
1 Proof of Theorem 1.
Theorem 1 (Generalization bounds of evolving domain adaptation). We further assume
dH∆H(Qt1 , Qt2) ≤ α|t1 − t2| holds with constant α for t1, t2 ≥ 0. Then for any θ, with prob-
ability at least 1− δ over the sampling of target trajectory t1, t2 · · · tn,

EtEQt
L(fθ(x), y) ≤ EPL(fθ(x), y) +

1

n

n∑
i=1

[dH∆H(P,Qti)] + Etλt +O
(α
δn

)
.

Recall the mathematical tools in analyzing generalization error bound of classic domain adaptation
[1, 5]. Suppose H = {fθ|θ ∈ Θ}. Then for any distribution P and Q, denote by dH∆H the
H∆H-divergence,

dH∆H(P,Q) = sup
θ,θ′∈Θ

|EPL(fθ(x), fθ′(x))− EQL(fθ(x), fθ′(x))| ,

which quantifies the discrepancy between the source and target distributions. The adaptability
quantified by λ measures the possibility of cross-domain learning [1].

λ = min
θ

[EPL(fθ(x), y) + EQL(fθ(x), y)] .

Then we have the following generalization error bound of classical domain adaptation [1],
Lemma 1 (Generalization bounds of classic domain adaptation). For a symmetric loss function L
satisfying triangle inequality, and any fθ ∈ H, the following holds,

EQL(fθ(x), y) ≤ EPL(fθ(x), y) + dH∆H(P,Q) + λ.

Integrating over t ∼ U(0, 1), the left hand side becomes the loss on the evolving target domain Qt,

EtEQtL(fθ(x), y) ≤ EPL(fθ(x), y) + Et [dH∆H(P,Qt)] + Etλt (1)

To extend this analysis to the EDA problem, we need to approximate the domain discrepancy
Et [dH∆H(P,Qt)] with finite target trajectories {Qti}ni=1. Formally, we have the following lemma,
Lemma 2 (Discretization of dH∆H on evolving target domain). Suppose we have target trajectories
{Qti}ni=1 of length n. Each ti is sampled i.i.d. from U(0, 1). Assume dH∆H(Qt1 , Qt2) ≤ α|t1 − t2|
holds with constant α for 1 ≥ t1, t2 ≥ 0. Then with probability at least 1− δ over the sampling of ti,

Et [dH∆H(P,Qt)] ≤
1

n

n∑
i=1

[dH∆H(P,Qti)] +O
(α
δn

)
.

Proof. Without loss of generality, assume t1 ≤ t2 · · · tn−1 ≤ tn. Denote by A the event
∃ti, ti+1, |ti − ti+1| ≥ 2

m . Suppose Di is the interval (i−1
m , im], for i = 1, 2 · · ·m. Denote by

B the event ∃i ∈ {1, 2 · · ·m},∀j ∈ {1, 2 · · ·n}, tj /∈ Di. Then the following holds,

P (A) ≤ P (B) = 1−
(
n−1
m−1

)(
n+m
m−1

)
≈ 1− (n+ 1)n+1(n− 1)n−1

(n−m)n−m(n+m)n+m

≈ 1−
(
n− 1

n+ 1

)m−1

< e−(n−1
n+1)

m−1

,

for large m and n. The first step comes from Stirling’s equation. The second step is due to
limx→0(1 + x)

1
x = e. The final step holds since 1 + x < ex for x 6= 0. Setting m to b 1

2δ c, we have
with probability at least 1− δ,

max
i
|ti − ti−1| <

1
log(1−δ)

log(n−1)−log(n+1) + 1
= O

(
1

δn

)

1

Then ∀t ∈ (ti−1+ti
2 , ti+ti+1

2],

dH∆H(P,Qt) ≤ dH∆H(P,Qti) + α|t− ti|

= dH∆H(P,Qti) +O
(α
δn

)
.

Integrating over t, we complete the proof.

To prove Theorem 1, we plug Lemma 2 into equation (1).

2 Dataset Details

Rotated MNIST: We randomly rotate the MNIST training set and test set by 0− 180◦. The original
training set (60000 images) is used as the source training dataset. For each rotation in the evolving
target dataset, we randomly sample only 100 images. In meta-training, the model is trained on the
source dataset and random target trajectory with length 10. In meta-testing, for efficient evaluation,
the model is adapted sequentially to 120◦, 126◦ · · · 174◦. Each target rotation in meta-testing also
has 100 samples, and we test the performance on the 10000-sample rotated MNIST test set.

Evolving Vehicles comprises of 2000 images of sedans and trucks in 1970− 2020 collected from
bing.com. Each decade has 200 sedans and trucks. We use 1980 to 1995 in meta-training, and test
on 2000 to 2015 in meta-testing. The batch size is set to 20.

Figure 1: Examples of the Evolving Vehicles dataset.

Caltran: The dataset is available at http://cma.berkeleyvision.org. See Figure 2 for examples
of the dataset. The dataset consists of 5432 images in total. We use the first 500 images as the source
dataset. We use the following 2000 images in meta-training and the last 2932 images in meta-testing.
The batch size is set to 20.

Figure 2: Examples of the Caltran dataset. It contains images captured at an interval of 3 minutes
over two weeks, formulating a challenging continually evolving target, since it includes changes in
time, illumination, weather, etc.

3 Additional Experimental Details

We implement our model on PyTorch with 2080Ti GPUs. We calculate joint MMD following [4].
Suppose the batch size of the source domain is nP and the batch size of the target domain is nQ,

d̂(P,Q) =
1

n2
P

∑
i,j

k((xpi , ŷ
p
i), (xpj , ŷ

p
j)) +

1

n2
Q

∑
i,j

k((xqi , ŷ
q
i), (x

q
j , ŷ

q
j))−

2

nPnQ

∑
i,j

k((xpi , ŷ
p
i), (xqj , ŷ

q
j)).

The feature used in joint MMD is the output of the adapter. The kernel we apply is multi Gaussian
kernel based on https://github.com/thuml/Xlearn/blob/master/pytorch/src/loss.py.

2

bing.com
http://cma.berkeleyvision.org
https://github.com/thuml/Xlearn/blob/master/pytorch/src/loss.py

For Rotated MNIST, the input size of image is 28× 28. We do not adopt further pre-processing to
avoid affecting the rotation. For Evolving Vehicles and Caltran, the input size is set to 84× 84. We
use random horizontal flip and random resized crop as pre-processing.

The implementation of MAML is based on https://github.com/dragen1860/MAML-Pytorch/.
In meta-training, we update the adapter and the classifiers for 10 steps in the inner loop. The
hyperparameter of weighted adaptation is set with importance weighted cross validation [6].

When implementing the baseline methods, we follow the protocol of DANN [2] and CDAN [3].
The domain discriminator is a three-layer fully connected network with BatchNorm and ReLU
activations. The code of CycleGAN is modified based on https://github.com/junyanz/
pytorch-CycleGAN-and-pix2pix.

Numerical results in Figure 3 of the main text. In the main text, we provided results on Caltran
and Vehicles in Figure 3 due to limitation of space. We further provide numerical results in Table 1.

Table 1: Accuracy (%) on Evolving Vehicles.

Method 1995 2000 2005 2010 2015 2020

DANN 51.0±1.5 54.9±0.8 58.6±1.2 65.5±1.0 69.3±1.1 70.4±1.5
JAN Merge 67.2±1.8 68.4±1.6 66.0±0.9 65.7±1.0 64.9±1.4 64.3±1.0

EAML 70.1±1.3 69.8±0.9 72.5±0.8 73.6±1.3 75.5±1.4 75.2±1.1

References

[1] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan. A theory of
learning from different domains. Machine Learning, 79(1-2):151–175, 2010.

[2] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, M. Marchand, and V. Lempit-
sky. Domain-adversarial training of neural networks. Journal of Machine Learning Research,
17(1):2096–2030, 2016.

[3] M. Long, Z. Cao, J. Wang, and M. I. Jordan. Conditional adversarial domain adaptation. In
Advances in Neural Information Processing Systems 31, pages 1640–1650. 2018.

[4] M. Long, H. Zhu, J. Wang, and M. I. Jordan. Deep transfer learning with joint adaptation
networks. In Proceedings of the 34th International Conference on Machine Learning (ICML),
pages 2208–2217, 2017.

[5] Y. Mansour, M. Mohri, and A. Rostamizadeh. Domain adaptation: Learning bounds and
algorithms. In The 22nd Conference on Learning Theory, Montreal, Quebec, Canada, June
18-21, 2009, 2009.

[6] M. Sugiyama, M. Krauledat, and K.-R. Muller. Covariate shift adaptation by importance weighted
cross validation. JMLR, 8(May):985–1005, 2007.

3

https://github.com/dragen1860/MAML-Pytorch/
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

	Proof of Theorem 1.
	Dataset Details
	Additional Experimental Details

