
Relaxed Scheduling for Scalable Belief Propagation

Abstract

The ability to leverage large-scale hardware parallelism has been one of the key1

enablers of the accelerated recent progress in machine learning. Consequently,2

there has been considerable effort invested into developing efficient parallel variants3

of classic machine learning algorithms. However, despite the wealth of knowledge4

on parallelization, some classic machine learning algorithms often prove hard to5

parallelize efficiently while maintaining convergence.6

In this paper, we focus on efficient parallel algorithms for the key machine learning7

task of inference on graphical models, in particular on the fundamental belief8

propagation algorithm. We address the challenge of efficiently parallelizing this9

classic paradigm by showing how to leverage scalable relaxed schedulers in this10

context. We present an extensive empirical study, showing that our approach11

outperforms previous parallel belief propagation implementations both in terms12

of scalability and in terms of wall-clock convergence time, on a range of practical13

applications.14

1 Introduction15

Hardware parallelism has been a key computational enabler for recent advances in machine learning,16

as it provides a way to reduce the processing time for the ever-increasing quantities of data required for17

training accurate models. Consequently, there has been considerable effort invested into developing18

efficient parallel variants of classic machine learning algorithms, e.g. [28, 22, 23, 24, 16].19

In this paper, we will focus on efficient parallel algorithms for the fundamental task of inference on20

graphical models. The inference task in graphical models takes the form of marginalisation: we are21

given observations for a subset of the random variables, and the task is to compute the conditional22

distribution of one or a few variables of interest. The marginalization problem is known to be23

computationally intractable in general [10, 33, 9], but inexact heuristics are well-studied for practical24

inference tasks.25

One popular heuristic for inference on graphical models is belief propagation [27], inspired by the26

exact dynamic programming algorithm for marginalization on trees. While belief propagation has27

no general approximation or even convergence guarantees, it has proven empirically successful in28

inference tasks, in particular in the context of decoding low-density parity check codes [8]. However,29

it remains poorly understood how to properly parallelize belief propagation.30

Parallelizing belief Propagation. To illustrate the challenges of parallelizing belief propagation,31

we will next give a simplified overview of the belief propagation algorithm, and refer the reader32

to Section 2 for full details. Belief propagation can be seen as a message passing or a weight33

update algorithm. In brief, belief propagation operates over the underlying graph G = (V,E) of the34

graphical model, maintaining a vector of real numbers called a message µi→j for each ordered pair35

(i, j) corresponding to an edge {i, j} ∈ E (Fig. 1). The core of the algorithm is the message update36

rule which specifies how to update an outgoing message µi→j at node i based on the other incoming37

messages at node i; for the purposes of the present discussion, it is sufficient to view this as black38

box function f over these other messages, leading to the update rule39

µi→j ← f
(
{µk→i : k ∈ N(i) \ {j}}

)
. (1)

This update rule is applied to messages until the values of messages have converged to a stable40

solution, at which point the algorithm is said to have terminated.41

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.



µ
1!

3
<latexit sha1_base64="wT43SeIhwHdOfGqTtxcMvpX36h4=">AAACFXicbVDLTgIxFO3gC/GFunTTSExYkRkxPnYkblxiIo+EmZBOuQMNnc7YdlQy4TvY6oe4M25d+x3+gGUgRsSTNDk5597ee48fc6a0bX9auZXVtfWN/GZha3tnd6+4f9BUUSIpNGjEI9n2iQLOBDQ00xzasQQS+hxa/vB66rceQCoWiTs9isELSV+wgFGijeS5YdJNHezqCFfH3WLJrtgZ8DJx5qSE5qh3i19uL6JJCEJTTpTqOHasvZRIzSiHccFNFMSEDkkfOoYKEoLy0mzpMT4xSg8HkTRPaJypvztSEio1Cn1TGRI9UH+9qfif10l0cOmlTMSJBkFng4KEY3PjNAHcYxKo5iNDCJXM7IrpgEhCtclp4SfOfDC3CPBSAY/6KRuZpXQ1xflPJsukeVpxqpXq7VmpVp7nlUdH6BiVkYMuUA3doDpqIIru0QQ9oxdrYr1ab9b7rDRnzXsO0QKsj29RhaAa</latexit>

µ
3!

1
<latexit sha1_base64="LOYgl+VQJXtRYpFTvzWWtvsF8mw=">AAACFXicbVDLTgIxFO3gC/GFunTTSExYkRkxPnYkblxiIo+EmZBOuQMNnc7YdlQy4TvY6oe4M25d+x3+gGUgRsSTNDk5597ee48fc6a0bX9auZXVtfWN/GZha3tnd6+4f9BUUSIpNGjEI9n2iQLOBDQ00xzasQQS+hxa/vB66rceQCoWiTs9isELSV+wgFGijeS5YdJNq9jVEXbG3WLJrtgZ8DJx5qSE5qh3i19uL6JJCEJTTpTqOHasvZRIzSiHccFNFMSEDkkfOoYKEoLy0mzpMT4xSg8HkTRPaJypvztSEio1Cn1TGRI9UH+9qfif10l0cOmlTMSJBkFng4KEY3PjNAHcYxKo5iNDCJXM7IrpgEhCtclp4SfOfDC3CPBSAY/6KRuZpXQ1xflPJsukeVpxqpXq7VmpVp7nlUdH6BiVkYMuUA3doDpqIIru0QQ9oxdrYr1ab9b7rDRnzXsO0QKsj29RkaAa</latexit>

µ1!2
<latexit sha1_base64="DIBtbKppI9w/5+CHgkUtFPK4HyQ=">AAACFXicbVDLTgIxFO3gC/GFunTTSExYkRkwPnYkblxiIo+EmZBOuQMNnc7YdlQy4TvY6oe4M25d+x3+gGUgRsWTNDk5597ee48fc6a0bX9YuZXVtfWN/GZha3tnd6+4f9BSUSIpNGnEI9nxiQLOBDQ10xw6sQQS+hza/uhq5rfvQSoWiVs9jsELyUCwgFGijeS5YdJLHezqCFcnvWLJrtgZ8DJxFqSEFmj0ip9uP6JJCEJTTpTqOnasvZRIzSiHScFNFMSEjsgAuoYKEoLy0mzpCT4xSh8HkTRPaJypPztSEio1Dn1TGRI9VH+9mfif1010cOGlTMSJBkHng4KEY3PjLAHcZxKo5mNDCJXM7IrpkEhCtcnp10+c+WBuEeClAh70YzYyS+lyhrPvTJZJq1pxapXazWmpXl7klUdH6BiVkYPOUR1dowZqIoru0BQ9oWdrar1Yr9bbvDRnLXoO0S9Y719P36AZ</latexit>

µ2!1
<latexit sha1_base64="M44EsxsJso0ShNGtkGBg4ZIJ+Z0=">AAACFXicbVDLTgIxFO3gC/GFunTTSExYkRkwPnYkblxiIo+EmZBOuQMNnc7YdlQy4TvY6oe4M25d+x3+gGUgRsWTNDk5597ee48fc6a0bX9YuZXVtfWN/GZha3tnd6+4f9BSUSIpNGnEI9nxiQLOBDQ10xw6sQQS+hza/uhq5rfvQSoWiVs9jsELyUCwgFGijeS5YdJLq9jVEXYmvWLJrtgZ8DJxFqSEFmj0ip9uP6JJCEJTTpTqOnasvZRIzSiHScFNFMSEjsgAuoYKEoLy0mzpCT4xSh8HkTRPaJypPztSEio1Dn1TGRI9VH+9mfif1010cOGlTMSJBkHng4KEY3PjLAHcZxKo5mNDCJXM7IrpkEhCtcnp10+c+WBuEeClAh70YzYyS+lyhrPvTJZJq1pxapXazWmpXl7klUdH6BiVkYPOUR1dowZqIoru0BQ9oWdrar1Yr9bbvDRnLXoO0S9Y719P5aAZ</latexit>

µ 2!3

<latexit sha1_base64="tOpVBZ1PagBEjdhwRJCqtPsWpjs=">AAACFXicbVDLTgIxFO3gC/GFunTTSExYkQGMjx2JG5eYyCOBCemUO9DQ6YxtRyUTvoOtfog749a13+EP2BkmRsWTNDk5597ee48bcqa0bX9YuZXVtfWN/GZha3tnd6+4f9BWQSQptGjAA9l1iQLOBLQ00xy6oQTiuxw67uQq8Tv3IBULxK2ehuD4ZCSYxyjRRnL6fjSIa7ivA1yfDYolu2KnwMukmpESytAcFD/7w4BGPghNOVGqV7VD7cREakY5zAr9SEFI6ISMoGeoID4oJ06XnuETowyxF0jzhMap+rMjJr5SU981lT7RY/XXS8T/vF6kvQsnZiKMNAi6GORFHJsbkwTwkEmgmk8NIVQysyumYyIJ1SanXz9x5oK5RYATC3jQj+nINKXLBGffmSyTdq1SrVfqN6elRjnLK4+O0DEqoyo6Rw10jZqohSi6Q3P0hJ6tufVivVpvi9KclfUcol+w3r8AUzGgGw==</latexit>

µ 3!2

<latexit sha1_base64="Qd1eV+atZK7vPiSXfekX/fLy3Fg=">AAACFXicbVDLTgIxFO3gC/GFunTTSExYkQGMjx2JG5eYyCOBCemUO9DQ6YxtRyUTvoOtfog749a13+EP2BkmRsWTNDk5597ee48bcqa0bX9YuZXVtfWN/GZha3tnd6+4f9BWQSQptGjAA9l1iQLOBLQ00xy6oQTiuxw67uQq8Tv3IBULxK2ehuD4ZCSYxyjRRnL6fjSI67ivA1ybDYolu2KnwMukmpESytAcFD/7w4BGPghNOVGqV7VD7cREakY5zAr9SEFI6ISMoGeoID4oJ06XnuETowyxF0jzhMap+rMjJr5SU981lT7RY/XXS8T/vF6kvQsnZiKMNAi6GORFHJsbkwTwkEmgmk8NIVQysyumYyIJ1SanXz9x5oK5RYATC3jQj+nINKXLBGffmSyTdq1SrVfqN6elRjnLK4+O0DEqoyo6Rw10jZqohSi6Q3P0hJ6tufVivVpvi9KclfUcol+w3r8AUzegGw==</latexit>

µ3!4
<latexit sha1_base64="S0kUd12qk6yU2TvtyqbhOS+7DRU=">AAACFXicbVDLTgIxFO34RHyhLt00EhNWZBDiY0fixiUm8khgQjrlDjR0OmPbUcmE72CrH+LOuHXtd/gDdoaJEfEkTU7Oubf33uOGnClt25/Wyura+sZmbiu/vbO7t184OGypIJIUmjTggey4RAFnApqaaQ6dUALxXQ5td3yd+O0HkIoF4k5PQnB8MhTMY5RoIzk9P+rHVdzTAa5N+4WiXbZT4GVSyUgRZWj0C1+9QUAjH4SmnCjVrdihdmIiNaMcpvlepCAkdEyG0DVUEB+UE6dLT/GpUQbYC6R5QuNU/d0RE1+pie+aSp/okfrrJeJ/XjfS3qUTMxFGGgSdD/Iijs2NSQJ4wCRQzSeGECqZ2RXTEZGEapPTwk+cuWBuEeDEAh71UzoyTekqwflPJsukdVauVMvV21qxXsryyqFjdIJKqIIuUB3doAZqIoru0Qw9oxdrZr1ab9b7vHTFynqO0AKsj29Wg6Ad</latexit>

µ4!3
<latexit sha1_base64="ZNjmjC4PkA4Xm9dg4cqBwHvdH7g=">AAACFXicbVDLTgIxFO34RHyhLt00EhNWZBDiY0fixiUm8khgQjrlDjR0OmPbUcmE72CrH+LOuHXtd/gDdoaJEfEkTU7Oubf33uOGnClt25/Wyura+sZmbiu/vbO7t184OGypIJIUmjTggey4RAFnApqaaQ6dUALxXQ5td3yd+O0HkIoF4k5PQnB8MhTMY5RoIzk9P+rHNdzTAa5O+4WiXbZT4GVSyUgRZWj0C1+9QUAjH4SmnCjVrdihdmIiNaMcpvlepCAkdEyG0DVUEB+UE6dLT/GpUQbYC6R5QuNU/d0RE1+pie+aSp/okfrrJeJ/XjfS3qUTMxFGGgSdD/Iijs2NSQJ4wCRQzSeGECqZ2RXTEZGEapPTwk+cuWBuEeDEAh71UzoyTekqwflPJsukdVauVMvV21qxXsryyqFjdIJKqIIuUB3doAZqIoru0Qw9oxdrZr1ab9b7vHTFynqO0AKsj29WiaAd</latexit>

1
<latexit sha1_base64="Ar+Zm9hA+KFumUvrdaL4DOCO3oo=">AAACCXicbVDLTgIxFO3gC/GFunTTSExYkRkxPnYkblxCIo8EJqRTLtDQ6UzajkomfAFb/RB3xq1f4Xf4A3aGiRHxJE1Ozrm3997jhZwpbdufVm5tfWNzK79d2Nnd2z8oHh61VBBJCk0a8EB2PKKAMwFNzTSHTiiB+B6Htje5Tfz2A0jFAnGvpyG4PhkJNmSUaCM1nH6xZFfsFHiVOBkpoQz1fvGrNwho5IPQlBOluo4dajcmUjPKYVboRQpCQidkBF1DBfFBuXG66AyfGWWAh4E0T2icqr87YuIrNfU9U+kTPVZ/vUT8z+tGenjtxkyEkQZBF4OGEcc6wMnVeMAkUM2nhhAqmdkV0zGRhGqTzdJPnHlgbhHgxgIe9VM6Mk3pJsHlTyarpHVecaqVauOiVCtneeXRCTpFZeSgK1RDd6iOmogiQHP0jF6sufVqvVnvi9KclfUcoyVYH99vSJtb</latexit>

2
<latexit sha1_base64="syPJrBP0PLgTVOqdTeEjcwruFfQ=">AAACCXicbVDLTgIxFO34RHyhLt00EhNWZAaMjx2JG5eQyCOBCemUO9DQ6UzajkomfAFb/RB3xq1f4Xf4A3YGYkQ8SZOTc+7tvfd4EWdK2/antba+sbm1ndvJ7+7tHxwWjo5bKowlhSYNeSg7HlHAmYCmZppDJ5JAAo9D2xvfpn77AaRiobjXkwjcgAwF8xkl2kiNSr9QtMt2BrxKnAUpogXq/cJXbxDSOAChKSdKdR070m5CpGaUwzTfixVEhI7JELqGChKAcpNs0Sk+N8oA+6E0T2icqb87EhIoNQk8UxkQPVJ/vVT8z+vG2r92EyaiWIOg80F+zLEOcXo1HjAJVPOJIYRKZnbFdEQkodpks/QTZx6YWwS4iYBH/ZSNzFK6SXH5k8kqaVXKTrVcbVwUa6VFXjl0is5QCTnoCtXQHaqjJqII0Aw9oxdrZr1ab9b7vHTNWvScoCVYH99w7Ztc</latexit>

3
<latexit sha1_base64="d0zBLU2NZyLiigVoht232zur734=">AAACCXicbVDLTgIxFO3gC/GFunTTSExYkUGMjx2JG5eQyCOBCemUO9DQ6UzajkomfAFb/RB3xq1f4Xf4A3aGiRHxJE1Ozrm3997jhpwpbdufVm5tfWNzK79d2Nnd2z8oHh61VRBJCi0a8EB2XaKAMwEtzTSHbiiB+C6Hjju5TfzOA0jFAnGvpyE4PhkJ5jFKtJGatUGxZFfsFHiVVDNSQhkag+JXfxjQyAehKSdK9ap2qJ2YSM0oh1mhHykICZ2QEfQMFcQH5cTpojN8ZpQh9gJpntA4VX93xMRXauq7ptIneqz+eon4n9eLtHftxEyEkQZBF4O8iGMd4ORqPGQSqOZTQwiVzOyK6ZhIQrXJZuknzlwwtwhwYgGP+ikdmaZ0k+DyJ5NV0j6vVGuVWvOiVC9neeXRCTpFZVRFV6iO7lADtRBFgOboGb1Yc+vVerPeF6U5K+s5RkuwPr4BcpKbXQ==</latexit>

4
<latexit sha1_base64="zJGj6wjrey5TfKHeYzZZk+D/smg=">AAACCXicbVDLTgIxFO3gC/GFunTTSExYkRklPnYkblxCIo8EJqRT7kBDpzNpOyqZ8AVs9UPcGbd+hd/hD1iGiRHxJE1Ozrm3997jRZwpbdufVm5tfWNzK79d2Nnd2z8oHh61VBhLCk0a8lB2PKKAMwFNzTSHTiSBBB6Htje+nfvtB5CKheJeTyJwAzIUzGeUaCM1qv1iya7YKfAqcTJSQhnq/eJXbxDSOAChKSdKdR070m5CpGaUw7TQixVEhI7JELqGChKAcpN00Sk+M8oA+6E0T2icqr87EhIoNQk8UxkQPVJ/vbn4n9eNtX/tJkxEsQZBF4P8mGMd4vnVeMAkUM0nhhAqmdkV0xGRhGqTzdJPnHlgbhHgJgIe9VM6Mk3pZo7Ln0xWSeu84lxULhrVUq2c5ZVHJ+gUlZGDrlAN3aE6aiKKAM3QM3qxZtar9Wa9L0pzVtZzjJZgfXwDdDebXg==</latexit>

Figure 1: State of the belief propagation algorithm
consist of two directed messages for each edge.

Importantly, the message update rule does not42

specify in which order messages should be43

updated. The standard solution, called syn-44

chronous belief propagation, is to update all the45

message simultaneously. That is, in each global46

round t = 1, 2, 3, . . . , given message values47

µti→j for all pairs (i, j), the new values µt+1
i→j48

are computed as49

µt+1
i→j ← f

(
{µtk→i : k ∈ N(i) \ {j}}

)
However, there is evidence that updating mes-50

sages one at a time leads to faster and more51

reliable convergence [14]; in particular, various52

proposed priority-based schedules—schedules53

that try to prioritize message updates that would make ‘more progress’—have proven empirically to54

converge with much fewer message updates than the synchronous schedule [14, 20, 38].55

Having to execute updates in a strict priority order poses a challenge for efficient parallel imple-56

mentations of belief propagation: while the synchronous schedule is naturally parallelizable, as all57

message updates can be done independently, the more efficient priority-based schedules are inherently58

sequential and thus seem difficult to parallelize. Accordingly, existing work on efficient parallel belief59

propagation has focused on designing custom schedules that try to import some features from the60

priority-based schedules while maintaining a degree of parallelism [16, 11].61

Our contributions. In this work, we address the challenges of parallel belief propagation by62

showing how to efficiently parallelize any priority-based schedule for belief propagation. The key63

idea is that we can relax the priority-based schedules by allowing limited out-of-order execution,64

concretely implemented using a relaxed scheduler, as we will explain next.65

Consider a belief propagation algorithm that schedules the message updates according to a prior-66

ity function r by always updating the message µi→j with the highest priority r(µi→j) next; this67

framework captures existing priority-based schedules such as residual belief propagation [14] and its68

variants [20, 38]. Concretely, an iterative centralized version of this algorithm can be implemented69

by storing the messages in a priority queue Q, and iterating the following procedure:70

(1) Pop the top element for Q to obtain the message µi→j with highest priority r(µi→j).71

(2) Update message µi→j following (1).72

(3) Update the priorities in Q for messages affected by the update.73

This template does not easily lend itself to efficient parallelization, as the priority queue Q becomes a74

contention bottleneck. Previous work, e.g. [16, 11] investigated various heuristics for the parallel75

scheduling of updates in belief propagation, trading off increased parallelism with additional work in76

processing messages or even potential loss of convergence.77

In this paper, we investigate an alternative approach, replacing the priority queue Q with a relaxed78

priority queue (scheduler) to obtain a efficient parallel version of the above template. A relaxed79

scheduler [3, 1, 2, 5] is similar to a priority queue, but instead of guaranteeing that the top element80

is always returned first, it only guarantees to return one of the top k elements by priority , where k81

is a variable parameter. Relaxed schedulers are popular in the context of parallel graph processing,82

e.g. [17, 26], and can induce non-trivial trade-offs between the degree of relaxation and the scalability83

of the underlying implementation, e.g. [1, 5].84

For belief propagation, relaxed schedulers induce a relaxed priority-based scheduling of the mes-85

sages, roughly following the original schedule but allowing for message updates to be performed86

out of order, with guarantees on the maximum degree of priority inversion. We investigate the87

scalability-convergence trade-off between the degree of relaxation in the scheduler, and the conver-88

gence behaviour of the underlying algorithm, both theoretically and practically. In particular:89

– We present a general scheme for parallelizing belief propagation schedules using relaxed sched-90

ulers with theoretical guarantees. While relaxed schedulers have been applied in other settings,91

and relaxed scheduling has been touched upon in belief propagation scheduling [16], no systematic92

study on relaxed belief propagation scheduling has been performed in prior work.93

2



– We provide a theoretical analysis on the effects of relaxed scheduling for belief propagation on94

trees. We exhibit both positive results–instance classes where relaxation overhead is negligible–95

and negative results, i.e., worst-case instances where relaxation can cause significant wasted96

work.97

– We implement and experimentally compare different variants of belief propagation under relaxed98

scheduling. We identify a new family of relaxed schedulers which consistently matches or99

outperforms previous proposals. Benchmarks show that this framework gives state-of-the-art100

parallel scalability on a wide variety of Markov random field models.101

2 Preliminaries and related work102

2.1 Belief Propagation103

We consider marginalization in pairwise Markov random fields; one can equivalently consider factor104

graphs or Bayesian networks [40]. A pairwise Markov random field is defined by a set of random105

variables X1, X2, . . . , Xn, a graph G = (V,E) with V = {1, 2, . . . , n}, and a set of factors106

ψi : Di → R+ for i ∈ V ,

ψij : Di ×Dj → R+ for {i, j} ∈ E,
whereDi denotes the domain of random variableXi. The edge factors ψij represent the dependencies107

between the random variables, and the node factors ψi represent a priori information about the108

individual random variables; the Markov random field defines a joint probability distribution on109

X = (X1, X2, . . . , Xn) as110

Pr
[
X = x

]
∝
∏
i

ψi(xi)
∏
ij

ψij(xi, xj) ,

where the ‘proportional to’ notation ∝ hides the normalization constant applied to the right-hand111

side to obtain a probability distribution. The marginalization problem is to compute the probabilities112

Pr[Xi = x] for a specified subset of variables; for convenience, we assume that any observations113

regarding the values of other variables are encoded in the node factor functions ψi.114

Belief propagation is a message-passing algorithm; for each ordered pair (i, j) such that {i, j} ∈ E,115

we maintain a message µi→j : Dj → R, and the algorithm iteratively updates these messages until116

the values (approximately) converge to a fixed point. On Markov random fields, the message update117

rule gives the new value of message µi→j as a function of the old messages directed to node i by118

µi→j(xj) ∝
∑
xi∈Di

ψi(xi)ψij(xi, xj)
∏

k∈N(i)\{j}

µk→i(xi) , (2)

where N(j) denotes the neighbors of node j in the graph G. Once the algorithm has converged, the119

marginals are estimated as120

Pr[Xi = xi] ∝ ψi(xi)
∏

j∈N(i)

µj→i(xi) .

The update rule (2) can be applied in arbitrary order. The standard synchronous belief propagation121

updates all the message simultaneously; in each global round t = 1, 2, 3, . . . , given message values122

µti→j for all pairs {i, j} ∈ E, the new values µt+1
i→j are computed as123

µt+1
i→j(xj) ∝

∑
xi∈Di

ψi(xi)ψij(xi, xj)
∏

k∈N(i)\{j}

µtk→i(xi) .

Asynchronous belief propagation. Starting with Elidan et al. [14], there has been a line of research124

arguing that asynchronous or iterative schedules for belief propagation tend to converge more reliably125

and with fewer message updates that the synchronous schedule. In particular, practical work has126

focused on schedules that attempt to iteratively perform ‘the most useful’ update at each step; the127

most prominent of these algorithms is the residual belief propagation of Elidan et al. [14], with other128

proposals aiming to address its shortcomings in various cases.129

Residual belief propagation. Given a current state of messages, let µ′i→j denote the message we130

would obtain by applying the message update rule (2) to message µi→j . In residual belief propagation,131

the priority of a message is given by the residual res(µi→j) of a message µi→j , defined as132

res(µi→j) = ‖µ′i→j − µi→j‖ , (3)

3



where ‖·‖ is an arbitrary norm; in this work, we assume L2 norm is used unless otherwise specified.133

That is, the residual of a message corresponds to amount of change that would happen if message134

µi→j would be updated. Note that this means that residual belief propagation performs lookahead,135

that is, the algorithm precomputes the future updates before applying them to the state of the algorithm.136

We will explore the performance of this base algorithm, as well as additional variants with weight137

decay [20] and without lookahead [38]. (Due to space constraints, we leave their detailed description138

to Appendix C.)139

2.2 Parallel belief propagation140

The question of parallelizing belief propagation is not fully understood. The synchronous schedule141

is trivially parallelizable by performing updates within each round in parallel, but the improved142

convergence properties of iterative schedules cannot easily be translated to parallel setting. Recent143

proposals aim to bridge this gap in an ad-hoc manner by designing custom algorithms for specific144

parallel settings.145

Residual splash. Residual splash [16] is a vertex-based algorithm inspired by residual BP. Residual146

splash was designed for MapReduce computation, and it aims to have larger individual tasks while147

retaining a similar structure to residual BP. Specifically, the algorithm works by defining a priority148

function over nodes of the Markov random field, and selecting the next node to process in a strict149

priority order. For the selected node, the algorithm performs a splash operation that propagates150

information within distance H in the graph; in practice, this results in threads performing larger151

individual tasks at once, offsetting the cost of accessing the strict scheduler.152

Randomized synchronous belief propagation. Van der Merve et al. [11] proposed a parallelization153

scheme for belief propagation on GPUs, mixing the structure of synchronous and residual belief154

propagation. Their algorithm considers all messages at once in global rounds, and performs filter-155

and-select steps. First, it filters out all messages whose residuals are below the convergence threshold.156

Second, out of the remaining messages, select a p-fraction uniformly at random to update. The157

fraction p is adjusted on the fly based on the convergence of the algorithm, preferring a low value158

if the algorithm is converging slowly, and a high value if it is converging fast. This algorithm is159

well-suited for GPUs, as the filter-and-select steps can be efficiently implemented. However, as shown160

by our experimental study, this strategy is not efficient on CPUs, on real-world models. Conversely,161

as discussed in [11], the dynamic priority-based strategy we propose would be hard to implement162

efficiently on GPUs, due to its irregular structure.163

3 Relaxed priority-based belief propagation164

In this section, we describe our framework for parallelizing belief propagation schedules via relaxed165

schedulers. The main idea of the framework follows the description given in the introduction;166

however, we generalize it to capture schedules that do not use individual messages as elementary167

tasks, e.g. residual path [16].168

3.1 Relaxed scheduling for iterative algorithms169

Relaxed schedulers are a basic tool to parallelize iterative algorithms, used in the context of large-scale170

graph processing [17, 26, 7, 12, 13]. At a high level, such iterative algorithms can be split into tasks,171

each corresponding to a local operation involving, e.g., a vertex and its edges. A standard example is172

Dijkstra’s classic shortest-paths algorithm, where each task updates the distance between a vertex173

and the source, as well as the distances of the vertex’s neighbours. In many algorithms, tasks have174

a natural priority order—in Dijkstra’s, the top task corresponds to the vertex of minimum distance175

from the source. Many graph algorithms share this structure [37, 2], and can be mapped onto the176

priority-queue pattern described in the introduction. However, due to contention on the priority queue,177

implementing this pattern in practice can negate the benefits of parallelism [26].178

Relaxed Scheduler Definition. A natural idea is to downgrade the guarantees of the perfect priority179

queue, to allow for more parallelism. Relaxed schedulers [1] formalize this relaxation as follows.180

We are given a parameter k, the degree of relaxation of the scheduler. The k-relaxed scheduler is a181

sequential object supporting Insert (<key, priority>), IncreaseKey (<key, priority>),182

with the usual semantics, and an ApproxDeleteMin() operations, ensuring:183

(1) Rank Bound. ApproxDeleteMin() always returns one of the top k elements in priority184

order.185

4



(2) k-Fairness. A priority inversion on element <key, priority> is the event that186

ApproxDeleteMin() returns a key with a lower priority while <key, priority> is in the187

queue. Any element can experience at most k priority inversions before it must be returned.188

Relaxed schedulers are quite popular in practice, as several efficient implementations have been189

proposed and applied [36, 6, 39, 4, 18, 26, 31, 3, 35], with state-of-the-art results in the graph190

processing domain [26, 17, 19]. A parallel line of work has attempted to provide guarantees on191

the amount of relaxation in individual schedulers [3, 2, 34], as well as the impact of using relaxed192

scheduling on existing iterative algorithms [1, 5]. Here, we employ the modeling of relaxed schedulers193

used in e.g. [2, 5] for graph algorithms, but apply it to inference on graphical models.194

3.2 Relaxed priority-based belief propagation195

Given a Markov random field, a priority-based schedule for BP is defined by a set of tasks196

T1, T2, . . . , TK , each corresponding to a sequence of edge updates, and a priority function r that197

assigns a priority r(Ti) to a task based on the current state of the messages as well as possible auxiliary198

information maintained separately. As discussed in the introduction, a non-relaxed algorithm can199

store all tasks in a priority queue, iteratively retrieve the highest-priority task, perform all its message200

updates, and update priorities accordingly.201

The relaxed variant works in exactly the same way, but assuming a k-relaxed priority scheduler Qk.202

More precisely, the following steps are repeated until a fixed convergence criterion is reached:203

(1) Ti ← Qk.ApproxDeleteMin() selects a task Ti among the k of highest priority in Qk.204

(2) Perform all message updates specified by the task Ti.205

(3) Update the priorities for all tasks.206

Note that tasks can be executed multiple times in this framework. In particular, we assume that the207

priority r(Ti) of a task Ti can only remain the same or increase when other tasks are executed, and208

the only point where the priority decreases is when the task is actually executed.209

3.3 Concurrent implementation210

The sequential version of a priority-based schedule for belief propagation can be implemented using a211

priority queue Q. One could map the sequential pattern directly to a parallel setting, by replacing the212

sequential priority queue with a linearizable concurrent one. However, this may not be the best option,213

for two reasons. First, it is challenging to build scalable exact priority queues [21]—the data structure214

is inherently contended, which leads to poor cache behavior and poor performance. Second, in this215

context, linearizability only gives the illusion of atomicity with respect to task message updates: the216

data structure only ensures that the task removal is atomic, whereas the actual message updates which217

are part of the task are not usually performed atomically together with the removal.218

The Multiqueue. For this reason, in our framework, we use a relaxed priority scheduler, i.e. a scal-219

able approximate priority queue called the Multiqueue [32, 3]. As the name suggests, the Multiqueue220

is composed of m independent exact priority queues. To Insert an element, a thread picks one of221

the exact priority queues uniformly at random, and inserts into it. To perform ApproxDeleteMin(),222

the thread picks two of the priority queues uniformly at random, and removes the higher priority223

element among their two top elements. Although very simple, this strategy has been shown to have224

strong probabilistic rank and fairness guarantees:225

Theorem 1 ([3, 1]). A Multiqueue formed of m ≥ 3 priority queues ensures the rank and fairness226

guarantees with parameter k = O(m logm), with high probability.227

Our Implementation. For our purposes, we assume that each thread i has one or a few local228

concurrent priority queues, used to store pointers to BP-specific tasks (e.g. messages), which are229

prioritized by an algorithm-specific function, e.g. the residual values for residual BP. We store230

additional metadata as required by the algorithm and the graphical model. (In our experiments, we231

use binary heaps for these priority queues, protected by locks.) To process a new task, the thread232

selects two among all the priority queues uniformly at random, and accesses the task/message from233

the queue whose top element has higher priority. The task is marked as in-process so it cannot be234

processed concurrently by some other thread. The thread then proceeds to perform the metadata235

updates required by the underlying variant of belief propagation, e.g., updating the message and the236

priorities of messages from the corresponding node. The termination condition, e.g., the magnitude237

of the largest update, is checked periodically.238

5



4 Dynamics of relaxed belief propagation on trees239

As we will see in Section 5, the relaxed priority-based belief propagation schedules yield fast240

converge times on a wide variety of Markov random fields; specifically, the number of message241

updates is roughly the same as for the non-relaxed version, while the running times are lower. The242

complementary theoretical question we examine here is whether we can give analytical bounds how243

much extra work—in terms of additional message updates—the relaxation incurs in the worst-case.244

Unfortunately, the dynamics of even synchronous belief propagation are poorly understood on general245

graphs, and no priority-based algorithms provide general guarantees on the convergence time. As246

such, we can only hope to gain some limited understanding on why relaxation retains the fast247

convergence properties of the exact priority-based schedules. Here, we present some theoretical248

evidence suggesting that as long as a schedule does not impose long dependency chains in the249

sequence of updates, relaxation incurs low overhead, but also that simple (non-loopy) worst-case250

instances exist.251

Analytical model. For analysis of the relaxed priority-based belief propagation, we consider the252

formal model introduced by [5, 2] to analyze performance of iterative algorithms under relaxed253

schedulers. Specifically, we model a relaxed scheduler Qk as a data structure which stores pairs254

corresponding to tasks and their priorities, with the operational semantics given in Section 3. In255

particular, there exists a parameter k such that each ApproxDeleteMin returns one of the k highest256

priority tasks in Qk, and if a task T becomes the highest priority task in Qk at some point during the257

execution, then one of the next k ApproxDeleteMin operations returns T . (By [3, 1], our practical258

implementation will satisfy these conditions with parameter k = O(p log p) w.h.p., where p is the259

number of concurrent threads.) Other than satisfying these properties, we assume that the behavior of260

Qk can be adversarial, or randomized.261

We model the behavior of relaxed priority-based belief propagation by investigating the number262

of message updates needed for convergence when the algorithm is executed sequentially using a263

relaxed scheduler Qk satisfying the above constraints. This analysis reduces to a sequential game264

between the algorithm, which queries Qk for tasks/messages, and the scheduler, which returns265

messages in possibly arbitrary fashion. One may think of the relaxed sequential execution as a form266

of linearization for the actual parallel execution—reference [1] formalizes this intuition. Please see267

the discussion at the end of this section for a practical interpretation.268

Relaxed BP on trees. We now consider the behavior of relaxed residual belief propagation schedules269

on trees with a single source. The setting is similar to the analysis of residual splash of Gonzalez et270

al. [16].Specifically, we assume that the Markov random field and the initialization of the algorithm271

satisfies (1) The graph G = (V,E) is a tree with a specified root r; and (2) The factors of the Markov272

random field and the initial messages are such that the residuals are zero for all messages other than273

the outgoing messages from the root, i.e., res(µi→j) = 0 if i 6= r.274

These conditions mean that residual belief propagation will start from the root, and propagate the275

messages down the trees until propagation reaches all leaves. In particular, residual belief propagation276

without relaxation will perform n− 1 message updates before convergence, updating each message277

away from root once. While this setting is restrictive, it does model practical instances where the278

MRF has tree-like structure, such as LDPC codes (see Section 5).279

To characterize the dynamics on relaxed residual belief propagation on trees with a single source, we280

observe that the algorithm can make two types of message updates:281

– Updating a message with zero residual, in which case nothing happens (a wasted update). This282

happens if the scheduler relaxes past the range of messages with non-zero residual.283

– Updating a message µi→j with non-zero residual, in which case the residual of µi→j goes down284

to zero, and the messages µj→k for the children k of j may change their residuals to non-zero285

values (a useful update).286

It follows that each edge will get updated only once with non-zero residual. At any point of time287

during the execution of the algorithm, we say that the frontier is the set of messages with non-zero288

residual, and use F (t) to denote the size of the frontier at time step t.289

To see how the size of the frontier relates to the number message updates in relaxed residual belief290

propagation, observe that after a useful update, we have one of the following cases:291

– If F (t) ≥ k, then the next ApproxDeleteMin() operation to Qk will give an edge with non-zero292

residual, resulting in a useful update.293

6



– If F (t) < k, then in the worst case we need k ApproxDeleteMin() operations until we perform294

a useful update.295

Our main analytic result bounds the worst-case work incurred by relaxation in two concrete cases.296

Lemma 2. Assume a k-relaxed scheduler Qk for belief propagation in the tree model defined above.297

The total number of updates performed by relaxed residual BP can be bounded as follows:298

– Good case: uniform expansion. If the tree model has identical and non-deterministic edge factors299

ψij with ψij(xi, xj) 6= 0 for all {i, j}, then the total number of updates performed by relaxed300

residual BP is n+O(Hk2).301

– Bad case: long paths. There exists a tree instance with height H = o(n) and an adversarial302

scheduler where relaxed residual belief propagation performs Ω(kn) message updates.303

Discussion. The full analysis and illustrations are provided in Appendix A and B. To interpret the304

results, first note that, in practice, the relaxation factor is in the order of p, the number of threads,305

and that H is usually small (e.g., logarithmic) w.r.t. the total number of baseline updates n. Thus,306

in the good case, the O(k2H) overhead can be seen as negligible: as p iterations occur in parallel,307

the average time-to-completion should be n/p + O(kH), which suggests almost perfect parallel308

speedup. At the same time, our worst-case instances shows that relaxed residual BP is not a “silver309

bullet:” there exist tree instances where it may lead to Ω(kn) message updates, i.e. asymptotically no310

speedup. We discuss how to alter the priority function to mitigate these worst-case instances on trees311

in the Appendix. The next section shows experimentally that such worst-case instances are unlikely.312

5 Evaluation313

We now empirically test the performance of the relaxed priority-based algorithms, comparing it314

against prior work. For the experiments, we have implemented multiple priority-based algorithms315

and instantiated them with both exact and relaxed priority schedulers.316

Priority-based algorithms. We implemented several variants of sequential belief propagation,317

among which synchronous (round-robin), residual, weight decay, and residual without lookahead.318

These variants were briefly described in Section 2, and are specified in detail in Appendix C.319

For residual splash, we implemented two variants. The first is the standard splash algorithm, as320

given in [17]. The second is our own optimized version we refer to as smart splash, which only321

updates messages along breadth-first-search edges during a splash operation. This variant has similar322

convergence as the baseline residual splash algorithm, but performs fewer message updates and323

should be more efficient. We include the following instantiations of the algorithms in the benchmarks324

and compare them against the sequential residual algorithm. Please see Section 3.3 or Appendix C325

for implementation details.326

Prior work algorithms. We ran many possible concurrent variants for the baseline algorithms,327

and chose the four best to we compare against our relaxed versions. For the full results, please see328

Appendix E. First, we choose the parallel version of the standard synchronous belief propagation329

(Synch). We omit some synchronous algorithms such as the randomized synchronous belief prop-330

agation of Van der Merve et al. [11] since they perform consistently worse (Appendix E.2.4). We331

also include the exact residual algorithms implemented via the coarse-grained priority queue, which332

maintains exact priority order. Specifically, here we implemented standard the residual BP algorithm333

(Coarse-G) and the splash algorithm of [17] (Splash) with the best value of H , which we found to334

be 10.335

We also include the randomized version of splash algorithm (Random Splash) proposed in the336

journal version of the paper [16] with H = 2, which performed best. This algorithm uses a similar337

idea of relaxation, but, crucially, instead of a Multiqueue scheduler, they implement a naive relaxed338

queue where threads randomly insert and delete into p exact priority queues. While this distinction339

may seem small, it is known [3] that this variant does not implement a k-relaxed scheduler for340

any k, as its relaxation factor grows (diverges) as more and more operations are performed, and341

therefore corresponds to picking tasks at random to perform. As we will see in our experimental342

analysis, this does result in a significant difference between the number of additional (wasted) steps343

performed relative to a relaxed priority scheduler. Finally, we note that we are the first to implement344

this algorithm.345

Relaxed algorithms. We compare the above algorithms against the algorithms we propose, i.e.346

relaxed versions of residual belief propagation (Relaxed Residual), weight decay belief propagation347

(Weight-Decay), residual without lookahead (Priority) and smart splash (Relaxed Smart Splash)348

7



Input Prior Work Relaxed
Synch Coarse-G Splash (10) Random Splash (2) Residual Weight-Decay Priority Smart Splash (2)

Tree 2.538x 0.265x 1.648x 2.252x 1.391x 1.282x 1.239x 2.121x
Ising 3.009x 0.801x 5.393x 11.731x 6.720x 6.276x 5.759x 14.175x
Potts — 0.624x 1.041x 11.855x 7.454x 5.978x 5.850x 15.235x

LDPC 17.735x 1.166x — 5.150x 13.393x 5.615x — 10.519x
Table 1: Algorithm speedups with respect to the sequential residual algorithm. Higher is better.

Input Prior Work Relaxed
Synch Coarse-G Splash (10) Random Splash (2) Residual Weight-Decay Priority Smart Splash (2)

Tree 48.000x 1.003x 16.442x 8.344x 1.020x 1.012x 3.657x 2.565x
Ising 45.006x 1.003x 9.266x 5.787x 1.058x 1.068x 1.816x 1.878
Potts — 1.006x 9.005x 5.983x 1.068x 1.053x 1.791x 1.891x

LDPC 4.404x 1.003x — 4.089x 1.007x 0.883x — 0.973x
Table 2: Total updates relative to the sequential residual algorithm at 70 threads. Lower is better.

with the best value H = 2. For all these algorithms, the scheduler is a Multiqueue with 4 priority349

queues per thread, as discussed in Section 3, which we found to work best (although other values350

behave similarly).351

Methodology. We run our experiments on four MRFs of moderate size: a binary tree of size 107, an352

Ising model [14, 20] of size 103×103, a Potts [38] of size 103×103 and the decoding of (3, 6)-LDPC353

code [30] of size 3 · 105. More information about tasks and running times given in Appendix D.354

For each pair of algorithm and model, we run each experiment five times, and average the execution355

time and the number of performed updates on the messages. We executed on a 4-socket Intel Xeon356

Gold 6150 2.7 GHz server with four sockets, each with 18 cores, and 512GB of RAM. The code357

is written in Java; we use Java 11.0.5 and OpenJDK VM 11.0.5. Our code is available at https:358

//cutt.ly/neurips20208924. Our code is fairly well optimized—in sequential executions it359

outperforms the C++-based open-source framework of libDAI [25] by more than 10x, and by more360

that 100x with multi-threading. The sizes of the inputs described in the previous paragraph are chosen361

such that their execution is fairly long while the data still can fit into RAM.362

We run the baseline algorithm on one process since it is sequential, while all other algorithms are363

concurrent and, thus, are executed using 70 threads. The execution times (speedups) relative to364

the sequential baseline are presented in Table 1. Each cell of the table shows how much faster the365

corresponding algorithm works in comparison to the sequential residual one, i.e., higher is better;366

“—” means that the execution did not converge within a reasonable limit of time.367

Results. See Table 1 for the speedups versus the baseline, on 70 threads. (For ablation studies,368

see Appendix E.) On trees, the fastest algorithm is, predictably, the synchronous one, since on369

tree-like models with small diameter D it performs only approximately O(D) times more updates in370

comparison to the sequential baseline, while being almost perfectly parallelizable. So, it works well371

on perfect binary tree as our Tree model, but works much worse on the chain graphs. On Ising and372

Potts models, the best algorithm is Relaxed Smart Splash (RSS) withH = 2. The algorithm closest to373

it is Random Splash with H = 2, which is 20−30% slower. For LDPC decoding, which is a tree-like374

model, the best-performing is again the Synchronous algorithm. We note the good performance of the375

relaxed residual algorithm, as well as of RSS, and the relatively poor performance of Random Splash,376

due to high numbers of wasted updates. Examining Table 2, we notice in general the relatively low377

number of wasted updates for relaxed algorithms. In summary, the choice of algorithm can depend on378

the model; however, one may choose Relaxed Smart Splash since it performs well on all our models.379

6 Discussion380

We have investigated the use of relaxed schedulers in the context of the classic belief propagation381

algorithm for inference on graphical model, and have shown that this approach leads to an efficient382

family of algorithms, which improve upon the previous state-of-the-art non-relaxed parallelization383

approaches in our experiments. Overall, our relaxed implementations, either Relaxed Residual or384

Relaxed Smart Splash, have state-of-the-art performance in multithreaded regimes, making them a385

good generic choice for any belief propagation task.386

For future work, we highlight two possible directions. First is to extend our theoretical analysis387

to cover more types of instances; however, as we have seen, the structure of belief propagation388

schedules can be quite complicated, and the challenge is the figure out a proper framework for more389

general analysis. Second possible direction is extending our empirical study to a massively-parallel,390

multi-machine setting.391

8

https://cutt.ly/neurips20208924
https://cutt.ly/neurips20208924
https://cutt.ly/neurips20208924


Broader impact392

As this work is focused on speeding up existing inference techniques and does not focus on a specific393

application, the main benefit is enabling belief propagation applications to process data sets more394

efficiently, or enable use of larger data sets. We do not expect direct negative societal consequences395

to follow from our work, though we note that as with all heuristic machine learning techniques, there396

is an inherent risk of misinterpreting the results or ignoring biases in the data if proper care is not397

taken in application of the methods. However, such risks exist regardless of our work.398

References399

[1] Dan Alistarh, Trevor Brown, Justin Kopinsky, Jerry Z. Li, and Giorgi Nadiradze. Distributionally400

linearizable data structures. In Proceedings of the 30th on Symposium on Parallelism in401

Algorithms and Architectures, SPAA ’18, pages 133–142, New York, NY, USA, 2018. ACM.402

[2] Dan Alistarh, Trevor Brown, Justin Kopinsky, and Giorgi Nadiradze. Relaxed schedulers can403

efficiently parallelize iterative algorithms. In Proceedings of the 2018 ACM Symposium on404

Principles of Distributed Computing, PODC ’18, pages 377–386, New York, NY, USA, 2018.405

ACM.406

[3] Dan Alistarh, Justin Kopinsky, Jerry Li, and Giorgi Nadiradze. The power of choice in priority407

scheduling. In Proceedings of the ACM Symposium on Principles of Distributed Computing,408

PODC ’17, pages 283–292, New York, NY, USA, 2017. ACM.409

[4] Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. The SprayList: A scalable relaxed410

priority queue. In 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel411

Programming, PPoPP 2015, San Francisco, CA, USA, 2015. ACM.412

[5] Dan Alistarh, Giorgi Nadiradze, and Nikita Koval. Efficiency guarantees for parallel incremental413

algorithms under relaxed schedulers. In The 31st ACM Symposium on Parallelism in Algorithms414

and Architectures, SPAA ’19, page 145–154, New York, NY, USA, 2019. Association for415

Computing Machinery.416

[6] Dmitry Basin, Rui Fan, Idit Keidar, Ofer Kiselov, and Dmitri Perelman. CAFÉ: Scalable417

task pools with adjustable fairness and contention. In Proceedings of the 25th International418

Conference on Distributed Computing, DISC’11, pages 475–488, Berlin, Heidelberg, 2011.419

Springer-Verlag.420

[7] Guy E Blelloch, Yan Gu, Julian Shun, and Yihan Sun. Parallelism in randomized incremental421

algorithms. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and422

Architectures, pages 467–478. ACM, 2016.423

[8] Andres I Vila Casado, Miguel Griot, and Richard D Wesel. Informed dynamic scheduling424

for belief-propagation decoding of LDPC codes. In 2007 IEEE International Conference on425

Communications, pages 932–937. IEEE, 2007.426

[9] Gregory F. Cooper. The computational complexity of probabilistic inference using Bayesian427

belief networks. Artificial Intelligence, 42(2):393–405, 1990.428

[10] Paul Dagum and Michael Luby. Approximating probabilistic inference in Bayesian belief429

networks is NP-hard. Artificial Intelligence, 60(1):141–153, 1993.430

[11] Mark Van der Merwe, Vinu Joseph, and Ganesh Gopalakrishnan. Message scheduling for431

performant, many-core belief propagation. In Proceedings of the IEEE High Performance432

Extreme Computing Conference (HPEC 2019), 2019.433

[12] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A framework for parallel graph434

algorithms using work-efficient bucketing. In Proceedings of the 29th ACM Symposium on435

Parallelism in Algorithms and Architectures, SPAA ’17, pages 293–304, New York, NY, USA,436

2017. ACM.437

[13] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Theoretically efficient parallel graph438

algorithms can be fast and scalable. In 30th on Symposium on Parallelism in Algorithms and439

Architectures (SPAA 2018), pages 393–404, 2018.440

9



[14] Gal Elidan, Ian McGraw, and Daphne Koller. Residual belief propagation: informed scheduling441

for asynchronous message passing. In Proceedings of the 22nd Conference on Uncertainty in442

Artificial Intelligence (UAI 2006), pages 165–173, 2006.443

[15] Robert G. Gallager. Low-density parity-check codes. IRE Transactions on Information Theory,444

8(1):21–28, 1962.445

[16] Joseph Gonzalez, Yucheng Low, and Carlos Guestrin. Residual splash for optimally parallelizing446

belief propagation. In Proceedings of the 12th International Conference on Artificial Intelligence447

and Statistics (UAI 2009), volume 5, pages 177–184, 2009.448

[17] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. Powergraph:449

distributed graph-parallel computation on natural graphs. In 10th USENIX Symposium on450

Operating Systems Design and Implementation (OSDI ’12), pages 17–30, 2012.451

[18] Andreas Haas, Michael Lippautz, Thomas A. Henzinger, Hannes Payer, Ana Sokolova,452

Christoph M. Kirsch, and Ali Sezgin. Distributed queues in shared memory: multicore per-453

formance and scalability through quantitative relaxation. In Computing Frontiers Conference,454

CF’13, Ischia, Italy, May 14 - 16, 2013, pages 17:1–17:9, 2013.455

[19] Mark C Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel Sanchez. Unlocking456

ordered parallelism with the swarm architecture. IEEE Micro, 36(3):105–117, 2016.457

[20] Christian Knoll, Michael Rath, Sebastian Tschiatschek, and Franz Pernkopf. Message schedul-458

ing methods for belief propagation. In Machine Learning and Knowledge Discovery in459

Databases (ECML PKDD 2015), pages 295–310, 2015.460

[21] Andrew Lenharth, Donald Nguyen, and Keshav Pingali. Priority queues are not good concurrent461

priority schedulers. In European Conference on Parallel Processing, pages 209–221. Springer,462

2015.463

[22] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski,464

James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the465

parameter server. In 11th USENIX conference on Operating Systems Design and Implementation466

(OSDI’14), page 583–598, 2014.467

[23] Ji Liu and Stephen J Wright. Asynchronous stochastic coordinate descent: Parallelism and468

convergence properties. SIAM Journal on Optimization, 25(1):351–376, 2015.469

[24] Yucheng Low, Joseph E. Gonzalez, Aapo Kyrölä, Danny Bickson, Carlos E. Guestrin, and470

Joseph Hellerstein. GraphLab: A new framework for parallel machine learning. In 26th471

Conference on Uncertainty in Artificial Intelligence (UAI 2010), page 340–349, 2010.472

[25] Joris M. Mooij. libDAI: A free and open source C++ library for discrete approximate inference473

in graphical models. Journal of Machine Learning Research, 11:2169–2173, August 2010.474

[26] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight infrastructure for475

graph analytics. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems476

Principles, SOSP ’13, pages 456–471, New York, NY, USA, 2013. ACM.477

[27] Judea Pearl. Reverend Bayes on inference engines: A distributed hierarchical approach. In478

Proceedings of the Second AAAI Conference on Artificial Intelligence (AAAI 1982), page479

133–136. AAAI Press, 1982.480

[28] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free481

approach to parallelizing stochastic gradient descent. In Advances in neural information482

processing systems, pages 693–701, 2011.483

[29] Thomas J. Richardson and Rüdiger L. Urbanke. The capacity of low-density parity-check codes484

under message-passing decoding. IEEE Transactions on information theory, 47(2):599–618,485

2001.486

[30] Thomas J. Richardson and Rüdiger L. Urbanke. Modern coding theory. Cambridge university487

press, 2008.488

10



[31] Hamza Rihani, Peter Sanders, and Roman Dementiev. Brief announcement: MultiQueues:489

Simple relaxed concurrent priority queues. In Proceedings of the 27th ACM Symposium on490

Parallelism in Algorithms and Architectures, SPAA ’15, pages 80–82, New York, NY, USA,491

2015. ACM.492

[32] Hamza Rihani, Peter Sanders, and Roman Dementiev. Brief announcement: Multiqueues:493

Simple relaxed concurrent priority queues. In Proceedings of the 27th ACM symposium on494

Parallelism in Algorithms and Architectures, pages 80–82, 2015.495

[33] Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1):273–302,496

1996.497

[34] Adones Rukundo, Aras Atalar, and Philippas Tsigas. Monotonically Relaxing Concurrent498

Data-Structure Semantics for Increasing Performance: An Efficient 2D Design Framework. In499

33rd International Symposium on Distributed Computing (DISC 2019), volume 146 of Leibniz500

International Proceedings in Informatics (LIPIcs), pages 31:1–31:15, Dagstuhl, Germany, 2019.501

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.502

[35] Konstantinos Sagonas and Kjell Winblad. A contention adapting approach to concurrent ordered503

sets. Journal of Parallel and Distributed Computing, 2017.504

[36] Nir Shavit and Itay Lotan. Skiplist-based concurrent priority queues. In Parallel and Distributed505

Processing Symposium, 2000. IPDPS 2000. Proceedings. 14th International, pages 263–268.506

IEEE, 2000.507

[37] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, and Phillip B. Gibbons. Reducing contention508

through priority updates. In Proceedings of the Twenty-fifth Annual ACM Symposium on509

Parallelism in Algorithms and Architectures, SPAA ’13, pages 152–163, New York, NY, USA,510

2013. ACM.511

[38] Charles Sutton and Andrew McCallum. Improved dynamic schedules for belief propagation. In512

Proceedings of the 23rd Conference on Uncertainty in Artificial Intelligence (UAI 2007), pages513

376–383, 2007.514

[39] Martin Wimmer, Jakob Gruber, Jesper Larsson Träff, and Philippas Tsigas. The lock-free515

k-LSM relaxed priority queue. In 20th ACM SIGPLAN Symposium on Principles and Practice516

of Parallel Programming (PPoPP 2015), pages 277–278, 2015.517

[40] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Understanding belief propagation518

and its generalizations. In Exploring Artificial Intelligence in the New Millenium, chapter 8,519

pages 239—269. Morgan Kaufmann, 2003.520

11



A Analysis521

Lemma 2. Assume a k-relaxed scheduler Qk for belief propagation in the tree model defined above.522

The total number of updates performed by relaxed residual BP can be bounded as follows:523

– Good case: uniform expansion. If the tree model has identical and non-deterministic edge factors524

ψij with ψij(xi, xj) 6= 0 for all {i, j}, then the total number of updates performed by relaxed525

residual BP is n+O(Hk2).526

– Bad case: long paths. There exists a tree instance with height H = o(n) and an adversarial527

scheduler where relaxed residual belief propagation performs Ω(kn) message updates.528

Proof. Good case: uniform expansion. As the first case, we consider the tree model in the case529

where the edge factors ψij are identical for all edges and not deterministic, i.e. ψij(xi, xj) 6= 0 for530

all {i, j}. Let us say that the level of a message µi→j is ` if the distance from i to the root r is `. The531

conditions we imposed our Markov random field, together with the update rule (2), imply that the532

residuals of the messages are decreasing in the level ` of the message, and all messages on level ` will533

have the same residual when they are in the frontier. This means that residual schedule will prefer534

updating messages on lower levels first.535

Now consider the progress of the relaxed residual belief propagation on this tree; let H denote the536

height of the tree. Now assume that all messages on levels 0, 1, . . . , `− 1 have had a useful update,537

and consider how many wasted updates we can make in the worst case before all messages on level `538

have been processed. Let f denote the number of message on level ` still in the frontier:539

– While f ≥ k, there are at least k messages of level ` on the frontier. Since they have the highest540

residual out of the messages in the frontier, each update is a useful update of a message on level `.541

– When f < k, there can be updates that do not hit messages on level `, which can possibly be542

wasted updates. However, the highest-priority messages are still from level `, so every kth update543

will hit a message on level ` by the guarantees of the scheduler. Thus, in (k − 1)f = O(k2)544

updates, all remaining messages on level ` have been processed.545

Since there can be at most n− 1 useful updates, and the number of levels is H − 1, the total number546

of updates performed by relaxed residual belief propagation is n+O(Hk2).547

Bad case: long paths. A simple example where relaxed residual belief propagation performs poorly548

is a path. That is, if our underlying tree is a path of length n with a root at one end, then relaxed549

residual belief propagation can perform Ω(kn) message updates in the worst case. However, the path550

has height H = n, so one might ask if there is a general upper bound of form n+O(Hk2) on trees551

without restricting the edge factors as in our previous example.552

Unfortunately, turns out that without the restrictions above, we can construct examples of trees with553

height H = o(n) where relaxed residual belief propagation still performs Ω(kn) message updates554

(see Figure 2 for an illustration):555

(1) Start with a path of length
√
n, with a root at one end.556

(2) Attach a new path of length
√
n to each vertex.557

(3) For each remaining degree-2 node in the graph, attach a single new node to it.558

Figure 2: Example of the tree where relaxed resid-
ual belief propagation performs poorly.

This construction results in a 3-regular rooted
tree with Θ(n) nodes and depth H = O(

√
n).

Finally, we choose the edge factors so that residu-
als on the side paths are larger than the residuals
on the main path, so residual belief propagation
will prefer following the side paths first.

One can now observe that under the adversarial
model for the relaxed scheduler, the adversary
can select the execution of the relaxed scheduler
so that the frontier size never exceeds 4. That
is, adversary forces the algorithm to process the
graph one side path at time, wasting k − 1 steps
between each useful update.

12



Finally, we note that the same construction can be generalized to obtain instances with similar
relaxation overhead and diameter O(n1/c) for larger constants c < k, by simply working with paths
of length n1/c and repeating the path attachment step c times.

Remark 3. As suggested by the above examples, one might consider changing the priority function559

to preferentially select messages closer to the source. This can lead to improved work guarantees for560

the relaxed schedule. Indeed, we discuss one concrete example in Section B, where we show how561

to relax the optimal schedule on trees. However, it is not straightforward to construct such priority562

functions so that they also make sense on general graphs, which can have non-monotonic potentials563

and cycles.564

B Optimal schedule on trees565

On trees, the belief propagation gives exact marginals under any schedule that updates each edge
infinitely often. However, there is an optimal schedule that updates each message exactly once,
requiring O(n) message updates [27]. Assume the tree has a fixed root v:

(1) In the first phase, all messages towards the root are updated starting from the leaves; each566

message is updated only after all its predecessors have been updated.567

(2) In the second phase, all messages away from the root are update starting from the root.568

This schedule can be modeled in the priority-based scheduling framework as follows:569

(1) Initially, the outgoing messages at leaf nodes have priority n, and all other messages have570

priority 0.571

(2) When message is updated with non-zero priority, its priority is changed to 0.572

(3) Once all messages µk→i for k ∈ N(i) \ {j} have been updated once with non-zero priority,573

the message µi→j changes to priority to minimum of update priorities of the incoming edges574

minus one.575

This priority function can clearly be implemented by keeping a constant amount of extra information576

per message. When the above schedule is executed with an exact scheduler, the algorithm will update577

each message once with non-zero priority before considering any messages with zero priority, and by578

following the analysis of [27], one can see that the algorithm has converged at that point.579

Similarly, in the relaxed version of the schedule, the algorithm has converged once all messages have580

been updated once with non-zero priority. In addition, some messages may be updated multiple times581

with priority 0; we call these wasted updates, and the updates done while the message has non-zero582

priority useful updates.583

Claim 4. The relaxed version of the optimal schedule on trees performs O(n + k2H) message584

updates, where H is the height of the tree.585

Proof. For the purposes of analysis, assign messages into buckets B1, B2 . . . , Bn so that bucket B`586

contains the messages that will have their useful update done with priority `. One can observe that587

the update priority of message µi→j is the n− d, where d is the maximum distance from node i to a588

leaf using a path that does not cross edge {i, j}. Since this is bounded by the diameter of the tree,589

there are at most 2H non-empty buckets.590

Assume that all messages in buckets Bn, Bn−1, . . . , B`+1 have been already had a useful update. We591

now show that in there can be at most k2 wasted updates before all messages in B` have had a useful592

update. Since all earlier buckets have been processed, all messages in B` have either already had a593

useful update, or have priority `. Let b be the number of messages remaining in bucket B`:594

– While b ≥ k, there are at least k messages with priority `, so each update is a useful update595

of a message in B`596

– When b < k, there can be wasted updates. However, since buckets Bn, Bn−1, . . . , B`+1597

have had all useful updates, the top elements in the schedule will be from bucket B`, and598

13



thus by the guarantees of the scheduler, there can be at most k − 1 wasted updates before599

the top element is processed. Thus, in b(k − 1) = O(k2) updates, all remaining messages600

of B` will have their useful update.601

By an inductive argument, all non-empty buckets have been processed after O(k2H) wasted updates,602

so the total number of updates is O(n+ k2H).603

C Algorithms604

C.1 Asynchronous belief propagation605

Starting with Elidan et al. [14], there has been a line of research arguing that asynchronous or iterative606

schedules for belief propagation tend to converge more reliably and with fewer message updates that607

the synchronous schedule. In particular, the practical work has focused on developing schedules that608

attempt to iteratively perform ‘the most useful’ update at each step; the most prominent of these609

algorithms is the residual belief propagation of Elidan et al. [14], with other proposals aiming to610

address the shortcomings of residual belief propagation in various cases.611

Residual belief propagation. Given a current state of messages, let µ′i→j denote the message we612

would obtain by applying the message update rule (2) to message µi→j . In residual belief propagation,613

the priority of a message is given by the residual res(µi→j) of a message µi→j , defined as614

res(µi→j) = ‖µ′i→j − µi→j‖ , (4)

where ‖·‖ is an arbitrary norm; in this work, we assume L2 norm is used unless otherwise specified.615

That is, the residual of a message corresponds to amount of change that would happen if message µi→j616

would be updated. Note that this means that residual belief propagation performs lookahead, that is,617

the algorithm precomputes the future updates before applying them to the state of the algorithm.618

Weight decay belief propagation. Weight decay belief propagation of [20] is a variant of residual619

belief propagation that penalizes message priorities for repeated updates. That is, let m(µi→j) denote620

how many times message µi→j has been updated by the algorithm, and let res(µi→j) denote the621

residual of a message as above. The priority function of weight decay belief propagation is622

r(µi→j) =
res(µi→j)

m(µi→j)
.

The motivation behind this weight decay scheme is that empirical observations suggest that one623

possible failure mode of residual belief propagation is getting stuck in cycles with large residuals; the624

weight decay prioritizes other edges in cases where this happens.625

Residual without lookahead. Another variant of residual belief propagation is the lookahead-626

avoiding belief propagation of [38]. As the name implies, this algorithm does not perform the exact627

residual computation using (4), but instead approximates the residuals indirectly, with the aim of628

reducing the computational cost of priority updates.629

Informally, the basic idea is that for each message µi→j , we track the amount other incoming630

messages at node i have changed since the last update of µi→j , and use this to define the priority of631

updating µi→j . The actual approximation in the algorithm uses a slightly different notion of residual632

from (4), so we refer to [38] for full details.633

C.2 Parallel belief propagation634

As discussed above, the question of parallelizing belief propagation is fairly poorly understood.635

The synchronous schedule is trivially parallelizable by performing updates within each round in636

parallel, but the improved converge properties of the iterative schedules cannot easily be translated to637

parallel setting. There have been recent proposals that aim to bridge this gap in an ad-hoc manner by638

designing custom algorithms for specific parallel computation settings.639

Residual splash. The residual splash belief propagation [16] is a vertex-based algorithm inspired640

by residual belief propagation. The residual splash algorithm was initially designed for MapReduce641

computation, and it aims to have larger individual tasks while retaining a similar structure to residual642

belief propagation.643

14



Specifically, the residual splash algorithm works by defining a priority function over nodes of the644

Markov random field, and selecting the next node to process in a strict priority order. For the selected645

node, the algorithm performs a splash operation that propagates information within distance H in the646

graph; in practice, this results in threads performing larger individual tasks at once, offsetting the cost647

of accessing the strict scheduler.648

In detail, the priority of for nodes is given by the node residual, defined as649

res(i) = max
j∈N(i)

res(µj→i) .

Given a depth parameter H , the splash operation at node i is defined by following sequence of650

message updates:651

(1) Construct a BFS tree T of depth H rooted at node i.652

(2) In the reverse BFS order on T—starting from leaves—process all nodes in T , updating all653

outgoing messages for each node processed.654

(3) Repeat the previous step in BFS order, i.e., starting from the root.655

In other words, this process gather all available information at radius H from the selected node, and656

propagates it to all nodes within the radius.657

Randomized synchronous belief propagation. Van der Merve et al. [11] proposed a parallelization658

scheme for belief propagation on GPUs, mixing the structure of synchronous and residual belief659

propagation. Their algorithm considers all messages at once in global rounds, and performs the660

following filter-and-select steps before computing the message updates:661

(1) Filter out all messages whose residuals are below the convergence threshold.662

(2) Out of the remaining messages, select a p fraction of messages uniformly at random to663

update.664

Alternatively, the process can perform the algorithm on per-node basis, using node residuals as in the665

residual splash algorithm.666

The fraction p is adjusted on the fly based on the convergence of the algorithm, preferring a low667

value if the algorithm is converging slowly, and a high value if it is converging fast. Concretely, the668

selection scheme for p used by [11] is to set p = 1 if the number of messages above the convergence669

threshold decreased by at least 10% in the last round, and set it to a smaller fixed value otherwise.670

We note that the randomized synchronous algorithm is particularly well suited for GPU use, as671

the filter-and select steps can be efficiently implemented on GPUs. However, as shown by our672

experimental study, this strategy is not efficient on a subset of real-world models, when ported to673

CPU. Conversely, as discussed by the authors of [11], the dynamic priority-based strategy we propose674

would be hard to implement efficiently on GPUs, due to its irregular structure.675

D Models676

We run our experiments on four Markov random fields models.677

Trees. As a simple base case, we consider a simple tree model similar to the analytical setting in678

Section 4. The underlying graph is a full binary tree on 10 millions vertices, and the other parameters679

are set up as follows:680

– All variables are binary, i.e. the domain is {0, 1} for each variable.681

– Vertex factors are (0.1, 0.9) for the root and (0.5, 0.5) for all other vertices.682

– Edge factors are ψij(x, y) =

{
1, x = y

0, x 6= y
for all edges.683

As discussed in Section 4, these choices create a setup where the belief propagation has to propagate684

information from the root to all other nodes. Thus, under an optimal schedule, the total number of685

performed updates is be equal to 107 − 1. Since we know that all algorithms will converge on this686

model, we run the algorithms until exact convergence.687

15



Ising and Potts models. Ising and Potts models are Markov random fields defined over an n× n688

grid graph, arising from applications in statistical physics. Both of Ising [14, 20] and Potts [38]689

models were used in prior work as test case, and in general they offer a class of good test instances,690

as they both exhibit complex cyclic propagations and are easy to generate.691

For the parameters of the models, we mostly follow prior work in the setup. As the underlying graph,692

we use a 103 × 103 grid graph to get instances where the effects of parallelization are clearly visible.693

For the Ising model, we select the factors similarly to [14, 20]:694

– The variable domain is {−1, 1} for all variables.695

– Vertex factors are ψi(x) = eβix.696

– Edge factors are ψij(x, y) = eαijxy .697

– The parameters αij and βi are chosen uniformly at random from [−1, 1].698

For the Potts model, we select the factors following [38]:699

– The variable domain is {0, 1} for all variables.700

– Vertex factors are ψi(x) =

{
eβi , x = 1

1, x = 0
.701

– Edge factors are ψij(x, y) =

{
eαij , x = y

1, x 6= y
.702

– The parameters αij and βi are chosen uniformly at random from [−2.5, 2.5].703

For both Ising and Potts models, we set the convergence threshold to 10−5. That is, we terminate704

algorithm once all task have priority below this threshold.705

LDPC codes. Finally, we generate Markov random fields corresponding to the (3, 6)-LDPC (low706

density parity check code [15]) decoding. LDPC decoding is one of the more successful application707

of belief propagation. We consider a simple version of LDPC decoding task where convergence708

guarantees exist [29]. However, we stress that coding theory is its own extensive research area, and709

far more optimized codes and decoding algorithms exist in practice—we simply use LDPC decoding710

to observe the comparative scaling behavior of our implementations on instances where synchronous711

belief propagation is guaranteed to converge. For a more detailed background on LDPC decoding712

and other aspects of coding theory, refer e.g. to the book [30].713

More precisely, we consider (3, 6)-LDPC decoding over a binary symmetric channels. Informally,714

a (3, 6)-LDPC code is a (3, 6)-regular bipartite graph, where each degree 3 node corresponds to a715

binary variable and each degree 6 node corresponds to a constraint of form xi1 +xi2 + . . .+xi6 = 0716

over the neighboring variables xi1 , xi2 , . . . , xi6 . Each sequence of variables that satisfies the all the717

constraints is codeword of the code. The basic setup is then that we send a codeword over a channel718

that flips each bit with probability ε, and the receiver will run belief propagation and use results of719

marginalization to infer the original codeword.720

For our experiments, we build a (3, 6)-LDPC instance with 300 000 variable nodes and 150 000721

constraint nodes by selecting a random (3, 6)-regular bipartite graph, and initialize the node factors722

corresponding to the all-zero codeword sent over binary symmetric channel with error probability723

ε = 0.07. Under these conditions, belief propagation is guaranteed to correctly decode the instance724

with high probability [29]; indeed, all the algorithms that converged decoded the codeword correctly725

in our experiments. The codeword length was again selected to get roughly comparable baseline726

running times as for the other instances.727

Concretely, we get Markov random field where the underlying graph is a random bipartite graph with728

450 000 nodes. For each variable node i, let xi ∈ {0, 1} be the ‘transmitted’ value of the variable,729

randomly generated to be 1 with probability ε and 0 otherwise. The factors have the following730

structure:731

– The domains of variable nodes are binary domains {0, 1}. For the constraint nodes, the732

domain is {0, 1}6—different bit masks of length 6.733

– The node factors for variable nodes are734

ψi(y) =

{
1− ε, y = xi
ε, y 6= xi.

16



Input Residual Prior Work Relaxed
Synch CG S 2 S 10 RS 2 RS 10 Residual WD Priority RSS 2 RSS 10

Tree 1.30 min 2.538x 0.265x 0.608x 1.648x 2.252x 2.241x 1.391x 1.282x 1.239x 2.121x 2.110x
Ising 2.76 min 3.009x 0.801x 0.609x 5.393x 11.731x 13.512x 6.720x 6.276x 5.759x 14.175x 10.337x
Potts 3.02 min — 0.624x 0.484x 1.041x 11.855x 12.854x 7.454x 5.978x 5.850x 15.235x 11.091x

LDPC 4.62 min 17.735x 1.166x — — 5.150x — 13.393x 5.615x — 10.519x —
Table 3: Algorithm speedups with respect to the sequential residual algorithm. Higher is better.

Input Residual Prior Work Relaxed
Synch CG S 2 S 10 RS 2 RS 10 Residual WD Priority RSS 2 RSS 10

Tree 10M 48.000x 1.003x 8.658x 16.442x 8.344x 15.197x 1.020x 1.012x 3.657x 2.565x 5.027x
Ising 25.3M 45.006x 1.003x 5.719x 9.266x 5.787x 10.232x 1.058x 1.068x 1.816x 1.878x 6.147x
Potts 30M — 1.006x 5.903x 9.005x 5.983x 9.109x 1.068x 1.053x 1.791x 1.891x 6.328x

LDPC 7.23M 4.404x 1.003x — — 4.089x — 1.007x 0.883x — 0.973x —
Table 4: Total updates relative to the sequential residual algorithm at 70 threads. Lower is better.

For the constraint nodes, the node factor ψc(y) is equal to the number of ones in y ∈ {0, 1}6735

modulo 2; this effectively penalizes any value that does not satisfy the constraint.736

– Edge factors ψic(x, y) is one if the corresponding bit in the y ∈ {0, 1}6 equals x ∈ {0, 1},737

and is zero otherwise.738

For the LDPC instances, we set the convergence threshold to 10−2 to ensure fast convergence; this739

approximates the behavior of actual LDPC decoders.740

E Experiments741

In this section, we provide an additional study on the evaluation of the algorithms. At first, we give742

the extended results of running the algorithms on the moderate size inputs chosen in the main body of743

the paper. Unfortunately, due to the reasonably high running time it was impossible to make enough744

points for the plots to reason about the general effect of the parallelization. Thus, we execute the745

algorithms on a little bit smaller inputs.746

E.1 Moderate size inputs747

To present all the executed algorithms in the table, we shrink the abbreviations a little bit: Coarse-748

Grained now becomes CG, Splash becomes S, Random Splash becomes RS, Relaxed Residual749

rests Residual, Weight-Decay becomes WD, Relaxed Priority becomes Priority, and, finally,750

Relaxed Smart Splash becomes RSS. Table 3 contains the execution times (speedups) of the751

algorithms relative to the sequential baseline. Table 4 contains the number of updates performed by752

the algorithms in compare to the number of updates performed by the sequential baseline. The results753

do not differ much from the ones presented in the main body of the paper. The only notable thing is754

that Random Splash withH = 10 it performs better on Ising and Potts model than Random Splash755

with H = 2. However, we chose Random Splash with H = 2 as the best one, since Random Splash756

with H = 10 does not finish on LDPC input. Nevertheless, Relaxed Smart Splash outperforms757

Random Splash with both settings of H .758

E.2 Small size inputs759

In this subsection, we decrease the size of the inputs. Now, Tree model maintains a tree of size 106,760

Ising and Potts models are built on top of 300 × 300 grid graph, and, finally, LDPC model is set761

up with 30 000 length of the input vector. In general, we simply reduce the sizes of the models by762

approximately 10.763

E.2.1 Scaling764

How to read the plots. There are two types of plots per each model: the first shows the execution765

time of the algorithms, while the other one shows the number of updates performed. On the x axis766

we have the number of threads the algorithms were run on, while on the y axis we have: the time in767

seconds (for time plots) and the number of updates (for update plots). The dashed lines on the plots768

correspond to the algorithms that use a relaxed scheduler, while the others use either no concurrent769

scheduler, or an exact priority queue.770

17



Synchronous
Weight-decay
Splash H=5
Smart Splash H=10

Coarse-Grained Residual
Splash H=2
Smart Splash H=5
Relaxed Smart Splash H=10

Relaxed Residual
Smart Splash H=2
Relaxed Smart Splash H=5

Relaxed Priority
Relaxed Smart Splash H=2
Splash H=10

(a) Execution time (b) Number of updates
Figure 3: The results of the evaluation of the algorithms on the Tree model

(a) Execution time (b) Number of updates
Figure 4: The results of the evaluation of the algorithms on Ising model

Whenever we have omitted algorithms from the plots or display incomplete data, this indicates poor771

performance for that algorithm on the metric displayed on the graph: either the algorithm did not772

converge or the values exceed the limit of the plot.773

Tree model. As one can observe on the time plot (Figure 3a), the three algorithms with the best774

scaling on the tree instance are the synchronous belief propagation, relaxed residual and the weight-775

decay algorithm. For the relaxed algorithms, this mirrors our theoretical analysis from Section 4: as776

can be seen from Figure 3b, the relaxation incurs very low overhead in terms of additional updates,777

while the overhead from parallelization is also low. By contrast, the exact residual belief propagation778

performs exactly the minimum number of updates needed, but scales very badly due to the contention779

on the priority queue.780

We note that on the tree instance, the synchronous belief propagation also scales very well when781

parallelized. The amount of work can be split evenly between the threads, and only O(log n)782

synchronous rounds are required for convergence.783

Ising and Potts model. Ising and Potts models represent more challenging instances with lots of784

cycles, and are generally thought to be more representative of hard general graph instances for belief785

propagation. As can be seen in Figures 4a and 5a, relaxed algorithms perform consistently well on786

these instances, with relaxed residual belief propagation giving consistently the fastest convergence.787

These are followed by the exact splash algorithms, which generally perform slightly worse; however,788

18



Synchronous
Weight-decay
Splash H=5
Smart Splash H=10

Coarse-Grained Residual
Splash H=2
Smart Splash H=5
Relaxed Smart Splash H=10

Relaxed Residual
Smart Splash H=2
Relaxed Smart Splash H=5

Relaxed Priority
Relaxed Smart Splash H=2
Splash H=10

(a) Execution time (b) Number of updates
Figure 5: The results of the evaluation of the algorithms on Potts model

(a) Execution time (b) Number of updates
Figure 6: The results of the evaluation of the algorithms on decoding LDPC code

the scaling seems to be somewhat sensitive to the choice of the parameter H . Both the synchronous789

and exact residual belief propagation are omitted, as the former did not consistently converge, and790

the latter was very slow.791

An interesting insight is that the exact variants of splash and smart splash do not converge at all in792

single-threaded executions for some values of the parameter H , but always converge on two and more793

threads. Similarly, synchronous belief propagation, which has a fixed schedule, does not converge. By794

contrast, relaxed smart splash converged under all parameter values. We conjecture that this is due to795

the phenomenon observed by [20]: exact priority-based algorithms may get stuck in non-convergent796

cyclic schedules, and injecting randomness into the schedule may help the algorithm to ‘escape’ these797

situations. In particular, relaxation to the priority queue, i.e., sometimes executing low-priority items,798

can provide a such source of randomness. Similarly, an increase in the number of threads leads to the799

relaxation of the algorithm even for exact schedulers, as several messages are processed in parallel,800

not only the best one. Thus, we empirically observe that the randomness in the relaxation might help801

belief propagation to avoid bad cyclic schedules and, therefore, converge.802

LDPC model. There are five algorithms that perform similarly (Figure 6a): synchronous belief803

propagation, relaxed residual belief propagation, the weight decay algorithm, relaxed smart splash804

with H = 2 and, finally, smart splash with H = 2. The other algorithms did not converge within our805

five minutes time limit per experiment.806

19



Message updates

Threads Tree Ising Potts LDPC

Exact 1 1000000 2279000 2700000 1464000

Relaxed 1 +0.14% +0.11% -0.01% +0.55%
2 +0.26% +0.24% +0.37% +0.57%
6 +0.56% +2.50% +2.70% +0.64%
10 +0.92% +3.71% +4.45% +1.05%
20 +2.08% +5.27% +5.87% +1.41%
30 +2.90% +6.10% +6.56% +1.87%
40 +3.48% +6.52% +7.39% +2.35%
50 +5.04% +6.83% +7.92% +2.83%
60 +4.96% +7.39% +8.28% +3.20%
70 +5.74% +7.71% +8.53% +3.70%

Table 5: Number of additional message updates performed by relaxed residual belief propagation
compared to exact residual belief propagation.

We note that synchronous belief propagation performs very well on this instance. This is not surprising,807

as standard belief propagation is known to perform well in LDPC decoding. Generally speaking,808

the necessary propagation chains seem to be very short on LDPC instances, and the synchronous809

algorithm parallelizes well in such cases.810

E.2.2 The effects of relaxation811

In Table 5, we measure how many more updates the relaxed residual algorithm needs to perform812

in comparison to the number of updates performed by the standard sequential residual algorithm,813

denoted as “baseline”. We count the total number of updates only approximately: we check the814

convergence condition only after every 1000 iterations.815

The left column indicates whether it is a baseline algorithm or the number of threads for relaxed816

residual belief propagation. The other columns present the numbers for each model we consider.817

Each cell contains the corresponding number of updates and how many more updates the relaxed818

version of the algorithm executed (percentage).819

On one process, relaxed residual performs more updates than the baseline does, except in the case820

of the Potts model. It is expected since our algorithm uses relaxed Multiqueue instead of the strict821

priority queue. Moreover, as expected the overhead on the number of updates in comparison to the822

baseline increases with the number of threads. This is again due to the relaxation of the priority823

queue–recall that we allocate 4× more queues than threads. Interestingly, this overhead is limited824

even on 70 threads—its maximum value is 9% maximum. This explains the good performance of our825

algorithm: we reduce the contention by relaxing accesses to the priority queue, while at the same826

time the total number of updates does not increase significantly.827

E.2.3 Relaxed versus Non-Relaxed Algorithms828

In Table 6, we analyze the speedups obtained by the relaxed residual algorithm relative to the best-829

performing non-relaxed alternative across models and thread counts. We notice that our algorithm830

outperforms the alternatives in most of the cases, often by a large margin—the highest speedup is of831

2.85×, whereas the highest slow-down is of 0.47x. Both occur on the Potts model, which is generally832

the most difficult instance in our tests. Overall, the combination of our relaxed scheduling framework833

combined with the standard residual belief propagation is clearly the algorithm of choice at high834

thread counts, where it consistently outperforms the alternatives; on the other hand, relaxed residual835

also performs reasonably well on a single thread, making it a consistently good choice all across the836

board.837

E.2.4 Random Synchronous Algorithm838

In Table 7, we present the execution time of random synchronous algorithm on 70 threads (Random839

Synch 70) with different values of lowP = 0.1, 0.4 and 0.7, where the parameter lowP controls the840

20



Speedup

Threads Tree Ising Potts LDPC

1 0.89x 1.08x 1.04x 1.14x
2 0.75x 0.51x 0.47x 1.13x
6 1.20x 0.77x 0.73x 1.17x
10 1.16x 1.01x 0.94x 1.20x
20 1.36x 1.66x 1.89x 1.49x
30 1.38x 1.88x 1.82x 1.65x
40 1.61x 2.21x 1.90x 1.62x
50 1.91x 2.67x 2.36x 1.48x
60 1.89x 2.66x 2.85x 1.55x
70 1.61x 2.71x 2.44x 1.52x

Table 6: Speedup of relaxed residual belief propagation versus the best non-relaxed alternative on
different thread counts. We note that overhead of parallelization can overcome the benefits on small
thread counts, as seen in the scaling experiments.

random selection fraction p in steps where the algorithm is converging slowly (see Section C.2). We841

compare it with the execution time of two baselines: Synchronous algorithm on 70 threads (Synch842

70) and Relaxed Residual on one process (RR 1). Cells with ‘—’ indicate executions that either take843

more than five minutes to run or simply do not converge.844

To summarize, we did not include the execution time of random synchronous algorithm in the scaling845

plots since it exceeds the execution time of one of the baselines in all cases.846

Running time (s)

Algorithm Tree Ising Potts LDPC

Synch 70 4.088 — — 3.504
RR 1 5.579 9.012 10.583 25.663

Random Synch 70 lowP = 0.1 37.052 62.629 — 28.543
lowP = 0.4 8.420 20.396 — 7.269
lowP = 0.7 6.306 12.581 — 4.791

Table 7: Randomized synchronous algorithm versus baselines.

21


	Introduction
	Preliminaries and related work
	Belief Propagation
	Parallel belief propagation

	Relaxed priority-based belief propagation
	Relaxed scheduling for iterative algorithms
	Relaxed priority-based belief propagation
	Concurrent implementation

	Dynamics of relaxed belief propagation on trees
	Evaluation
	Discussion
	Analysis
	Optimal schedule on trees
	Algorithms
	Asynchronous belief propagation
	Parallel belief propagation

	Models
	Experiments
	Moderate size inputs
	Small size inputs
	Scaling
	The effects of relaxation
	Relaxed versus Non-Relaxed Algorithms
	Random Synchronous Algorithm



