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Abstract

By chaining a sequence of differentiable invertible transformations, normalizing
flows (NF) provide an expressive method of posterior approximation, exact density
evaluation, and sampling. The trend in normalizing flow literature has been to
devise deeper, more complex transformations to achieve greater flexibility. We
propose an alternative: Gradient Boosted Normalizing Flows (GBNF) model a
density by successively adding new NF components with gradient boosting. Under
the boosting framework, each new NF component optimizes a weighted likelihood
objective, resulting in new components that are fit to the suitable residuals of the
previously trained components. The GBNF formulation results in a mixture model
structure, whose flexibility increases as more components are added. Moreover,
GBNFs offer a wider, as opposed to strictly deeper, approach that improves existing
NFs at the cost of additional training—not more complex transformations. We
demonstrate the effectiveness of this technique for density estimation and, by
coupling GBNF with a variational autoencoder, generative modeling of images.
Our results show that GBNFs outperform their non-boosted analog, and, in some
cases, produce better results with smaller, simpler flows.

1 Introduction

Deep generative models seek rich latent representations of data, and provide a mechanism for
sampling new data. A popular approach to generative modeling is with variational autoencoders
(VAEs) [47]. A major challenge in VAEs, however, is that they assume a factorial posterior, which is
widely known to limit their flexibility [9, 14, 41, 48, 57, 65, 76, 78]. Further, VAEs do not offer exact
density estimation, which is a requirement in many settings.

Normalizing flows (NF) are an important recent development and can be used in both density
estimation [19, 67, 73] and variational inference [65]. Normalizing flows are smooth, invertible
transformations with tractable Jacobians, which can map a complex data distribution to simple
distribution, such as a standard normal [61]. In the context of variational inference, a normalizing
flow transforms a simple, known base distribution into a more faithful representation of the true
posterior. As such, NFs complement VAEs, providing a method to overcome the limitations of
a factorial posterior. Flow-based models are also an attractive approach for density estimation
[18, 19, 20, 33, 38, 40, 46, 60, 61, 69, 73] because they provide exact density computation and
sampling with only a single neural network pass (in some instances) [24].

Recent developments in NFs have focused of creating deeper, more complex transformations in order
to increase the flexibility of the learned distribution [3, 11, 13, 38, 40, 46, 53]. With greater model
complexity comes a greater risk of overfitting while slowing down training, prediction, and sampling.
Boosting [27, 28, 29, 30, 56] is flexible, robust to overfitting, and generally one the most effective
learning algorithms in machine learning [36]. While boosting is typically associated with regression
and classification, it is also applicable in the unsupervised setting [8, 8, 34, 35, 52, 57, 68].
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Our contributions. In this work we propose a wider, as opposed to strictly deeper, approach for
increasing the expressiveness of density estimators and posterior approximations. Our approach,
gradient boosted normalizing flows (GBNF), iteratively adds new NF components to a model based
on gradient boosting, where each new NF component is fit to the residuals of the previously trained
components. A weight is learned for each component of the GBNF model, resulting in a mixture
structure. However, unlike a mixture model, GBNF offers the optimality advantages associated
with boosting [2], and a simplified training objective that focuses solely on optimizing a single new
component at each step. GBNF compliments existing flow-based models, improving performance at
the cost of additional training cycles—not more complex transformations. Prediction and sampling
are not slowed with GBNF, as each component is independent and operates in parallel.

While gradient boosting is straight-forward to apply in the density estimation setting, our analysis
highlights the need for analytically invertible flows in order to efficiently boost flow-based models
for variational inference. Further, we address the “decoder shock” phenomenon—a challenge unique
to VAEs with GBNF approximate posteriors, where the loss increases suddenly coinciding with the
introduction of a new component. Our experiments show that augmenting the VAE with a GBNF
variational posterior produces image modeling results on par with state-of-the-art NFs. Lastly, GBNF
improves density estimation performance on complex, multi-modal data.

2 Background

Normalizing Flows Tabak and Turner [73], Tabak and Vanden-Eijnden [74] introduce normalizing
flows (NF) as a composition of simple maps. Parameterizing flows with deep neural networks
[19, 20, 67] has popularized the technique for density estimation and variational inference [61].

Variational Inference Rezende and Mohamed [65] use NFs to modify the VAE’s [47] posterior
approximation q0 by applying a chain of K transformations zK = fK ◦ · · · ◦ f1(z0) to the inference
network output z0 ∼ q0(z0 | x). By defining fk, k = 1, . . . ,K as an invertible, smooth mapping,
then with the chain rule and inverse function theorem zk = fk(zk−1) has a computable density

[73, 74]: qk(zk) = qk−1(zk−1)
∣∣∣det

∂f−1
k

∂zk−1

∣∣∣ = qk−1(zk−1)
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∂zk−1

∣∣∣−1. The VAE maximizes a
lower bound on the log-likelihood of the data: the evidence lower bound (ELBO) [5, 44, 79]. Thus, a
VAE with a K-step flow-based posterior minimizes the negative-ELBO:
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+KL (q0(z0 | x) || p(zK)) , (1)

where q0(z0 | x) is a known base distribution (e.g. standard normal) with parameters φ.

Density Estimation Given a set of samples {xi}ni=1 from a target distribution p∗, our goal is to
learn a flow-based model pφ(x), which corresponds to minimizing the forward KL-divergence:
F (ML)(φ) = KL(p∗(x) || pφ(x)) [61]. A NF formulates pφ(x) as a transformation x = f(z) of
a base density p0(z) with f = fK ◦ · · · ◦ f1 as a K-step flow [19, 20, 60]. Thus, to estimate the
expectation over p∗ we take a Monte Carlo approximation of the forward KL, yielding:

F (ML)(φ) ≈ − 1

n

n∑
i=1

[
log p0

(
f−1(xi)

)
+

K∑
k=1

log

∣∣∣∣det
∂f−1k
∂xi
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]
, (2)

which is equivalent to fitting the model to samples {xi}ni=1 by maximum likelihood estimation [61].

Gradient Boosting With gradient boosting [28, 29, 30, 56] we consider a loss F(G), where G(·) is a
function representing the current model. To minimize the loss F(G), we introduce a new component
g that is fit to the functional gradient ∇F(G) at the current model. Choosing the best function
g in a class of functions G (e.g. regression trees), corresponds to solving a linear program where
∇F(G) defines the weights for every function in G. Underlying gradient boosting is a connection
to conditional gradient descent and the Frank-Wolfe algorithm [25]: we first solve a constrained
convex minimization problem to choose g, then solve a line-search problem to appropriately weight
g relative to the previous components G [8, 35].
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Target 1 Component 2 Components Fine-Tune

Figure 1: Example of GBNF: A simple affine flow (one scale and shift operation) cannot model the
data distribution and leads to mode-covering (1 Component). In 2 Components, GBNF introduces
a second component, which seeks a region of high probability that is not well modeled by the first
component. Here, fine-tuning components with additional boosted training leads to a better solution,
shifting the first component to the left ellipsoid and re-weighing appropriately as shown in Fine-Tune.

3 Gradient Boosted Normalizing Flows for Density Estimation

Gradient boosted normalizing flows (GBNF) build on recent ideas in boosting for variational inference
[35, 57] and generative models [34] in order to increase the flexibility of density estimators and
posteriors approximated with NFs. A GBNF is constructed by successively adding new components
based on gradient boosting, where each new component g(c)K is a K-step normalizing flow that is fit
to the functional gradient of the loss from the (c− 1) previously trained components G(c−1)

K .

Gradient boosting assigns a weight ρc to the new component g(c)K and we restrict ρc ∈ [0, 1] to ensure
the model stays a valid probability distribution. The resulting density resembles a mixture model:

G
(c)
K (x) = ψ

(
(1− ρc)ψ−1(G

(c−1)
K (x)) + ρcψ

−1(g
(c)
K (x))

)
/Γ(c) , (3)

where the full modelG(c)
K (x) is a monotonic function ψ of a convex combination of fixed components

G
(c−1)
K and new component g(c)K , and Γ(c) is the partition function. Two special cases are of interest:

first, when ψ(a) = a, which corresponds to an additive mixture model where Γ(c) = 1. Second, when
ψ(a) = exp(a) with ψ−1(a) = log(a), corresponding to a multiplicative mixture model [16, 34].

The advantage of GBNF over a standard mixture model with a pre-determined and fixed num-
ber of components is that additional components can always be added to the model, and the
weights ρc for non-informative components degrade to zero. Since each component is a NF,
we evaluate (3) recursively using the change of variables formula to expand each component

g
(c)
K = p0

(
f−1c (x)

)∏K
k=1 |det

∂f−1
k,c

∂x |, where fc = fc,K ◦ · · · ◦ fc,1 is the K-step flow transfor-
mation for component c, and the base density p0 is shared by all components.

Density Estimation With GBNF density estimation is similar to (2): we seek flow parameters
φφφ = [φ1, . . . , φc] that minimize KL

(
p∗(x) ||G(c)

K (x)
)

, which for finite number of samples {xi}
drawn from p∗(x) corresponds to minimizing:

F (ML)(φφφ) = − 1

n

n∑
i=1

[
log
{
ψ
(

(1− ρc)ψ−1(G
(c−1)
K (xi)) + ρcψ

−1(g
(c)
K (xi))

)
/Γ(c)

}]
. (4)

Directly optimizing (4) for mixture model G(c)
K is non-trivial. Gradient boosting, however, provides

an elegant solution that greatly simplifies the problem. During training, the first component is fit using
a traditional objective function—no boosting is applied1. At stages c > 1, we already have G(c−1)

K ,
consisting of a convex combination of the (c− 1) K-step flow models from the previous stages, and
we train a new component g(c)K by taking a Frank-Wolfe [4, 8, 25, 35, 42, 52] linear approximation of
the loss (4). Since jointly optimizing w.r.t. both g(c)K and ρc is a challenging non-convex problem
[35], we train g(c)K until convergence, and then use (4) as the objective to optimize w.r.t the weight ρc.

1No boosting during the first stage is equivalent to setting G(0)
K (x) to uniform on the domain of x.
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3.1 Updates to New Boosting Components

Additive Boosting We first consider the special case ψ(a) = a and Γ(c) = 1, corresponding to the
additive mixture model. Our goal is to derive an update to the new component g(c)K using functional
gradient descent. Thus, we take the gradient of (4) w.r.t. fixed parameters φφφ1:c−1 of G(c)

K at ρc → 0:

∇φφφ1:c−1
F (ML)(φφφ)

∣∣∣
ρc→0

= − 1− ρc
(1− ρc)G(c−1)

K + ρcg
(c)
K

∣∣∣∣∣
ρc→0

= − 1

G
(c−1)
K

(5)

Maximizing the objective −F (ML)(φφφ) is achieved by choosing a new component g(c)K which is
weighted by the negative of the gradient from (5) over the samples. But, since G(c−1)

K is fixed, then
the optimization of g(c)K is a linear program in which G(c−1)

K (xi) is a constant—and hence yields a
degenerate point probability distribution where the entire probability mass is placed at the minimum
point of G(c−1)

K . To avoided the degenerate solution, a standard approach [8, 35] adds an entropy
regularization term. Thus, optimization of the new component g(c)K is:

g
(c)
K = arg max

gK∈GK

1

n

n∑
i=1

gK(xi)

G
(c−1)
K (xi)

− λ
n∑
i=1

gK(xi) log gK(xi) , (6)

where GK is the family of K-step flows, and hyperparameter λ > 0 controls entropy regularization.

Multiplicative Boosting In this paper, we instead use ψ(a) = exp(a) with ψ−1(a) = log(a),
which corresponds to the multiplicative mixture model, and, from the boosting perspective, a multi-
plicative boosting model [16, 34]. However, in contrast to the existing literature on multiplicative
boosting for probabilistic models, we consider boosting with normalizing flow components. In the
multiplicative setting, explicitly maintaining the convex combination between G(c−1)

K and g(c)K is
unnecessary: the partition function Γ(c) ensures the validity of the probabilistic model. Thus, the
multiplicative GBNF seeks a new component g(c)K and step size ρc that minimize:

F (ML)(φφφ) = − 1

n

n∑
i=1

[(
log(G

(c−1)
K (xi)) + ρc log(g

(c)
K (xi))

)
− log Γ(c)

]
. (7)

The objective in (7) represents the loss under the model G(c)
K and derives from minimization of the

forward KL-divergence KL(p∗‖G(c)
K ), where G

(c)
K is the normalized approximate distribution and

p∗ the target distribution. To improve (7) with gradient boosting, we show in Appendix B that the
difference in losses after introducing a new component g(c)K to the model is:

KL(p∗‖G(c−1)
K )−KL(p∗‖G(c)

K ) ≥ ρc
{
Ep∗

[
log g

(c)
K (x)

]
− logE

G
(c−1)
K

[
g
(c)
K (x)

]}
, (8)

Since ρc ≥ 0, it suffices to focus on the following maximization problem:

g
(c)
K = arg max

gK∈GK
Ep∗ [log gK(x)]− logE

G
(c−1)
K

[gK(x)] , (9)

for which a direct calculation shows that the solution is given by: g(c)K (x) = p∗(x)

G
(c−1)
K (x)

. As we show

in Appendix B, our choice of g(c)K gives a lower bound to (8) with KL(p∗‖G(c)
K )→ 0. The solution

to (9) can also be understood in terms of the change-of-measure inequality [1, 22], which forms the
basis of the PAC-Bayes bound and a certain regret bounds [1].

Similar to the additive case, the new component chosen in (9) shows that g(c)K maximizes the likelihood
of the samples while discounting those that are already explained by G(c−1)

K . Unlike the additive
GBNF update in (6), however, the multiplicative GBNF update is a numerically stable and does not
require the additional entropy regularization term.

3.2 Update to Component Weights

Component weights ρ are updated to satisfy ρc = arg minρ F (ML)(φφφ) using line-search. Alterna-
tively, taking the gradient of the loss w.r.t. ρc gives a stochastic gradient descent (SGD) algorithm
(see Appendix C). Updating ρc is only needed once after each component converges.
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4 Variational Inference with GBNF

Gradient boosting is also applicable to posterior approximation with flow-based models. For varia-
tional inference we map a simple base distribution to a complex posterior. Unlike (1), however, we
consider a VAE whose approximate posterior G(c)

K is a GBNF with c components and of the form:

G
(c)
K (zK | x) = (1− ρc)G(c−1)

K (zK | x) + ρcg
(c)
K (zK | x) . (10)

We seek a variational posterior that closely matches the true posterior p(zK | x), which corresponds
to the reverse KL-divergence KL(G

(c)
K (zK | x) || p(zK | x)). Minimizing KL is equivalent to

minimizing the negative-ELBO F (V I)
φ,θ (x) up to a constant. Thus, we seek to minimize the variational

bound:
F (V I)
φ,θ (x) = E

G
(c)
K

[
logG

(c)
K (zK | x)− log pθ(x, zK)

]
. (11)

4.1 Updates to New Boosting Components

Given the bound (11), we then derive updates for new components. Similar to Section 3.1, consider
the functional gradient w.r.t. G(c)

K at ρc → 0:

∇
G

(c)
K

F (V I)
φ,θ (x)

∣∣
ρc→0

= − log
pθ(x, zK)

G
(c−1)
K (zK | x)

+ 1 (12)

We minimize F (V I)
θ,φ (x) by choosing a new component g(c)K that has the minimum inner product

with the gradient from (12). However, to avoid g(c)K degenerating to a point mass at the functional
gradient’s minimum, we add an entropy regularization term2 controlled by λ > 0, thus:

g
(c)
K = arg min

gK∈GK

n∑
i=1

E
gK(zK |xi)

[∇GF(xi) + λ log gK(zK | xi)] . (13)

Despite the differences in derivation, optimization of GBNF has a similar structure to other flow-based
VAEs. Specifically, with the addition of the entropy regularization, rearranging (13) shows:

g
(c)
K = arg min

gK∈GK
E

gK(z|x)

[
− log

pθ(x | z(c)K )

G
(c−1)
K (z

(c)
K | x)

]
+ λ ·KL

(
gK(z

(c)
K | x) || p(z(c)K )

)
. (14)

If G(c−1)
K is constant, then we recover the VAE objective exactly. By learning a GBNF approximate

posterior the reconstruction error –log pθ(x | z(c)K ) is down-weighted for samples that are easily
explained by the fixed components. For updates to the component weights ρ see Appendix C.

Lastly, we note that during a forward pass the model encodes data to produce z0. To sample from
the posterior zK ∼ G(c)

K , however, we transform z0 according to zK = f
(j)
K ◦ · · · ◦ f

(j)
1 (z0), where

j ∼ Categorical(ρ) randomly chooses a component—similar to sampling from a mixture model.
Thus, during training we compute a fast stochastic approximation of the likelihood G(c)

K . Likewise,
prediction and sampling are as fast as the non-boosted setting, and easily parallelizable across
components.

4.2 Decoder Shock: Abrupt Changes to the VAE Approximate Posterior

Sharing the decoder between all GBNF components presents a unique challenge in training a VAE
with a GBNF approximate posterior. During training the decoder acclimates to samples from a
particular component (e.g. g(old)). However, when a new stage begins the decoder begins receiving
samples from a new component g(new). At this point the loss jumps (see Figure 2), a phenomenon
we refer to as “decoder shock”.

2In our experiments that augment the VAE with a GBF-based posterior, we find good results setting the
regularization λ = 1.0. In the density estimation experiments, better results are often achieved with λ near 0.8.
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Figure 3: Gradient boosted normalizing flows for variational inference require analytically invertible
flows. Similar to a traditional flow-based model: (a) samples are drawn from the base density z0 ∼ q0,
and (b) transformed by the K-step flow transformation. For GBNF, the sample is transformed by the
new component giving z1 = fg(c)(z0). Gradient boosting fits the new component to the residuals of
the fixed components, and hence requires computing G(c−1)(z1 | x). Due to the change of variables
formula, G(c−1)(z1 | x) is computed by (c) mapping z1 back to the base density using the inverse
flow transformation z̃0 = f−1

G(c−1)(z1), and then (d) evaluating q0(z̃0) · | det Jf
G(c−1)

|−1.

Figure 2: “Decoder Shock” on the Caltech 101
Silhouettes. Test loss (red) decreases steadily
by adding new components (every 1000 epochs).
However, the loss in batches immediately after
adding a new component see a dramatic jump.

The introduction of g(new) causes a sudden shift
in the distribution of samples passed to the de-
coder, causing a sharp increase in reconstruction
errors. Further, we anneal the KL [6, 37, 72]
in (14) cyclically [31], with restarts correspond-
ing to the introduction of new boosting compo-
nents, which allows the model to discover useful
representations of the data without penalty for
complexity. Without KL-annealing, models may
ignore z and rely purely on a powerful decoder
[6, 14, 17, 37, 64, 72]. Thus, when the anneal-
ing schedule restarts, g(new) is unrestricted and
the validation’s KL term temporarily increases.

A spike in loss between boosting stages is
unique to GBNF. Unlike traditional boosting
models, here there is a shared decoder which de-
pends on the boosted components. To overcome
the “decoder shock” problem, we periodically
sample from the fixed components, helping the
decoder remember past components. Note, despite drawing samples from G

(c−1)
K , the parameters for

G
(c−1)
K remain fixed—samples from G

(c−1)
K are purely for the decoder’s benefit. Additionally, Figure

2 highlights how fine-tuning (blue line) consolidates information from all components and improves
results at very little computational cost.

5 Experiments

To evaluate GBNF, we highlight results on two toy problems, density estimation on real data, and
boosted flows within a VAE for generative modeling of images. We boost coupling flows [20, 46]
parameterized by feed-forward networks with TanH activations and a single hidden layer. While
RealNVP [20], in particular, is less flexible and shown to be empirically inferior to planar flows
in variational inference [65], coupling flows are attractive for boosting: sampling and inference
require one forward pass, log-likelihoods are computed exactly, and they are trivially invertible. In
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Target RealNVP GBNF
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Target RealNVP GBNF

2 4

Figure 4: Matching the energy functions from Table 1 of Rezende and Mohamed [65]. The middle
columns show deep RealNVPs with K = 16 flows. Gradient boosting RealNVP with c = 2
components of length K = 4 performs as well or better with half as many parameters.

the toy experiments flows are trained for 25k iterations using the Adam optimizer [45]. For all other
experiments details on the datasets and hyperparameters can be found in Appendix A.

5.1 Toy Density Matching

For density matching the model generates samples from a standard normal and transforms them into
a complex distribution pX . The 2-dimensional unnormalized target’s analytical form p∗ is known
and parameters are learned by minimizing KL(pX || p∗).

Results In Figure 4 we compare our results to a deep 16-step RealNVP flow on four energy functions.
In each case GBNF provides an accurate density estimation with half as many parameters. When
the component flows are flexible enough to model most or all of the target density, components can
overlap. However, by training the component weights ρ the model down-weights components that
don’t provide additional information. On more challenging targets, such as 3 (top-right), GBNF fits
one component to each of the top and bottom divergences within the energy function, and some
component overlap occurring elsewhere.

5.2 Toy Density Estimation

We apply GBNF to the density estimation problems found in [18, 33, 46]. Here the model receives
samples from an unknown 2-dimensional data distribution, and the goal is to learn a density estimator
of the data. We consider GBNF with either c = 4 or 8 RealNVP components, each of which includes
K = 1, 2, 4, or 8 coupling layers [20], respectively. Here RealNVP and GBNF use flows of equivalent
depth, and we evaluate improvements resulting from GBNF’s additional boosted components.

Results As shown in Figure 5, even when individual components are weak the composite model is
expressive. For example, the 8-Gaussians figure shows that the first component (RealNVP column)
fails to model all modes. With additional 1-step flows, GNBF achieves a multimodal density model.
Both the 8-Gaussians and Spiral results show that adding boosted components can drastically improve
density estimates without requiring more complex transformations. On the Checkerboard and
Pinwheel, where RealNVP matches the data more closely, GBNF sharpens density estimates.

5.3 Density Estimation on Real Data

Following Grathwohl et al. [33] we report density estimation results on the POWER, GAS, HEP-
MASS, and MINIBOONE datasets from the UCI machine learning repository [23], as well as the
BSDS300 dataset [55]. We compare boosted and non-boosted RealNVP [20] and Glow models
[46]. Glow uses a learned base distribution, whereas our boosted implementation of Glow (and the
RealNVPs) use fixed Gaussians. Results for non-boosted models are from [33].

Results In Table 1 we find significant improvements by boosting Glow and the more simple RealNVP
normalizing flows, even with only c = 4 components. Our implementation of Glow was unable to
match the results for BSDS300 from [33], and only achieves an average log-likelihood of 152.96
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Figure 5: Density estimation for 2D toy data. The GBNF columns shows results for a gradient boosted
model where each component is a RealNVP flow with K = 1, 2, 4 or 8 flow steps, respectively. For
comparison the RealNVP column shows results for a single RealNVP model, and is equivalent to
GBNF’s first component. GBNF models train c = 4 components, except on the 8-Gaussians data
(top left) where results continued to improve up to 8 components. Results show that GBNF produces
more accurate density estimates without increasing the complexity of the flow transformations.

Table 1: Log-likelihood on the test set (higher is better) for 4 datasets from UCI machine learning
[23] and BSDS300 [55]. Here d is the dimensionality of data-points and n the size of the dataset.
GBNF models include c = 4 components. Mean/stdev are estimated over 3 runs.

Model POWER↑ GAS↑ HEPMASS↑ MINIBOONE↑ BSDS300↑
d=6;n=2,049,280 d=8;n=1,052,065 d=21;n=525,123 d=43;n=36,488 d=63;n=1,300,000

RealNVP 0.17±.01 8.33±.14 −18.71±.02 −13.55±.49 153.28±1.78

Boosted RealNVP 0.27±0.01 9.58±.04 −18.60±0.06 −10.69±0.07 154.23±2.21

Glow 0.17±.01 8.15±.40 −18.92±.08 −11.35±.07 155.07±.03
Boosted Glow 0.24±0.01 9.95±0.11 −17.81±0.12 −10.76±0.02 154.68±0.34

without boosting. After boosting Glow with c = 4 components, however, the log-likelihood rises
significantly to 154.68, which is comparable to the baseline.

5.4 Image Modeling with Variational Autoencoders

Following Rezende and Mohamed [65], we employ NFs for improving the VAE’s approximate
posterior [47]. We compare our model on the same image datasets as those used in van den Berg et al.
[78]: Freyfaces, Caltech 101 Silhouettes [54], Omniglot [49], and statically binarized MNIST [50].

Results In Table 2 we compare the performance of GBNF to other normalizing flow architectures.
In all results RealNVP, which is more ideally suited for density estimation tasks, performs the worst
of the flow models. Nonetheless, applying gradient boosting to RealNVP improves the results
significantly. On Freyfaces, the smallest dataset consisting of just 1965 images, gradient boosted
RealNVP gives the best performance—suggesting that GBNF may avoid overfitting. For the larger
Omniglot dataset of hand-written characters, Sylvester flows are superior, however, gradient boosting
improves the RealNVP baseline considerably and is comparable to Sylvester. GBNF improves on the
baseline RealNVP, however both GBNF and IAF’s results are notably higher than the non-coupling
flows on the Caltech 101 Silhouettes dataset. Lastly, on MNIST we find that boosting improves NLL
on RealNVP, and is on par with Sylvester flows. All models have an approximately equal number of
parameters, except the baseline VAE (fewer parameters) and Sylvester which has ≈ 5x the number of
parameters (grid search for hyperparameters is chosen following [78]).

6 Related Work

Below we highlight connections between GBNF and related work, along with unique aspects of
GBNF. First, we discuss the catalog of normalizing flows that are compatible with gradient boosting.
We then compare GBNF to other boosted generative models and flows with mixture formulations.
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Table 2: Negative ELBO (lower is better) and Negative log-likelihood (NLL, lower is better) results
on MNIST, Freyfaces, Omniglot, and Caltech 101 Silhouettes datasets. For the Freyfaces dataset the
results are reported in bits per dim. Results for the other datasets are reported in nats. GBNF models
include c = 4 RealNVP components. The top 3 NLL results for each dataset are in bold.

Model MNIST Freyfaces Omniglot Caltech 101
-ELBO↓ NLL↓ -ELBO↓ NLL↓ -ELBO↓ NLL↓ -ELBO↓ NLL↓

VAE 89.32±0.07 84.97±0.01 4.84±0.07 4.78±0.07 109.77±0.06 103.16±0.01 120.98±1.07 108.43±1.81

Planar 86.47±0.09 83.16±0.07 4.64±0.04 4.60±0.04 105.72±0.08 100.18±0.01 116.70±1.70 104.23 ±1.60

Radial 88.43±0.07 84.32±0.06 4.73±0.08 4.68±0.07 108.74±0.57 102.07±0.50 118.89±1.30 106.88±1.55

Sylvester 84.54±0.01 81.99±0.02 4.54±0.03 4.49±0.03 101.99±0.23 98.54±0.29 112.26±2.01 100.38±1.20

IAF 86.46±0.07 83.14 ±0.06 4.73±0.04 4.70±0.05 106.34±0.14 100.97±0.07 119.62±0.84 108.41±1.31

RealNVP 88.04±0.07 83.36±0.09 4.66±0.17 4.62±0.16 106.22±0.59 100.43±0.19 123.26±2.06 113.00±1.70

GBNF 87.00±0.16 82.59 ±0.03 4.49±0.01 4.41 ±0.01 105.60±0.20 99.09 ±0.17 121.41±0.71 106.40 ±0.54

Flows Compatible with Gradient Boosting While all normalizing flows can be boosted for den-
sity estimation, boosting for variational inference is only practical with analytically invertible flows
(see Figure 3). While planar and radial [65], Sylvester [78], and neural autoregressive flows [18, 40]
are provably invertible, we cannot compute the inverse. Inverse and masked autoregressive flows
[48, 60] are invertible, but D times slower to invert where D is the dimensionality of z.

Analytically invertible flows include those based on coupling layers, such as NICE [19], RealNVP
[20], and Glow—which replaced RealNVP’s permutation operation with a 1× 1 convolution [46].
Neural spline flows increase the flexibility of both coupling and autoregressive transforms using
monotonic rational-quadratic splines [24], and non-linear squared flows [80] are highly multi-modal
and can be inverted for boosting. Continuous-time flows [10, 12, 33, 69] use transformations described
by ordinary differential equations, with FFJORD being “one-pass” invertible by solving an ODE.

Flows with Mixture Formulations The main bottleneck in creating more expressive flows lies in
the base distribution and the class of transformation function [61]. Autoregressive [18, 40, 43, 48,
53, 60], residual [3, 13, 65, 78], and coupling-layer flows [19, 20, 38, 46, 63] are the most common
classes of finite transformations, however, discrete (RAD, [21]) and continuous (CIF, [15]) mixture
formulations offer a promising new approach where the base distribution and transformation change
according to the mixture component. GBNF also presents a mixture formulation, but trained in
a different way, where only the updates to the newest component are needed during training and
extending an existing model with additional components is trivial. Moreover, GBNF optimizes
a different objective that fits new components to the residuals of previously trained components,
which can refine the mode covering behavior of VAEs (see Hu et al. [39]) and maximum likelihood
(similar to Dinh et al. [21]). The continuous mixture approach of CIF, however, cannot be used in the
variational inference setting to augment the VAE’s approximate posterior [15].

Gradient Boosted Generative Models By considering convex combinations of distributions G
and g, boosting is applicable beyond the traditional supervised setting [8, 16, 34, 35, 51, 52, 68, 75].
In particular, boosting variational inference (BVI, [16, 35, 57]) improves a variational posterior, and
boosted generative models (BGM, [34]) constructs a density estimator by iteratively combining sum-
product networks. Unlike BVI and BGM our approach addresses the unique algorithmic challenges
of boosting applied to flow-based models—such as the need for analytically invertible flows and the
“decoder shock” phenomena when enhancing the VAE’s approximate posterior with GBNF.

7 Conclusion

In this work we introduce gradient boosted normalizing flows, a technique for increasing the flexibility
of flow-based models through gradient boosting. GBNF, iteratively adds new NF components, where
each new component is fit to the residuals of the previously trained components. We show that GBNF
can improve results for existing normalizing flows on density estimation and variational inference
tasks. In our experiments we demonstrated that GBNF improves over their baseline single component
model, without increasing the depth of the model, and produces image modeling results on par with
state-of-the-art flows. Further, we showed GBNF models used for density estimation create more
flexible distributions at the cost of additional training and not more complex transformations.
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8 Broader Impact

As a generative model, gradient boosted normalizing flows (GBNF) are suited for a variety of
tasks, including the synthesis of new data-points. A primary motivation for choosing GBNF, in
particular, is producing a flexible model that can synthesize new data-points quickly. GBNF’s
individual components can be less complex and thus faster, yet as a whole the model is powerful.
Since the components operate in parallel, prediction and sampling can be done quickly—a valuable
characteristic for deployment on mobile devices. One limitation of GBNF is the requirement for
additional computing resources to train the added components, which can be costly for deep flow-
based models. As such, GBNF advantages research laboratories and businesses with access to
scalable computing. Those with limited computing resources may find benchmarking or deploying
GBNF too costly.
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