberger, W. (2011). RAVE: A detector-independent toolkit to reconstruct vertices. IEEE Trans.
Nucl. Sci., 58:434–444.

Weinberger, K. Q., Blitzer, J., and Saul, L. K. (2006). Distance metric learning for large margin
nearest neighbor classification. In Advances in neural information processing systems, pages
1473–1480.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola, A. J. (2017).
Deep sets. In Advances in neural information processing systems, pages 3391–3401.

8

	Architectures and hyper-parameters
	Proofs
	Physics background.

