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1 Cameras and Screens

We use three cameras and three screens to capture our dataset; please see Table 1 for the specifications.
Note that the HONOR Intelligence Screen is a screen with 4K resolution and is used to display
images for the RealTextureMoire subset. A high-resolution screen helps avoid screen moiré patterns
when acquiring texture moiré images.

Table 1: Camera specifications and screen specifications.

Capture device Display device
Manufacturer Model Image Resolution | Manufacturer Model Resolution
OPPO R9 4608 x 3456 SAMSUNG S22F350H 1920 x 1080
HONOR 9 3264 x 1632 HONOR Intelligence Screen 4K
HUAWEI P30 PRO 3648 x 2736 HP E243 1920 x 1200

2 The Alternating Optimization Method

The following algorithms (Procedure 1 and Procedure 2) show the joint optimization method and
the baseline alternating optimization method compared in the ablation study in Section 5.1 of the
main paper. The difference between the joint optimization used for our FDNet and the alternating
optimization is shown on the lines 6-10 of Procedure 2, where D* and G, are updated in an alternating
fashion.
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Procedure 1 The joint optimization algorithm.

Input: Focused image M with moiré patterns and defocused blur image B without moiré patterns;
Output: Estimated moiré-free image C;

1: Initialize GY and D° with Gaussian random weights;

2: Sample z from the uniform distribution [0,1];

3:for i=1to Ndo _ o

4 C=D"'M)k=G z):B=C®k;

5.  Loss = MSE(B, B);

6:  Update D and G, simultaneously using the ADAM algorithm;

7: end for

8: return C = DN (M).

Procedure 2 The alternating optimization algorithm.

Input: Focused image M with moiré patterns and defocused blur image B without moiré patterns;
Output: Estimated moiré-free image C';

1: Initialize Gg and D° with Gaussian random weights;

2: Sample z from the uniform distribution [0,1];

3: for i=1to N do

4 C:Di_l(M)ﬂAﬂZGZ_l(z);B:C’@)]%;
5:  Loss :MSE(B,B);

6: if ¢is even then _ |
T: Update D? using the ADAM algorithm; G, = G} ';
8: else

9: Update G, using the ADAM algorithm; D* = D*~1;
10:  end if

11: end for

12: return C = DV (M).




3 Results from Real Natural Scenes

We also test our model on a smartphone HUAWEI P30 PRO. We collect some focused and defocused
image pairs from natural scenes, where the focused images have texture moiré patterns, as shown in
Figure 1. To test on the real world examples, we do some preprocessing, e.g., alignment. We keep the
areas where the moire is produced at the same depth. FDNet generalizes well to images taken from
natural scenes (not from screens), as the results are moiré-free and the details are retained from the
focused moiré image.

Demoireing by FDNet

I I\"'III‘\

il

Focused image Defocused image Demoireing by FDNet

Figure 1: Examples captured from natural scenes.

4 Efficiency Comparison among our Model, DIP and Double-DIP

We evaluate the efficiencies of the FDNet and the deep-image-prior methods (DIP and DoubleDIP) on
an NVIDIA RTX 2080Ti GPU. The number of iterations for DIP to find an optimal result varies from
image to image, and needs to be manually adjusted. In the demoiréing task, DIP takes 1000 iterations.
Double-DIP also requires 1000 iterations to converge. Our model does not have the problem of getting
worse results when iterations are over some threshold, due to the constraint by the blur image. FDNet
converges in about 500 iterations and then its PSNR slightly increases with the iteration number
increasing (see Figure 2 for one example). As shown in Table 2, our FDNet has a faster runtime.

Algorithm DoubleDIP DIP  FDNet
Time (s) 280 43 30
Parameters (MB) 3.08 2.22 2.64

Table 2: Efficiency comparison.



5 Visualization of Intermediate Results and Blur Kernels

We visualize some intermediate results (see Figure 2), which show that as the number of iterations
increases, the moiré patterns gradually disappear. Figure 3 shows the the learnt blur kernels for
different image pairs. Note that the learnt blur kernels are learned from scratch and adaptive to each
image pair.
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Figure 2: Intermediate results of one example in SynScreenMoire. The numbers to the left of the

PSNR are the numbers of iterations.
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Figure 3: Visualization of estimated blur kernels.



6 Examples of our New Dataset
Figures 4 and 5 show some examples of the RealScreenMoire subset and the RealTextureMoire subset,

respectively. Note that the focused images have more details overlaid with moiré patterns, while the
corresponding defocused images have no moiré patterns but appear blurry.
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Figure 4: Examples of RealScreenMoire.
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Figure 5: Examples of RealTlextureMoire.



7 Additional Visual Comparisons on SynScreenMoire, SynTextureMoire,
RealScreenMoire and RealTextureMoire

Figure 6, Figure 7, Figure 8 and Figure 9 show more results on SynScreenMoire, SynTextureMoire,
RealScreenMoire, and RealScreenMoire, respectively. The main paper presents an analysis of the
results for Figures 6 and 7 on SynScreenMoire and SynTextureMoire.

As shown in Figures 8 and 9, the deep-learning based methods (SVLRM, MopNet and DJF) produce
some artifacts near the edges. DJF also tends to over-sharpen the images and exhibits ringing
artifacts. The results of DIP have obvious moiré artifacts left, and DoubleDIP has a global color shift
from the original input. In addition, the joint filtering methods (GF and MSJF) tend to smooth the
high-frequency regions. Our FDNet outperforms all of them.
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Figure 6: Visual comparisons on SynScreenMoire.
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Figure 7: Visual comparisons on SynTextureMoire.
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Figure 8: Visual comparisons on RealScreenMoire (without ground truth).
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