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Abstract

We study risk-sensitive reinforcement learning in episodic Markov decision
processes with unknown transition kernels, where the goal is to optimize the
total reward under the risk measure of exponential utility. We propose two
provably efficient model-free algorithms, Risk-Sensitive Value Iteration (RSVI)
and Risk-Sensitive Q-learning (RSQ). These algorithms implement a form of
risk-sensitive optimism in the face of uncertainty, which adapts to both risk-
seeking and risk-averse modes of exploration. We prove that RSVI attains an
Õ
(
λ(|β|H2)·

√
H3S2AT

)
regret, while RSQ attains an Õ

(
λ(|β|H2)·

√
H4SAT

)
regret, where λ(u) = (e3u−1)/u for u > 0. In the above, β is the risk parameter of
the exponential utility function, S the number of states, A the number of actions, T
the total number of timesteps, and H the episode length. On the flip side, we estab-
lish a regret lower bound showing that the exponential dependence on |β| and H is
unavoidable for any algorithm with an Õ(

√
T ) regret (even when the risk objective

is on the same scale as the original reward), thus certifying the near-optimality of
the proposed algorithms. Our results demonstrate that incorporating risk awareness
into reinforcement learning necessitates an exponential cost in |β| and H , which
quantifies the fundamental tradeoff between risk sensitivity (related to aleatoric
uncertainty) and sample efficiency (related to epistemic uncertainty). To the best
of our knowledge, this is the first regret analysis of risk-sensitive reinforcement
learning with the exponential utility.

1 Introduction

Risk-sensitive reinforcement learning (RL) concerns learning to act in a dynamic environment while
taking into account risks that arise during the learning process. Effective management of risks in RL
is critical to many real-world applications such as autonomous driving [32], real-time strategy games
[56], financial investment [44], etc. In neuroscience, risk-sensitive RL has been applied to model
human behaviors in decision making [46, 52].

In this paper, we consider risk-sensitive RL with the exponential utility [34] under episodic Markov
decision processes (MDPs) with unknown transition kernels. Informally, the agent aims to maximize
a risk-sensitive objective function of the form

V =
1

β
log
{
EeβR

}
, (1)

where R is the total reward the agent receives, and β 6= 0 is a real-valued parameter that controls
risk preference of the agent; see Equation (2) for a formal definition of V . The objective V admits
the Taylor expansion V = E[R] + β

2 Var(R) + O(β2). It can be seen that for β > 0 the agent
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is risk-seeking (favoring high uncertainty in R), for β < 0 the agent is risk-averse (favoring low
uncertainty in R), and a larger |β| implies higher risk-sensitivity. When β → 0, the agent tends to be
risk-neutral and the objective reduces to the expected reward objective V = E[R] standard in RL.
Therefore, the risk-sensitive objective in (1) covers the entire spectrum of risk sensitivity by varying
β. In addition, the formulation (1) is closely related to RL with constraints. For example, a negative
risk parameter β controls the tail of a risk distribution so as to mitigate the chance of receiving a
total reward R that is excessively low. We refer to [42, Section 2.1] for an in-depth discussion of this
connection.

The challenge of risk-sensitive RL lies both in the non-linearity of the objective function and in
designing a risk-aware exploration mechanism. In particular, as we elaborate in Section 2.2, the
non-linear objective function (1) induces a non-linear Bellman equation. Classical RL algorithms are
inappropriate in this setting, as their design crucially relies on the linearity of Bellman equations. On
the other hand, effective exploration has been well known to be crucial to RL algorithm design, yet it
is not clear how to design an algorithm that efficiently explores uncertain environments while at the
same time adapting to the risk-sensitive objective (1) of agents with different risk parameter β.

To address these difficulties, we propose two model-free algorithms, Risk-Sensitive Value Iteration
(RSVI) and Risk-Sensitive Q-learning (RSQ). Specifically, RSVI is a batch algorithm and RSQ is
an online algorithm; both families of batch and online algorithms see broad applications in practice.
We demonstrate in Section 3 that our proposed algorithms implement a form of risk-sensitive
optimism for exploration. Importantly, the exact implementation of optimism depends on both
the magnitude and the sign of the risk parameter, and therefore applies to both risk-seeking and
risk-averse modes of learning. Letting λ(u) = (e3u − 1)/u for u > 0, we prove that RSVI attains an
Õ
(
λ(|β|H2) ·

√
H3S2AT

)
regret, and RSQ achieves an Õ

(
λ(|β|H2) ·

√
H4SAT

)
regret. Here, S

and A are the numbers of states and actions, respectively, T is the total number of timesteps, and
H is the length of each episode. These regret bounds interpolate across different regimes of risk
sensitivity and subsume existing results under the risk-neutral setting. Compared with risk-neutral
RL (corresponding to β → 0), our general regret bounds feature an exponential dependency on |β|
and H , even though the risk-sensitive objective (1) is on the same scale as the total reward; see
Figure 1 for a plot of the exponential factor λ(|β|H2). Complementarily, we prove a lower bound
showing that such an exponential dependency is inevitable for any algorithm and thus certifies the
near-optimality of the proposed algorithms. To the best of our knowledge, our work provides the first
regret analysis of risk-sensitive RL with the exponential utility.

Our upper and lower bounds demonstrate the fundamental tradeoff between risk sensitivity and
sample efficiency in RL.1 Broadly speaking, risk sensitivity is associated with aleatoric uncertainty,
which originates from the inherent randomness of state transition, actions and rewards, whereas
sample efficiency is associated with epistemic uncertainty, which arises from imperfect knowledge
of the environment/system and can be reduced by more exploration [20, 24]. These two notions of
uncertainty are usually decoupled in the regret analysis of risk-neutral RL—in particular, using the
expected reward as the objective effectively suppresses the aleatoric uncertainty. In risk-sensitive
RL, we establish that there is a fundamental connection and tradeoff between these two forms of
uncertainty: the risk-seeking and risk-averse regimes both incur an exponential cost in |β| and H on
the regret, whereas the regret is polynomial in H in the risk-neutral regime.

Our contributions. The contributions of our work can be summarized as follows:

• We consider the problem of risk-sensitive RL with the exponential utility. We propose
two provably efficient model-free algorithms, namely RSVI and RSQ, that implement
risk-sensitive optimism in the face of uncertainty;

• We provide regret analysis for both algorithms over the entire spectrum of risk parameter β.
As β → 0, we show that our results recover the existing regret bounds in the risk-neutral
setting;

• We provide a lower bound result that certifies the near-optimality of our upper bounds and
reveals a fundamental tradeoff between risk sensitivity and sample complexity.

1By standard arguments, regret can be translated into sample complexity bounds and vice versa; see [38].
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Figure 1: Scaling of λ(|β|H2) in risk sensitivity |β| for different values of episode length H .

Related work. RL with risk-sensitive utility functions have been studied in several work. The work
[45] proposes TD(0) and Q-learning-style algorithms that transform temporal differences instead
of cumulative rewards, and proves their convergence. Risk-sensitive RL with a general family of
utility functions is studied in [52], which also proposes a Q-learning algorithm with convergence
guarantees. The work of [28] studies a risk-sensitive policy gradient algorithm, though with no
theoretical guarantees. We remark that while substantial work has been devoted to designing risk-
sensitive RL algorithms and proving their convergence, the issues of exploration, sample efficiency
and regret bounds have rarely been studied. Our work narrows this gap in the literature by studying
regret bounds of model-free algorithms for risk-sensitive RL.

The exponential utility has also been been investigated in the more classical setting of MDPs.
Following the seminal work of [34], this line of work includes [7, 9–11, 14, 21, 25, 29, 30, 33, 43,
48, 51, 58, 61]. Note that these papers impose more restrictive assumptions and study different types
of results than ours. Specifically, they assume known transition kernels or access to simulators, and
they do not conduct finite-time or finite-sample analysis. Another related direction to ours is RL with
risk/safety constraints studied by [1, 2, 16–19, 26, 27, 49, 54, 59, 62], and readers are also referred
to [31] for an excellent survey on this topic. Compared to our work, that line of work focuses on
constrained RL problems with different risk criteria. Other related problems include risk-sensitive
games [5, 6, 8, 15, 35, 37, 40, 57], and risk-sensitive bandits [13, 22, 23, 42, 50, 53, 55, 60, 63].
Bandit problems are special cases of the RL problem that we investigate, with both the number of
states and episode length being equal to one. As such, both our settings and results are more general
than those obtained in bandit problems.

Notations. For a positive integer n, let [n] := {1, 2, . . . , n}. For two non-negative sequences {ai}
and {bi}, we write ai . bi if there exists a universal constant C > 0 such that ai ≤ Cbi for all i. We
write ai � bi if ai . bi and bi . ai. We use Õ(·) to denote O(·) while hiding logarithmic factors.

2 Problem setup

2.1 Episodic MDPs and risk-sensitive objective

We consider the setting of episodic MDPs, denoted by MDP(S,A, H,P,R), where S is the set of
possible states, A is the set of possible actions, H is the length of each episode, and P = {Ph}h∈[H]

and R = {rh}h∈[H] are the sets of state transition kernels and reward functions, respectively. In
particular, for each h ∈ [H], Ph(· | s, a) is the distribution of the next state if action a is taken in
state s at step h. We assume that S and A are finite discrete spaces, and let S = |S| and A = |A|
denote their cardinalities. We assume that the agent does not have access to {Ph} and that each
rh : S ×A → [0, 1] is a deterministic function.

An agent interacts with an episodic MDP as follows. At the beginning of each episode, an initial state
s1 is chosen arbitrarily by the environment. In each step h ∈ [H], the agent observes a state sh ∈ S ,
chooses an action ah ∈ A, and receives a reward rh(sh, ah). The MDP then transitions into a new
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state sh+1 ∼ Ph(· | sh, ah). We use the convention that the episode terminates when a state sH+1 at
step H + 1 is reached, at which the agent does not take an action and receives no reward.

A policy π = {πh}h∈[H] of an agent is a sequence of functions πh : S → A, where πh(s) is the
action that the agent takes in state s at step h of an episode. For each h ∈ [H], we define the value
function V πh : S → R of a policy π as the expected value of cumulative rewards the agent receives
under a risk measure of exponential utility by executing policy π starting from an arbitrary state at
step h. Specifically, we have

V πh (s) :=
1

β
log

{
E

[
exp

(
β

H∑
h′=h

rh′(sh′ , πh′(sh′))

) ∣∣∣∣∣ sh = s

]}
, (2)

for each (h, s) ∈ [H] × S. Here β 6= 0 is the risk parameter of the exponential utility: β > 0
corresponds to a risk-seeking value function, β < 0 corresponds to a risk-averse value function, and
as β → 0 the agent tends to be risk-neutral and we recover the classical value function V πh (s) =

E[
∑H
h=1 rh(sh, πh(sh)) | sh = s] in RL. The goal of the agent is to find a policy π such that V π1 (s)

is maximized for all state s ∈ S. Note the logarithm and rescaling by 1/β in the above definition,
which puts the objective V π1 (s) on the same scale as the total reward; this scaling property is made
formal in Lemma 1 below.

2.2 Bellman equations and regret

We further define the action-value function Qπh : S ×A → R, which gives the expected value of the
risk measured by the exponential utility when the agent starts from an arbitrary state-action pair at
step h and follows policy π afterwards; that is,

Qπh(s, a) :=
1

β
log

{
exp(β · rh(s, a))E

[
exp

(
β

H∑
h′=h+1

rh′(sh′ , ah′)

)∣∣∣∣∣ sh = s, ah = a

]}
,

for all (h, s, a) ∈ [H]× S ×A. The Bellman equation associated with policy π is given by

Qπh(s, a) = rh(s, a) +
1

β
log
{
Es′∼Ph(· | s,a)

[
exp

(
β · V πh+1(s′)

)]}
,

V πh (s) = Qπh(s, πh(s)), V πH+1(s) = 0,

(3)

which holds for all (s, a) ∈ S ×A.

Under some mild regularity conditions, there always exists an optimal policy π∗ which gives the
optimal value V ∗h (s) = supπ V

π
h (s) for all (h, s) ∈ [H]×S [7]. The Bellman optimality equation is

given by

Q∗h(s, a) = rh(s, a) +
1

β
log
{
Es′∼Ph(· | s,a)

[
exp

(
β · V ∗h+1(s′)

)]}
,

V ∗h (s) = max
a∈A

Q∗h(s, a), V ∗H+1(s) = 0.
(4)

This equation implies that the optimal policy π∗ is the greedy policy with respect to the optimal
action-value function {Q∗h}h∈[H]. Hence, to find the optimal policy π∗, it suffices to estimate the
optimal action-value function. We note that both Bellman equations (3) and (4) are non-linear in the
value and action-value functions due to non-linearity of the exponential utility. This is in contrast
with their linear risk-neutral counterparts.

Under the episodic MDP setting, the agent aims to learn the optimal policy by interacting with
the environment throughout a set of episodes. For each k ≥ 1, let us denote by sk1 the initial state
chosen by the environment and πk the policy chosen simultaneously by the agent at the beginning of
episode k. The difference in values between V π

k

1 (sk1) and V ∗1 (sk1) measures the expected regret or
the sub-optimality of the agent in episode k. After K episodes, the total regret for the agent is

Regret(K) :=
∑
k∈[K]

[
V ∗1 (sk1)− V π

k

1 (sk1)
]
. (5)

We record the following simple worst-case upper bounds on the value functions and regret.
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Lemma 1. For any (h, s, a) ∈ S ×A× [H], policy π and risk parameter β 6= 0, we have

0 ≤ V πh (s) ≤ H and 0 ≤ Qπh(s, a) ≤ H. (6)

Consequently, for each K ≥ 1, all policy sequences π1, . . . , πK and any β 6= 0, we have

0 ≤ Regret(K) ≤ KH. (7)

Proof. Recall the assumption that the reward functions {rh} are bounded in [0, 1]. The lower bounds
are immediate by definition. For the upper bound, we have V πh (s) ≤ 1

β log {E [exp (βH)]} = H.

Upper bounds for Qπh and the regret follow similarly.

While straightforward, the above lemma highlights an important point: the risk and regret are on the
same scale as the reward. In particular, the upper bounds above are independent of β and linear in
the horizon length H—the same as in the standard MDP setting—because the log and exp functions
in the definition of the objective function (2) cancel with each other in the worst case. Therefore, the
exponential dependence of the regret on |β| and H , which we establish below in Section 4, is not
merely a consequence of scaling but rather is inherent in the risk-sensitive setting.

3 Algorithms

The non-linearity of the Bellman equations, discussed in Section 2.2, creates challenges in algorithmic
design. In particular, standard model-free algorithms such as least-squares value iteration (LSVI)
and Q-learning are no longer appropriate since they specialize to the risk-neutral setting with linear
Bellman equations. In this section, we present risk-sensitive LSVI and Q-learning algorithms that
adapt to both the non-linear Bellman equations and any valid risk parameter β.

3.1 Risk-Sensitive Value Iteration

We first present Risk-Sensitive Value Iteration (RSVI) in Algorithm 1. Algorithm 1 is inspired
by LSVI-UCB of [39], which is in turn motivated by the idea of LSVI [12, 47] and the classical
value-iteration algorithm. Like LSVI-UCB, Algorithm 1 applies the Upper Confidence Bound (UCB)
by incorporating a bonus term to value estimates of state-action pairs, which therefore implements
the principle of Optimism in the Face of Uncertainty (OFU) [36].

Mechanism of Algorithm 1. The algorithm mainly consists of the value estimation step (Line
6–13) and the policy execution step (Line 14–18). In Line 7, the algorithm computes the intermediate
value wh by a least-squares update

wh ← argmin
w∈RSA

∑
τ∈[k−1]

[
eβ[rh(sτh,a

τ
h)+Vh+1(sτh+1)] − w>φ(sτh, a

τ
h)
]2
. (8)

Here, {(sτh, aτh, sτh+1)}τ∈[k−1] are accessed from the datasetDh for each h ∈ [H], and φ(·, ·) denotes
the canonical basis in RSA. Line 7 can be efficiently implemented by computing sample means of
eβ[rh(s,a)+Vh+1(s′)] over those state-action pairs that the algorithm has visited. Therefore, it can also
be interpreted as estimating the sample means of exponentiated Q-values under visitation measures
induced by the transition kernels {Ph}. This is a typical feature of the family of batch algorithms,
to which Algorithm 1 belongs. Then, in Line 10, the algorithm uses the intermediate value wh
to compute the estimate Qh, by adding/subtracting bonus bh and thresholding the sum/difference
at eβ(H−h+1), depending on the sign of β. It is not hard to see that the logarithmic-exponential
transformation in Line 10 conforms and adapts to the non-linearity in Bellman equations (3) and (4).
In addition, the thresholding operator ensures that the estimated action-value function Qh of step h
stays in the range [0, H − h+ 1] and so does the estimated value function Vh in Line 11. This is to
enforce the estimates Qh and Vh to be on the same scale as the optimal Q∗h and V ∗h .

Besides the logarithmic-exponential transformation, another distinctive feature of Algorithm 1 is the
way the bonus term bh > 0 is incorporated in Line 10. At first sight, it might appear counter-intuitive
to subtract bh from wh when β < 0. We demonstrate next that subtracting bonus when β < 0 in fact
implements the idea of OFU in a risk-sensitive fashion.
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Algorithm 1 RSVI
Input: number of episodes K ∈ Z>0, confidence level δ ∈ (0, 1], and risk parameter β 6= 0

1: Qh(s, a)← H − h+ 1 and Nh(s, a)← 0 for all (h, s, a) ∈ [H]× S ×A
2: QH+1(s, a)← 0 for all (s, a) ∈ S ×A
3: Initialize datasets {Dh} as empty
4: for episode k = 1, . . . ,K do
5: VH+1(s)← 0 for each s ∈ S
6: for step h = H, . . . , 1 do . value estimation
7: Update wh via Equation (8)
8: for (s, a) ∈ S ×A such that Nh(s, a) ≥ 1 do
9: bh(s, a)← cγ

∣∣eβH − 1
∣∣√S log(2SAT/δ)

Nh(s,a) for some universal constant cγ > 0

10: Qh(s, a)←

{
1
β log

[
min{eβ(H−h+1), wh(s, a) + bh(s, a)}

]
, if β > 0;

1
β log

[
max{eβ(H−h+1), wh(s, a)− bh(s, a)}

]
, if β < 0

11: Vh(s)← maxa′∈AQh(s, a′)
12: end for
13: end for
14: for step h = 1, . . . ,H do . policy execution
15: Take action ah ← argmaxa∈AQh(sh, a) and observe rh(sh, ah) and sh+1

16: Nh(sh, ah)← Nh(sh, ah) + 1
17: Insert (sh, ah, sh+1) into Dh
18: end for
19: end for

Risk-Sensitive Upper Confidence Bound. For the purpose of illustration, let us consider a
“promising” state s+ ∈ S at step h that allows us to transition to states {s′} in the next step
with high values {Vh+1(s′)} regardless of actions taken. This means that the intermediate value
wh(s+, ·) ∝

∑
s′ e

β·Vh+1(s′) tends to be small, given that β < 0 and {Vh+1(s′)} are large. By
subtracting a positive bh from wh, we obtain an even smaller quantity wh(s+, ·)− bh(s+, ·). We can
then deduce that Qh(s+, ·) ≈ 1

β log[wh(s+, ·) − bh(s+, ·)] is larger compared to 1
β log[wh(s+, ·)]

which does not incorporate bonus, since the logarithmic function is monotonic and again β < 0 (we
ignore thresholding for the moment). Therefore, subtracting bonus serves as a UCB for β < 0 . Since
the exact form of the UCB depends on both the magnitude and sign of β (as shown in Lines 9 and
10), we name it Risk-Sensitive Upper Confidence Bound (RS-UCB) and this results in what we call
Risk-Sensitive Optimism in the Face of Uncertainty (RS-OFU).

3.2 Risk-Sensitive Q-learning

Although Algorithm 1 is model-free, it requires storage of historical data {Dh} and computation over
them (Line 7). A more efficient class of algorithms is Q-learning algorithms, which update Q values
in an online fashion as each state-action pair is encountered. We therefore propose Risk-Sensitive
Q-learning (RSQ) and formally describe it in Algorithm 2.

Mechanism of Algorithm 2. Algorithm 2 is based on Q-learning with UCB studied in the work of
[38] and we use the same learning rates therein

αt :=
H + 1

H + t
(9)

for every integer t ≥ 1. Similar to Algorithm 1, Algorithm 2 consists of the policy execution step
(Line 6) and value estimation step (Lines 9–11). Line 9 updates the intermediate value wh in an
online fashion, in constrast with the batch update in Line 7 of Algorithm 1, and Algorithm 2 can thus
be seen as an online algorithm. Line 10 then applies the same logarithmic-exponential transform to
the intermediate value and bonus as in Algorithm 1. Note the similar way we use the bonus term bt in
estimating Q-values in Line 10 of Algorithm 2 as in Line 10 of Algorithm 1. Algorithm 2 therefore
also implements RS-UCB and follows the principle of RS-OFU.
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Algorithm 2 RSQ
Input: number of episodes K ∈ Z>0, confidence level δ ∈ (0, 1], learning rates {αt} and risk

parameter β 6= 0
1: Qh(s, a), Vh(s, a)← H − h+ 1 and Nh(s, a)← 0 for all (h, s, a) ∈ [H]× S ×A
2: QH+1(s, a), VH+1(s, a)← 0 for all (s, a) ∈ S ×A
3: for episode k = 1, . . . ,K do
4: Receive the initial state s1

5: for step h = 1, . . . ,H do
6: Take action ah ← argmaxa′∈AQh(sh, a

′), and observe rh(sh, ah) and sh+1

7: t = Nh(sh, ah)← Nh(sh, ah) + 1

8: bt ← c
∣∣eβH − 1

∣∣√H log(SAT/δ)
t for some sufficiently large universal constant c > 0

9: wh(sh, ah)← (1− αt)eβ·Qh(sh,ah) + αte
β[rh(sh,ah)+Vh+1(sh+1)]

10: Qh(sh, ah)←

{
1
β log

[
min{eβ(H−h+1), wh(sh, ah) + αtbt}

]
, if β > 0;

1
β log

[
max{eβ(H−h+1), wh(sh, ah)− αtbt}

]
, if β < 0

11: Vh(sh)← maxa′∈AQh(sh, a
′)

12: end for
13: end for

Comparisons of Algorithms 1 and 2. It is interesting to compare the bonuses used in Algorithms
1 and 2. The bonuses in both algorithms depend on the risk parameter β through a common factor∣∣eβH − 1

∣∣. A careful analysis (see our proofs in appendices) on the bonuses and the value estimation
steps reveals that the effective bonuses added to the estimated value function is proportional to
e|β|H−1
|β| . This means that the more risk-seeking/averse an agent is (or the larger |β| is), the larger

bonus it needs to compensate for its uncertainty over the environment. Such risk sensitivity of the
bonus is also reflected in the regret bounds; see Theorems 1 and 2 below. Also, it is not hard to see that
both algorithms have polynomial time and space complexities in S, A, K and H . Moreover, thanks
to its online update procedure, Algorithm 2 is more efficient than Algorithms 1 in both time and space
complexities, since it does not require storing historical data (in particular, {Dh} of Algorithm 1) nor
computing statistics based on them for value estimation.

4 Main results

In this section, we first present regret bounds for Algorithms 1 and 2, and then we complement the
results with a lower bound on regret that any algorithm has to incur.

4.1 Regret upper bounds

The following theorem gives an upper bound for regret incurred by Algorithm 1. Let T := KH be the
total number of timesteps for which an algorithm is run, and recall the function λ(u) := (e3u − 1)/u.
Theorem 1. For any δ ∈ (0, 1], with probability at least 1− δ, the regret of Algorithm 1 is bounded
by

Regret(K) . λ(|β|H2) ·
√
H3S2AT log2(2SAT/δ).

The proof is given in Appendix C. We see that the result of Theorem 1 adapts to both risk-seeking
(β > 0) and risk-averse (β < 0) settings through a common factor of λ(|β|H2).

As β → 0, the setting of risk-sensitive RL tends to that of standard and risk-neutral RL, and we have
an immediate corollary to Theorem 1 as a precise characterization.
Corollary 1. Under the setting of Theorem 1 and when β → 0, with probability at least 1− δ, the
regret of Algorithm 1 is bounded by

Regret(K) .
√
H3S2AT log2(2SAT/δ).

Proof. The result follows from Theorem 1 and the fact that limβ→0 λ(|β|H2) = 3.
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The result in Corollary 1 recovers the regret bound of [4, Theorem 2] under the standard RL setting
and is nearly optimal compared to the minimax rates presented in [3, Theorems 1 and 2]. Corollary 1
also reveals that Theorem 1 interpolates between the risk-sensitive and risk-neutral settings.

Next, we give a regret upper bound for Algorithm 2 in the following theorem.

Theorem 2. For any δ ∈ (0, 1], with probability at least 1− δ and when T is sufficiently large, the
regret of Algorithm 2 is bounded by

Regret(K) . λ(|β|H2) ·
√
H4SAT log(SAT/δ).

The proof is given in Appendix E. Similarly to Theorem 1, Theorem 2 also covers both risk-seeking
and risk-averse settings via the same factor λ(|β|H2), which gives the risk-neutral bound when
β → 0 as shown in the following.

Corollary 2. Under the setting of Theorem 2 and when β → 0, with probability at least 1− δ, the
regret of Algorithm 2 is bounded by

Regret(K) .
√
H4SAT log(SAT/δ).

The proof follows the same reasoning as in that of Corollary 1. According to Corollary 2, the
regret upper bound for Algorithm 2 matches the nearly optimal result in [38, Theorem 2] under the
risk-neutral setting. As such, Theorems 1 and 2 strictly generalizes the existing nearly optimal regret
bounds (up to polynomial factors).

The crux of the proofs of both Theorems 1 and 2 lies in a local linearization argument for the
non-linear Bellman equations and non-linear updates of the algorithms, in which action-value and
value functions are related by a logarithmic-exponential transformation. Although logarithmic and
exponential functions are not Lipschitz globally, we show that they are locally Lipschitz in the domain
of our interest, and their combined local Lipschitz factors turn out to be the exponential factors in the
theorems. Once the Bellman equations and algorithm estimates are linearized, we can apply standard
techniques in RL to obtain the final regret. It is noteworthy that, as suggested by [38], the regret
bounds in Theorems 1 and 2 can automatically be translated into sample complexity bounds in the
probably approximately correct (PAC) setting, which did not previously exist even given access to a
simulator.

In the risk-sensitive setting where β is bounded away from 0, our regret bounds of Theorems 1 and 2
depend exponentially in the horizon length H and the risk sensitivity |β|. In what follows, we argue
that such exponential dependence is unavoidable.

4.2 Regret lower bound

We now present a fundamental lower bound on the regret, which complements the upper bounds in
Theorems 1 and 2.

Theorem 3. If |β| (H − 1) and K are sufficiently large, the regret of any policy obeys

Regret(K) & λ(|β|(H − 1)/6) ·
√
HT.

The proof is given in Appendix F. In the proof, we construct an MDP that can be reduced to a bandit
problem. We then show that any bandit algorithm has to incur an expected regret, in terms of the
logarithmic-exponential objective, that grows as predicted in Theorem 3.

Theorem 3 shows that the exponential dependence on the |β| andH in Theorems 1 and 2 is essentially
indispensable. In addition, it features a sub-linear dependence on T through the Õ(

√
T ) factor. In

view of Theorem 3, therefore, both Theorems 1 and 2 are nearly optimal in their dependence on β,
H and T . One should contrast Theorem 3 with Lemma 1, which shows that the worst-case regret is
linear in H and T . Such a linear regret can be attained by any trivial algorithm that does not learn
at all. In sharp contrast, in order to achieve the optimal

√
T scaling (which by standard arguments

implies a finite sample-complexity bound), an algorithm must incur a regret that is exponential in
H . Therefore, our results show a (perhaps surprising) tradeoff between risk sensitivity and sample
efficiency.
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Broader Impact

This work contributes to the risk-awareness of machine learning and improves the way RL algorithms
handle risks arising from uncertain environments. We have proposed two efficient and model-free
algorithms for risk-sensitive RL with the exponential utility. We show that both algorithms follow
the principle of Risk-Sensitive Optimism in the Face of Uncertainty (RS-OFU), and they achieve
nearly optimal regret bounds with respect to the risk parameter, horizon length and total number of
timesteps.
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Appendices
A Preliminaries

We set some notations and shorthands before the proofs. For both Algorithms 1 and 2, we let skh, akh,
wkh, Qkh and V kh denote the values of sh, ah, wh, Qh and Vh in episode k, and we denote by Nk

h the
value of Nh at the end of episode k − 1. For Algorithm 1, we let Dkh be the value of Dh at the end of
episode k − 1. Next, we introduce a simple yet powerful result.
Fact 1. Consider x, y, b ∈ R such that x ≥ y.

(a) if y ≥ g for some g > 0, then log(x)− log(y) ≤ 1
g (x− y);

(b) Assume further that y ≥ 0. If b ≥ 0 and x ≤ u for some u > 0, then ebx−eby ≤ bebu(x−y);
if b < 0, then eby − ebx ≤ (−b)(x− y).

Proof. The results follow from Lipschitz continuity of the functions x 7→ log(x) and x 7→ ebx.

We record a simple fact about exponential factors.

Fact 2. Define λ0 := e|β|H−1
|β| and λ2 := e|β|(H

2+H). Then we have λ0λ2H ≤ e3|β|H
2
−1

|β| .

B Proof warmup for Theorem 1

First, we set some notations and definitions. Define d := SA, ι := log(2dT/δ) for a given δ ∈ (0, 1],
and I to be the d× d identity matrix. To streamline some parts of the proof, we define φ(s, a) to be
a vector in Rd whose (s, a)-th entry is equal to one and other entries equal to zero (so φ(s, a) is a
canonical basis of RSA). Also let Λkh be a diagonal matrix in Rd×d with each (s, a)-th diagonal entry
equal to max{Nk−1

h (s, a), 1}. It can be seen that Λkh is positive definite. We adopt the shorthands
φτh := φ(sτh, a

τ
h) and rτh := rh(sτh, a

τ
h) for (τ, h) ∈ [K]× [H].

From now on, we fix a tuple (k, h) ∈ [K]×[H] and then fix (s, a) ∈ S×A such thatNk−1
h (s, a) ≥ 1.

We also fix a policy π. We set
wπh = eβ·Q

π
h(·,·). (10)

It can be verified that by the definition of φ(s, a), we have

Qπh(s, a) =
1

β
log
(
eβ·Q

π
h(s,a)

)
=

1

β
log
(〈
φ(s, a), eβ·Q

π
h(·,·)

〉)
=

1

β
log (〈φ(s, a), wπh〉) , (11)

as well as

wπh(s, a) = eβ·Q
π
h(s,a) =

〈
φ(s, a), (Λkh)−1

∑
τ∈[k−1]

φτh

[
eβ·Q

π
h(sτh,a

τ
h)
]〉

, (12)

where the last step follows from the definition of Λkh.

Let us define

q+
1 :=

{〈
φ(s, a), wkh

〉
+ bkh(s, a), if β > 0,〈

φ(s, a), wkh
〉
− bkh(s, a), if β < 0,

q1 :=

{
min{eβ(H−h+1), q+

1 }, if β > 0,

max{eβ(H−h+1), q+
1 }, if β < 0.
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By the definition of Λkh and φkh, observe that

wkh(s, a) =
〈
φ(s, a), wkh

〉
=

〈
φ(s, a), (Λkh)−1

∑
τ∈[k−1]

φτh

[
eβ[rτh+V kh+1(sτh+1)]

]〉
. (13)

Define
G0 := (Qkh −Qπh)(s, a) =

1

β
log {q1} −

1

β
log {〈φ(s, a), wπh〉} , (14)

and our goal is to derive lower and upper bounds for G0. From Equation (14), we have

G0 =
1

β
log {q1} −

1

β
log


〈
φ(s, a), (Λkh)−1

∑
τ∈[k−1]

φτh

[
eβ·Q

π
h(sτh,a

τ
h)
]〉

=
1

β
log {q1} −

1

β
log


〈
φ(s, a), (Λkh)−1

∑
τ∈[k−1]

φτh

[
Es′∼Ph(· | sτh,a

τ
h)e

β[rτh+V πh+1(s′)]
]〉

=:
1

β
log{q1} −

1

β
log{q3}.

The first step above holds by Equation (12), and the second step follows from Equation (3). In order
to control G0, we define an intermediate quantity

q2 :=

〈
φ(s, a), (Λkh)−1

∑
τ∈[k−1]

φτh

[
Es′∼Ph(· | sτh,a

τ
h)e

β[rτh+V kh+1(s′)]
]〉

;

in words, q2 replaces the quantity V πh+1 in q3 by V kh+1. It can be seen that

G0 = G1 +G2, (15)

where
G1 :=

1

β
log{q1} −

1

β
log{q2},

G2 :=
1

β
log{q2} −

1

β
log{q3}.

(16)

Note that G0, G1 and G2 are all well-defined, according to the following result.

Lemma 2. We have qi ∈ [min{1, eβ(H−h+1)},max{1, eβ(H−h+1)}] for i ∈ [3].

Proof. We prove the result by focusing on q1. By the definitions of Λkh and φ, the (s, a)-th en-
try of the vector (Λkh)−1

∑
τ∈[k−1] φ

τ
h · uτh equals 1

Nk−1
h (s,a)

∑
τ∈[k−1] u

τ
h · I{(sτh, aτh) = (s, a)}

for any sequence {uτh}τ∈[k−1]. Then, the result follows from the fact that eβ[rτh+V kh+1(s′)] ∈
[min{1, eβ(H−h)},max{1, eβ(H−h)}] for (τ, s′) ∈ [K]× S and the definition of q1.

Therefore, we have the following equivalent form of Equation (14):

(Qkh −Qπh)(s, a) = G1 +G2. (17)

Thanks to the identity (17), our goal is now to control G1 and G2, which is done in the following
lemma.
Lemma 3. For all (k, h, s, a) ∈ [K] × [H] × S × A that satisifies Nk−1

h (s, a) ≥ 1, there exist
universal constants c1, cγ > 0 (where cγ is used in Line 9 of Algorithm 1) such that

0 ≤ G1 ≤ c1 ·
e|β|H − 1

|β|
· d
√
ι
√
φ(s, a)>(Λkh)−1φ(s, a)

with probability at least 1− δ/2. Furthermore, if V kh+1(s′) ≥ V πh+1(s′) for all s′ ∈ S , then we have

0 ≤ G2 ≤ e|β|H · Es′∼Ph(· | s,a)[V
k
h+1(s′)− V πh+1(s′)].
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Proof. Case β > 0. To control G1, we note that Nk−1
h (s, a) = φ(s, a)>(Λkh)−1φ(s, a) and by

Equation (13) we can compute∣∣q+
1 − q2 − bkh(s, a)

∣∣
=

∣∣∣∣∣∣
〈
φ(s, a), (Λkh)−1

∑
τ∈[k−1]

φτh

[
eβ[rτh+V kh+1(sτh+1)] − Es′∼Ph(· | sτh,a

τ
h)e

β[rτh+V kh+1(s′)]
]〉∣∣∣∣∣∣

=

∣∣∣∣∣∣ 1

Nk−1
h (s, a)

∑
(s,a,s+)∈Dk−1

h

eβ[rh(s,a)+V kh+1(s+)] − Es′∼Ph(· | s,a)e
β[rh(s,a)+V kh+1(s′)]

∣∣∣∣∣∣
≤ 1

Nk−1
h (s, a)

∑
(s,a,s+)∈Dk−1

h

∣∣∣eβ[rh(s,a)+V kh+1(s+)] − Es′∼Ph(· | s,a)e
β[rh(s,a)+V kh+1(s′)]

∣∣∣
≤ 1

Nk−1
h (s, a)

∑
t∈[Nk−1

h (s,a)]

c′
∣∣eβH − 1

∣∣√Sι

t

≤ 1

Nk−1
h (s, a)

∫
t∈[0,Nk−1

h (s,a)]
c′
∣∣eβH − 1

∣∣√Sι

t
dt

=
1

Nk−1
h (s, a)

· c
∣∣eβH − 1

∣∣√Sι ·Nk−1
h (s, a)

= c
∣∣eβH − 1

∣∣√Sι ·√φ(s, a)>(Λkh)−1φ(s, a),

where the fourth step holds by Lemma 6, and the last step holds by the definition of Λkh; in the above,
c′ > 0 is a universal constant and c = 2c′. If we choose cγ = c in the definition of bkh(s, a) in Line 9
of Algorithm 1, we have

0 ≤ q+
1 − q2 ≤ 2c ·

∣∣eβH − 1
∣∣√Sι ·√φ(s, a)>(Λkh)−1φ(s, a).

Therefore, we have q1 ≥ q2, and thus G1 ≥ 0, by the first inequality above, the definition of q1 and
Lemma 2 (in particular, q2 ≤ eβ(H−h+1)). By Lemma 2 and Fact 1(a) (with g = 1, x = q1 and
y = q2), we have

G1 ≤
1

β
(q1 − q2) ≤ 1

β
(q+

1 − q2),

which together with the second inequality displayed above implies the desired upper bound on G1.

Now we control the termG2. For β > 0, it is not hard to see that the assumption V kh+1(s′) ≥ V πh+1(s′)
for all s′ ∈ S implies that q2 ≥ q3 and therefore G2 ≥ 0. We also have

G2 ≤
1

β
(q2 − q3)

≤ eβH
〈
φ(s, a), (Λkh)−1

∑
τ∈[k−1]

φτh

[
Es′∼Ph(· | sτh,a

τ
h)[V

k
h+1(s′)− V πh+1(s′)]

]〉
= e|β|HEs′∼Ph(· | s,a)[V

k
h+1(s′)− V πh+1(s′)],

where the first step holds by Fact 1(a) (with g = 1, x = q2, and y = q3) and the fact that q2 ≥ q3 ≥ 1
(with the last inequality suggested by Lemma 2), and the second step holds by Fact 1(b) (with b = β,
x = rτh + V kh+1(s), and y = rτh + V πh+1(s)) and H ≥ rτh + V kh+1(s) ≥ rτh + V πh+1(s) ≥ 0.

Case β < 0. Similar to the case of β > 0, we have∣∣q+
1 − q2 + bkh(s, a)

∣∣
≤ c ·

∣∣eβH − 1
∣∣√Sι ·√φ(s, a)>(Λkh)−1φ(s, a).

If we choose cγ = c in the definition of bkh(s, a) in Line 9 of Algorithm 1, the above equation implies

0 ≤ q2 − q+
1 ≤ 2c ·

∣∣eβH − 1
∣∣√Sι ·√φ(s, a)>(Λkh)−1φ(s, a).
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Therefore, we have q1 ≤ q2, and thus G1 ≥ 0, by the first inequality displayed above, the definition
of q1 and Lemma 2 (in particular, q2 ≥ eβ(H−h+1)). By Lemma 2 and Fact 1(a) (with g = eβH ,
x = q2 and y = q1), we further have

G1 =
1

(−β)
(log{q2} − log{q1})

≤ e−βH

|β|
(q2 − q1)

≤ e−βH

|β|
(q2 − q+

1 ),

which together with the second inequality displayed above and the fact that
∣∣eβH − 1

∣∣ = 1− eβH
implies the desired upper bound on G1.

Next we control G2. The assumption V kh+1(s′) ≥ V πh+1(s′) for all s′ ∈ S implies that q2 ≤ q3 and
therefore G2 ≥ 0. We also have

G2 =
1

(−β)
(log{q3} − log{q2})

≤ e−βH

(−β)
(q3 − q2)

≤ e|β|H
〈
φ(s, a), (Λkh)−1

∑
τ∈[k−1]

φτh

[
Es′∼Ph(· | sτh,a

τ
h)[V

k
h+1(s′)− V πh+1(s′)]

]〉
= e|β|HEs′∼Ph(· | s,a)[V

k
h+1(s′)− V πh+1(s′)],

where the second step holds by Fact 1(a) (with g = eβH , x = q3, and y = q2) and the fact that
q3 ≥ q2 ≥ eβH (with the last inequality suggested by Lemma 2), and the third step holds by Fact 1(b)
(with b = β, x = rτh + V kh+1(s), and y = rτh + V πh+1(s)) and rτh + V kh+1(s) ≥ rτh + V πh+1(s) ≥ 0.

The proof is hence completed.

The next lemma establishes the dominance of Qkh over Q∗h.

Lemma 4. On the event of Lemma 3, we have Qkh(s, a) ≥ Qπh(s, a) for all (k, h, s, a) ∈ [K] ×
[H]× S ×A.

Proof. For the purpose of the proof, we set QπH+1(s, a) = Q∗H+1(s, a) = 0 for all (s, a) ∈ S ×A.
We fix a tuple (k, s, a) ∈ [K]× S ×A and use strong induction on h. The base case for h = H + 1
is satisfied since (QkH+1 −QπH+1)(s, a) = 0 for k ∈ [K] by definition. Now we fix an h ∈ [H] and
assume that 0 ≤ (Qkh+1 −Q∗h+1)(s, a). Moreover, by the induction assumption we have

V kh+1(s) = max
a′∈A

Qkh+1(s, a′) ≥ max
a′∈A

Qπh+1(s, a′) ≥ V πh+1(s). (18)

We also assume that (s, a) satisfies Nk−1
h (s, a) ≥ 1, since otherwise Qkh(s, a) = H − h + 1 ≥

Qπh(s, a) and we are done. This assumption and Equation (18) together imply G2 ≥ 0 by Lemma 3.
We also have G1 ≥ 0 on the event of Lemma 3. Therefore, it follows that (Qkh −Qπh)(s, a) ≥ 0 by
Equation (17). The induction is completed and so is the proof.

Lemma 4 leads to an immediate and important corollary.

Lemma 5. For any δ ∈ (0, 1], with probability at least 1 − δ/2, we have V kh (s) ≥ V πh (s) for all
(k, h, s) ∈ [K]× [H]× S .

Proof. The result follows from Lemma 4 and Equation (18).
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B.1 Supporting lemmas

We first present a concentration result.

Lemma 6. Define

V̄h+1 :=
{
V̄h+1 : S → R | ∀s ∈ S, V̄h+1(s) ∈ [min{eβ(H−h), 1},max{eβ(H−h), 1}]

}
.

There exists a universal constant c > 0 such that with probability 1− δ, we have∣∣∣eβ[rh(skh,a
k
h)+V̄ (skh+1)] − Es′∼Ph(·|skh,a

k
h)e

β[rh(skh,a
k
h)+V̄ (s′)]

∣∣∣ ≤ c ∣∣eβH − 1
∣∣√ Sι

Nk
h (s, a)

for all (k, h, s, a) ∈ [K]× [H]× S ×A and all V̄ ∈ V̄h+1.

Proof. The proof follows the same reasoning as [4, Lemma 12].

The next few lemmas help control
∑
k∈[K](φ

k
h)>(Λkh)−1φkh.

Lemma 7 ([39, Lemma D.2]). Let {φt}t≥0 be a bounded sequence in Rd satisfying supt≥0 ‖φt‖ ≤ 1.
Let Λ0 ∈ Rd×d be a positive definite matrix with λmin(Λ0) ≥ 1. For any t ≥ 0, we define
Λt := Λ0 +

∑
i∈[t] φiφ

>
i . Then, we have

log

[
det(Λt)

det(Λ0)

]
≤
∑
i∈[t]

φ>i Λ−1
i−1φi ≤ 2 log

[
det(Λt)

det(Λ0)

]
.

Lemma 8. Recall the definitions of φkh and Λkh. For any h ∈ [H], we have∑
k∈[K]

(φkh)>(Λkh)−1φkh ≤ 2dι,

where ι = log(2dT/δ)

Proof. Define Γkh := λI +
∑
τ∈[k−1] φ

τ
h(φτh)> with λ = 1. It is not hard to see that by the definition

of Λkh we have Λkh � Γkh for h ∈ [H]. Since λmin(Γkh) ≥ 1 and ‖φkh‖ ≤ 1 for all (k, h) ∈ [K]× [H],
by Lemma 7 we have for any h ∈ [H] that

∑
k∈[K]

(φkh)>(Λkh)−1φkh ≤
∑
k∈[K]

(φkh)>(Γkh)−1φkh ≤ 2 log

[
det(Γk+1

h )

det(Γ1
h)

]
.

Furthermore, note that ‖Γk+1
h ‖ = ‖λI +

∑
τ∈[k] φ

k
h(φkh)>‖ ≤ λ+ k. This implies∑

k∈[K]

(φkh)>(Λkh)−1φkh ≤ 2d log

[
λ+ k

λ

]
≤ 2dι,

as desired.

C Proof of Theorem 1

Define δkh := V kh (skh)− V πkh (skh), and ζkh+1 := Es′∼Ph(· | skh,a
k
h)[V

k
h+1(s′)− V πkh+1(s′)]− δkh+1. For

any (k, h) ∈ [K]× [H], we have

δkh = (Qkh −Q
πk
h )(skh, a

k
h)

≤ c1 ·
e|β|H − 1

|β|
·
√
Sι
√
φ(skh, a

k
h)>(Λkh)−1φ(skh, a

k
h)

+ e|β|H · Es′∼Ph(· | skh,a
k
h)[V

k
h+1(s′)− V πkh+1(s′)]

17



= c1 ·
e|β|H − 1

|β|
·
√
Sι
√
φ(skh, a

k
h)>(Λkh)−1φ(skh, a

k
h)

+ e|β|H(δkh+1 + ζkh+1). (19)

In the above equation, the first step holds by the construction of Algorithm 1 and the definition of V πkh
in Equation (3); the second step is a consequence of combining Equation (17) as well as Lemmas 3
and 5; the last step follows from the definitions of δkh and ζkh+1.

Noting that V kH+1(s) = V πkH+1(s) = 0 and the fact that δkh+1 + ζkh+1 ≥ 0 implied by Lemma 5, we
can continue by expanding the recursion in Equation (19) and get

δk1 ≤
∑
h∈[H]

e(|β|H)hζkh+1

+ c1 ·
e|β|H − 1

|β|
·
∑
h∈[H]

e(|β|H)(h−1)
√
Sι
√
φ(skh, a

k
h)>(Λkh)−1φ(skh, a

k
h). (20)

Therefore, we have

Regret(K) =
∑
k∈[K]

[
(V ∗1 − V

πk
1 )(sk1)

]
≤
∑
k∈[K]

δk1

≤ e|β|H
2 ∑
k∈[K]

∑
h∈[H]

ζkh+1

+ c1 ·
e|β|H − 1

|β|
· e|β|H

2

·
√
Sι
∑
k∈[K]

∑
h∈[H]

√
φ(skh, a

k
h)>(Λkh)−1φ(skh, a

k
h), (21)

where the second step holds by Lemma 5 with π therein set to the optimal policy, and in the last step
we applied Equation (20) along with the Cauchy-Schwarz inequality.

We proceed to control the two terms in Equation (21). Since the construction of V kh is independent
of the new observation skh in episode k, we have that {ζkh+1} is a martingale difference sequence
satisfying

∣∣ζkh∣∣ ≤ 2H for all (k, h) ∈ [K]× [H]. By the Azuma-Hoeffding inequality, we have for
any t > 0,

P

 ∑
k∈[K]

∑
h∈[H]

ζkh+1 ≥ t

 ≤ exp

(
− t2

2T ·H2

)
.

Hence, with probability 1− δ/2, there holds∑
k∈[K]

∑
h∈[H]

ζkh+1 ≤
√

2TH2 · log(2/δ) ≤ 2H
√
Tι, (22)

where ι = log(2dT/δ). For the second term in Equation (21), we apply Lemma 8 and the Cauchy-
Schwarz inequality to obtain∑

k∈[K]

∑
h∈[H]

√
φ(skh, a

k
h)>(Λkh)−1φ(skh, a

k
h)

≤
∑
h∈[H]

√
K

√∑
k∈[H]

φ(skh, a
k
h)>(Λkh)−1φ(skh, a

k
h)

≤ H
√

2dKι. (23)

Plugging Equations (22) and (23) back to Equation (21) yields

Regret(K) ≤ e|β|H
2

· 2H
√
Tι+ c1 ·

e|β|H − 1

|β|
· e|β|H

2

·H
√

2dSKι2

18



≤ (c1 + 2) · e
|β|H − 1

|β|
· e|β|H

2

·
√

2dHSTι2,

where the last step holds since e|β|H−1
|β| ≥ H . The proof is completed in view of Fact 2 and the

identity d = SA.

D Proof warmup for Theorem 2

Recall the learning rates {αt} defined in Equation (9). Define the quantities

α0
t :=

t∏
j=1

(1− αj), αit := αi

t∏
j=i+1

(1− αj) (24)

for integers i, t ≥ 1. By convention, we set α0
t = 1 and

∑
i∈[t] α

i
t = 0 if t = 0, and αit = αi if

t < i+ 1. Define the shorthand ι := log(SAT/δ) for δ ∈ (0, 1].

The following fact describes some key properties of the learning rates {αt}.
Fact 3. The following properties hold for αit.

(a) 1√
t
≤
∑
i∈[t]

αit√
i
≤ 2√

t
for every integer t ≥ 1.

(b) maxi∈[t] α
i
t ≤ 2H

t and
∑
i∈[t](α

i
t)

2 ≤ 2H
t for every integer t ≥ 1.

(c)
∑∞
t=i α

i
t = 1 + 1

H for every integer i ≥ 1.

(d)
∑
i∈[t] α

i
t = 1 and α0

t = 0 for every integer t ≥ 1, and
∑
i∈[t] α

i
t = 0 and α0

t = 1 for
t = 0.

Proof. The first three facts can be found in [38, Lemma 4.1], and the last one follows from direct
calculation in view of Equation (24).

We also present a lemma that controls the deviation of the exponentiated value function from its
expectation.
Lemma 9. There exists a universal constant c > 0 such that for any (k, h, s, a) ∈ [K]× [H]×S×A
and k1, . . . , kt < k with t = Nk

h (s, a), we have∣∣∣∣∣∣ 1β
∑
i∈[t]

αit

[
eβ[rh(s,a)+V ∗h+1(s

ki
h+1)] − Es′∼Ph(· | s,a)e

β[rh(s,a)+V ∗h+1(s′)]
]∣∣∣∣∣∣

≤
c
∣∣eβH − 1

∣∣
|β|

√
Hι

t
.

with probability at least 1− δ, and

1

|β|
∑
i∈[t]

αitbi ∈

[
c
∣∣eβH − 1

∣∣
|β|

√
Hι

t
,

2c
∣∣eβH − 1

∣∣
|β|

√
Hι

t

]
.

Proof. For any (k, h, s, a) ∈ [K]× [H]× S ×A, define

ψ(i, k, h, s, a) := eβ[rh(s,a)+V ∗h+1(s
ki
h+1)] − Es′∼Ph(· | s,a)e

β[rh(s,a)+V ∗h+1(s′)]

Let us fix a tuple (k, h, s, a) ∈ [K]×[H]×S×A. It can be seen that {I(ki ≤ K)·ψ(i, k, h, s, a)}i∈[τ ]

for τ ∈ [K] is a martingale difference sequence. By the Azuma-Hoeffding inequality and a union
bound over τ ∈ [K], we have with probability at least 1− δ/(HSA), for all τ ∈ [K],∣∣∣∣∣∣

∑
i∈[τ ]

αiτ · I(ki ≤ K) · ψ(i, k, h, s, a)

∣∣∣∣∣∣
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≤
c
∣∣eβH − 1

∣∣
2

√
ι
∑
i∈[τ ]

(αiτ )2 ≤ c
∣∣eβH − 1

∣∣√Hι

τ

where c > 0 is some universal constant, the first step holds since rh(s, a) + V ∗h+1(s′) ∈ [0, H] for
s′ ∈ S, and the last step follows from Fact 3(b). Since the above equation holds for all τ ∈ [K], it
also holds for τ = t = Nk

h (s, a) ≤ K. Note that I(ki ≤ K) = 1 for all i ∈ [Nk
h (s, a)]. Therefore,

applying another union bound over (h, s, a) ∈ [H]× S ×A, we have that the following holds for all
(k, h, s, a) ∈ [K]× [H]× S ×A and with probability at least 1− δ:∣∣∣∣∣∣

∑
i∈[t]

αiτ · ψ(i, k, h, s, a)

∣∣∣∣∣∣ ≤ c ∣∣eβH − 1
∣∣√Hι

t
, (25)

where t = Nk
h (s, a). Using the fact that rh + V ∗h+1 ∈ [0, H], we have∣∣∣∣∣∣ 1β
∑
i∈[t]

αit

[
E
s′∼P̂kih (· | s,a)

eβ[rh(s,a)+V ∗h+1(s′)] − Es′∼Ph(· | s,a)e
β[rh(s,a)+V ∗h+1(s′)]

]∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1β
∑
i∈[t]

αit · ψ(i, k, h, s, a)

∣∣∣∣∣∣ ≤ c
∣∣eβH − 1

∣∣
|β|

√
Hι

t
.

To prove the result for 1
|β|
∑
i∈[t] α

i
tbi, we recall the definition of {bt} in Line 8 of Algorithm 2 and

compute

1

|β|
∑
i∈[t]

αitbi =
c
∣∣eβH − 1

∣∣
|β|

∑
i∈[t]

αit

√
Hι

i

∈

[
c
∣∣eβH − 1

∣∣
|β|

√
Hι

t
,

2c
∣∣eβH − 1

∣∣
|β|

√
Hι

t

]
where the last step holds by Fact 3(a).

We fix a tuple (k, h, s, a) ∈ [K] × [H] × S × A with ki ≤ k being the episode in which (s, a) is
taken the i-th time at step h. Let us define

q+
1 :=

α
0
t e
β(H−h+1) +

∑
i∈[t] α

i
t

[
eβ[rh(s,a)+V

ki
h+1(s

ki
h+1)] + bi

]
, if β > 0,

α0
t e
β(H−h+1) +

∑
i∈[t] α

i
t

[
eβ[rh(s,a)+V

ki
h+1(s

ki
h+1)] − bi

]
, if β < 0,

q1 :=

{
min{eβ(H−h+1), q+

1 }, if β > 0,

max{eβ(H−h+1), q+
1 }, if β < 0,

and

q+
2 :=

α
0
t e
β(H−h+1) +

∑
i∈[t] α

i
t

[
eβ[rh(s,a)+V ∗h+1(s

ki
h+1)] + bi

]
, if β > 0,

α0
t e
β(H−h+1) +

∑
i∈[t] α

i
t

[
eβ[rh(s,a)+V ∗h+1(s

ki
h+1)] − bi

]
, if β < 0,

q2 :=

{
min{eβ(H−h+1), q+

2 }, if β > 0,

max{eβ(H−h+1), q+
2 }, if β < 0,

q′2 := α0
t e
β(H−h+1) +

∑
i∈[t]

αit

[
eβ[rh(s,a)+V ∗h+1(s

ki
h+1)]

]
,

and
q3 := α0

t e
β·Q∗h(s,a) +

∑
i∈[t]

αit

[
Es′∼Ph(· | s,a)e

β[rh(s,a)+V ∗h+1(s′)]
]
.

We have a simple fact on q2 and q′2.
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Fact 4. If β > 0, we have q′2 ≤ q2; if β < 0, we have q′2 ≥ q2.

Proof. We focus on the case of β > 0. Note that rh(s, a) + V ∗h+1(skih+1) ∈ [0, H − h + 1],

which implies eβ[rh(s,a)+V ∗h+1(s
ki
h+1)] ≤ eβ(H−h+1). We also have α0

t ,
∑
i∈[t] α

i
t ∈ {0, 1} with

α0
t+
∑
i∈[t] α

i
t = 1 by Fact 3(d). These together imply that q′2 ≤ eβH and q′2−q+

2 = −
∑
i∈[t] α

i
tbi ≤

0 by definition of bi in Line 8 of Algorithm 2. Therefore, q′2 ≤ min{eβ(H−h+1), q+
2 } = q2. The case

of β < 0 can be proved in a similar way and thus omitted.

Next, we establish a representation of the performance difference (Qkh−Q∗h)(s, a) using the quantities
q1 and q3.
Lemma 10. For any (k, h, s, a) ∈ [K] × [H] × S × A, let t = Nk

h (s, a) and suppose (s, a) was
previously taken at step h of episodes k1, . . . , kt < k. We have

(Qkh −Q∗h)(s, a) =
1

β
log{q1} −

1

β
log{q3}.

Proof. The Bellman optimality equation (4) implies

eβ·Q
∗
h(s,a) = eβ·rh(s,a)

[
Es′∼Ph(· | s,a)e

β·V ∗h+1(s′)
]
.

By Fact 3(d), we have

eβ·Q
∗
h(s,a) = α0

t e
β·Q∗h(s,a) +

∑
i∈[t]

αite
β·rh(s,a)

[
Es′∼Ph(· | s,a)e

β·V ∗h+1(s′)
]

= q3

for each integer t ≥ 0, and therefore

Q∗h(s, a) =
1

β
log {q3} . (26)

We finish the proof by combining Equation (26) and the fact that Qkh(s, a) = 1
β log{q1}, which

follows from Line 10 of Algorithm 2.

We define the quantities

G1 :=
1

β
log{q1} −

1

β
log{q2},

G2 :=
1

β
log{q2} −

1

β
log{q3},

(27)

It is not hard to see that (Qkh −Q∗h)(s, a) = G1 + G2 by Lemma 10. The next lemma establishes
upper and lower bounds for (Qkh −Q∗h)(s, a).

Lemma 11. For all (k, h, s, a) ∈ [K]× [H]× S ×A such that t = Nk
h (s, a) ≥ 1, let

γt := 2
∑
i∈[t]

αitbi ·

{
1
|β| , if β > 0,
e−βH

|β| , if β < 0,

and with probability at least 1− δ we have

0 ≤ (Qkh −Q∗h)(s, a) ≤ α0
tHe

|β|H +
∑
i∈[t]

αite
|β|H

[
V kih+1(skih+1)− V ∗h+1(skih+1)

]
+ 2γt,

where k1, . . . , kt < k are the episodes in which (s, a) was taken at step h, and γt ≤ 4c(e|β|H−1)
|β|

√
Hι
t .

Proof. We prove the lower bound for (Qkh −Q∗h)(s, a) and then use it to prove the upper bound.

Lower bound for Qk −Q∗.
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For the purpose of the proof, we set QkH+1(s, a) = Q∗H+1(s, a) = 0 for all (k, s, a) ∈ [K]× S ×A.
We fix a (s, a) ∈ S ×A and use strong induction on k and h. Without loss of generality, we assume
that there exists a (k, h) such that (s, a) = (skh, a

k
h) (that is, (s, a) has been taken at some point in

Algorithm 2), since otherwise Qkh(s, a) = H − h+ 1 ≥ Q∗h(s, a) for all (k, h) ∈ [K]× [H] and we
are done. The base case for k = 1 and h = H + 1 is satisfied since (Qk

′

H+1 −Q∗H+1)(s, a) = 0 for
k′ ∈ [K] by definition. We fix a (k, h) ∈ [K]× [H] and assume that 0 ≤ (Qkih+1 −Q∗h+1)(s, a) for
each k1, . . . , kt < k (here t = Nk

h (s, a)). Then we have for i ∈ [t] that

V kih+1(s) = max
a′∈A

Qkih+1(s, a′) ≥ max
a′∈A

Q∗h+1(s, a′) = V ∗h+1(s).

Recall the quantities G1 and G2 defined in Equation (27). The above equation implies G1 ≥ 0.
We also have G2 ≥ 0 by the fact Q∗h(s, a) ≤ H and on the event of Lemma 9. Therefore, it
follows that (Qkh −Q∗h)(s, a) = G1 +G2 ≥ 0. The induction is completed and we have proved that
0 ≤ (Qkh −Q∗h)(s, a) for all (k, h, s, a) ∈ [K]× [H]× S ×A.

Upper bound for Qk −Q∗.
Let us fix a (k, h, s, a) ∈ [K]× [H]× S ×A. Since 0 ≤ (Qkh −Q∗h)(s, a), we have for i ∈ [t] that

V kih+1(s) = max
a′∈A

Qkih+1(s, a′) ≥ max
a′∈A

Q∗h+1(s, a′) = V ∗h+1(s).

Case β > 0. We have

G1 =
1

β
log{q1} −

1

β
log{q2}

≤ 1

β
(q1 − q2)

≤ 1

β
(q+

1 − q′2)

≤ 1

β

∑
i∈[t]

αit

[
eβ[rh(s,a)+V

ki
h+1(s

ki
h+1)] − eβ[rh(s,a)+V ∗h+1(s

ki
h+1)]

]
+

1

β

∑
i∈[t]

αitbi

≤ e|β|H
∑
i∈[t]

αit

[
(V kih+1 − V

∗
h+1)(skih+1)

]
+ γt,

where the second step holds by Fact 1(a) with g = 1 and the fact that V kih+1(s) ≥ V ∗h+1(s) and by
noticing that α0

t ,
∑
i∈[t] α

i
t ∈ {0, 1} with α0

t +
∑
i∈[t] α

i
t = 1 by Fact 3(d) (so that q1 ≥ q2), the

third step holds since by definition q+
1 ≥ q1 and by Fact 4 q′2 ≤ q2, and the last step holds by Fact

1(b) and the fact that H ≥ rh(s, a) + V kih+1(s) ≥ rh(s, a) + V ∗h+1(s) ≥ 0. For G2, we have

G2 =
1

β
log{q2} −

1

β
log{q3}

≤ 1

β
(q2 − q3)

≤ 1

β
(q+

2 − q3)

=
α0
t

β

[
eβH − eβ·Q

∗
h(s,a)

]
+

1

β

∑
i∈[t]

αitbi

+
1

β

∑
i∈[t]

αit

[
eβ[rh(s,a)+V ∗h+1(s

ki
h+1)] − Es′∼Ph(· | s,a)e

β[rh(s,a)+V ∗h+1(s′)]
]

≤ α0
tHe

|β|H + γt,

In the above, the second step holds by Fact 1(a) with g = 1 and∑
i∈[t]

αitbi ≥

∣∣∣∣∣∣
∑
i∈[t]

αit

[
eβ[rh(s,a)+V ∗h+1(s

ki
h+1)] − Es′∼Ph(· | s,a)e

β[rh(s,a)+V ∗h+1(s′)]
]∣∣∣∣∣∣
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on the event of Lemma 9 (so that q2 ≥ q3); the third step holds by Fact 4; the last step holds by Fact
1(b) and Q∗h(s, a) ∈ [0, H] and on the event of Lemma 9.

Case β < 0. We have

G1 =
1

(−β)
log{q2} −

1

(−β)
log{q1}

≤ e−βH

(−β)
(q2 − q1)

≤ e−βH

(−β)
(q′2 − q+

1 )

=
e−βH

(−β)

∑
i∈[t]

αit

[
eβ[rh(s,a)+V ∗h+1(s

ki
h+1)] − eβ[rh(s,a)+V

ki
h+1(s

ki
h+1)]

]
+
e−βH

(−β)

∑
i∈[t]

αitbi

≤ e|β|H
∑
i∈[t]

αit

[
(V kih+1 − V

∗
h+1)(skih+1)

]
+ γt,

where the second step holds by Fact 1(a) with g = eβH and the fact that V kih+1(s) ≥ V ∗h+1(s) (so that
q2 ≥ q1), the third step holds since q′2 ≥ q2 by Fact 4 and q+

1 ≤ q1 by definition, and the last step
holds by Fact 1(b) and the fact that H ≥ rh(s, a) + V kih+1(s) ≥ rh(s, a) + V ∗h+1(s) ≥ 0. For G2, we
have

G2 =
1

(−β)
log{q3} −

1

(−β)
log{q2}

≤ e−βH

(−β)
(q3 − q2)

≤ e−βH

(−β)
(q3 − q+

2 )

=
e−βH

(−β)
α0
t

[
eβ·Q

∗
h(s,a) − eβH

]
+
e−βH

(−β)

∑
i∈[t]

αitbi

+
e−βH

(−β)

∑
i∈[t]

αit

[
Es′∼Ph(· | s,a)e

β[rh(s,a)+V ∗h+1(s′)] − eβ[rh(s,a)+V ∗h+1(s
ki
h+1)]

]
≤ e−βHα0

t [H −Q∗h(s, a)] +
2e−βH

(−β)

∑
i∈[t]

αitbi

≤ α0
tHe

|β|H + γt.

where the second step holds by Fact 1(a) given q3 ≥ q2, the second to the last step holds by Fact 1(b),
the fact that Q∗h(s, a) ≤ H and on the event of Lemma 9, and the last step holds by the definition of
γt.

Combining the bounds of G1 and G2 with the identity (Qkh −Q∗h)(s, a) = G1 +G2 yields the upper
bound for (Qkh −Q∗h)(s, a). The proof is completed in view of Lemma 9 and the definition of γt that
imply

γt ≤
4c(e|β|H − 1)

|β|

√
Hι

t
.

E Proof of Theorem 2

We first introduce some notations. Let G be a discrete space. Define the shorthand

lseβ(P, f) :=
1

β
log {Ex∼P [exp (β · f(x))]} , (28)
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for a probability distribution P supported on G and function f : G → R. We record a useful lemma
that shows lseβ(·, ·) is Lipschitz continuous in the second argument.

Lemma 12. Let G be a discrete space and f̄ ≥ 0 be a non-negative number. Let the functions
f, f ′ : Rd 7→ [0, f̄ ] be such that f(x) ≥ f ′(x) for all x ∈ Rd. Also let P be a probability distribution
supported on G. We have

lseβ(P, f)− lseβ(P, f ′) ≤ e|β|f̄ · Ex∼P [f(x)− f ′(x)].

The proof is given in Appendix E.1.

Define P̂ kh (· | s, a) to be the delta function centered at skh+1 for all (k, h, s, a) ∈ [K]× [H]× S ×A,
and this means Es′∼P̂kh (· | s,a)[f(s′)] = f(skh+1) for any function f : S → R. We let

δkh := (V kh − V
πk
h )(skh) and φkh := (V kh − V ∗h )(skh).

Also define
ξkh+1 := [(Ph − P̂ kh )(V ∗h+1 − V

πk
h+1)](skh, a

k
h).

Note that For each (k, h) ∈ [K]× [H], we have

δkh = (Qkh −Q
πk
h )(skh, a

k
h)

= (Qkh −Q∗h)(skh, a
k
h) + (Q∗h −Q

πk
h )(skh, a

k
h)

≤ α0
tHe

|β|H +
∑
i∈[t]

αite
|β|Hφkih+1 + 2γt

+ [lse(Ph(· | skh, akh), V ∗h+1)− lse(Ph(· | skh, akh), V πkh+1)]

≤ α0
tHe

|β|H +
∑
i∈[t]

αite
|β|Hφkih+1 + 2γt + e|β|H [Ph(V ∗h+1 − V

πk
h+1)](skh, a

k
h)

= α0
tHe

|β|H +
∑
i∈[t]

αite
|β|Hφkih+1 + 2γt + e|β|H(δkh+1 − φkh+1 + ξkh+1), (29)

where the third step holds by Lemma 11 and the Bellman equations (3) and (4), the fourth step holds
by Lemma 12 and the fact that 0 ≤ V πkh+1(s) ≤ V ∗h+1(s) ≤ H for all s ∈ S , and the last step follows
by defintion that δkh+1 − φkh+1 = (V ∗h+1 − V

πk
h+1)(skh+1) = [P̂ kh (V ∗h+1 − V

πk
h+1)](skh, a

k
h) and the

definition of ξkh+1.

We now compute
∑
k∈[K] δ

k
h for a fixed h ∈ [H]. Denote by nkh := Nk

h (skh, a
k
h) and we have∑

k∈[K]

α0
nkh
He|β|H = He|β|H

∑
k∈[K]

I{nkh = 0} ≤ He|β|HSA.

Then we turn to control the second term in Equation (29) summed over k ∈ [K], that is,∑
k∈[K]

∑
i∈[t]

αite
|β|Hφkih+1 = e|β|H

∑
k∈[K]

∑
i∈[nkh]

αinkh
φ
ki(s

k
h,a

k
h)

h+1 ,

where ki(skh, a
k
h) denotes the episode in which (skh, a

k
h) was taken at step h for the i-th time. We

re-group the above summation in a different way. For every k′ ∈ [K], the term φk
′

h+1 appears in
the summand with k > k′ if and only if (skh, a

k
h) = (sk

′

h , a
k′

h ). The first time it appears we have
nkh = nk

′

h + 1, the second time it appears we have nkh = nk
′

h + 2, and etc. Therefore,

e|β|H
∑
k∈[K]

∑
i∈[nkh]

αinkh
φ
ki(s

k
h,a

k
h)

h+1 ≤ e|β|H
∑
k′∈[K]

φk
′

h+1

∑
t≥nk′h +1

α
nk
′
h
t ≤ e|β|H

(
1 +

1

H

) ∑
k′∈[K]

φk
′

h+1,

where the last step follows Fact 3(c). Collecting the above results and plugging them into Equation
(29), we have ∑

k∈[K]

δkh ≤ He|β|HSA+ e|β|H
(

1 +
1

H

) ∑
k∈[K]

φkh+1
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+ e|β|H
∑
k∈[K]

(δkh+1 − φkh+1) +
∑
k∈[K]

(2γnkh + e|β|Hξkh+1)

≤ He|β|HSA+ e|β|H
(

1 +
1

H

) ∑
k∈[K]

δkh+1

+
∑
k∈[K]

(2γnkh + e|β|Hξkh+1), (30)

where the last step holds since δkh+1 ≥ φkh+1 (due to the fact that V ∗h+1(s) ≥ V πkh+1(s) for all x ∈ S).
Since it holds that [

e|β|H
(

1 +
1

H

)]H
≤ e|β|H

2+1,

we can expand the quantity
∑
k∈[K] δ

k
1 recursively in the form of Equation (30), apply Holder’s

inequality and use the fact that δkH+1 = 0 to get

∑
k∈[K]

δk1 ≤ e|β|H
2+1

H2e|β|HSA+
∑
h∈[H]

∑
k∈[K]

(2γnkh + e|β|Hξkh+1)

 . (31)

By the pigeonhole principle, for any h ∈ [H] we have

∑
k∈[K]

γnkh .
e|β|H − 1

|β|
∑
k∈[K]

√
Hι

nkh

=
e|β|H − 1

|β|
∑

(s,a)∈S×A

∑
n∈[NKh (s,a)]

√
Hι

n

.
e|β|H − 1

|β|
√
HSAKι

=
e|β|H − 1

|β|
√
SATι, (32)

where the third step holds since
∑

(s,a)∈S×AN
K
h (s, a) = K and the RHS of the second step is

maximized when NK
h (s, a) = K/(SA) for all (s, a) ∈ S × A. Finally, the Azuma-Hoeffding

inequality implies that with probability at least 1− δ, we have∣∣∣∣∣∣
∑
h∈[H]

∑
k∈[K]

ξkh+1

∣∣∣∣∣∣ . H
√
Tι. (33)

Putting together Equations (32) and (33) and plugging them into (31), we have∑
k∈[K]

δk1 . e|β|(H
2+H) ·H2SA

+ e|β|H
2

· e
|β|H − 1

|β|
√
H2SATι

+ e|β|(H
2+H) ·H

√
Tι.

≤ e|β|(H
2+H) ·H2SA

+ e|β|(H
2+H) · e

|β|H − 1

|β|
√
H2SATι

The proof is completed in view of Fact 2 and when T is sufficiently large.
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E.1 Proof of Lemma 12

We have the following two cases.

Case β > 0. We have

lseβ(P, f)− lseβ(P, f ′) ≤ 1

β
Ex∼P

[
eβ·f(x) − eβ·f

′(x)
]

≤ 1

β
Ex∼P

[
βeβf̄ (f(x)− f ′(x))

]
= eβf̄ · Ex∼P [f(x)− f ′(x)],

where the first step holds by Fact 1(a) with g = 1 and the fact that eβ·f(x) ≥ eβ·f
′(x) ≥ 1, and the

second holds by Fact 1(b) with u = f̄ and the fact that f(x) ≥ f ′(x).

Case β < 0. We have

lseβ(P, f)− lseβ(P, f ′) = − [lseβ(P, f ′)− lseβ(P, f)]

≤ exp(−βf̄)

(−β)
Ex∼P [exp(β · f ′(x))− exp(β · f(x))]

≤ exp(−βf̄)

(−β)
Ex∼P [(−β)(f(x)− f ′(x))]

= exp(−βf̄) · Ex∼P [f(x)− f ′(x)],

where the second step holds by Fact 1(a) with g = eβf̄ given that x ∈ [eβf̄ , 1], and the third step
holds by Fact 1(b) and the fact 1 ≥ eβ·f ′(x) ≥ eβ·f(x) > 0.

F Proof of Theorem 3

We consider the following MDP as illustrated in Figure 2. For now, we focus on the case β > 0; we
shall see soon that the construction for β < 0 can be done in a similar way. The MDP is equipped
with A = {a1, a2} and S = {s1, s2, s3}, where state s1 is the initial state, and states s2 and s3

are absorbing regardless of actions taken. The reward function satisfies that rh(s2, a) = 1 and
rh(s1, a) = rh(s3, a) = 0 for all h ∈ [H] and a ∈ A. In Figure 2, step H + 1 is a virtual step that
represents termination of an episode and generates no reward. At the initial state s1, we may choose
to take action a1 or a2. If a1 is taken at state s1, then we transition to s2 with probability p1 and to s3

with probability 1− p1. If a2 is taken at state s1, then we transition to s2 with probability p2 and to
s3 with probability 1− p2. We interact with such an MDP for K episodes.

We note that the above K-episode MDP is equivalent to a K-round two-armed bandit with per-round
reward ranging in [0, H − 1], where the first transition in each episode of the MDP can be viewed
as a pull of an arm in each round of the bandit. Therefore, the regret lower bound for the MDP can
be proved using lower bound techniques for bandits. Our proof follows the same reasoning of [41,
Theorem 15.2]. We start by discussing the setup for the proof under the cases β > 0 and β < 0.

For each ρ ∈ [0, 1], let Ber(ρ) denote the Bernoulli distribution with parameter ρ. Let us fix a policy
π. We first consider the case β > 0. We construct a pair of two-armed bandits, which we call νp and
νp′ . The first bandit νp has X1 = (H − 1) · Ber(p1) as the first arm and X2 = (H − 1) · Ber(p2)
as the second arm. The second bandit νp′ has X ′1 = (H − 1) · Ber(p′1) as the first arm and
X ′2 = (H − 1) · Ber(p′2) as the second arm. We let p2 < p1 = p′1 < p′2 and p2 = e−β(H−1). Let
∆ := p1 − p2 and we will choose ∆ ≤ 1

4e
−β(H−1) later in the proof. Note that when |β(H − 1)| is

large enough, we have ∆ ≤ 1
100 . Let p′2 = p1 + ∆, so that p′2 = p2 + 2∆ and p′2 ≤ 1

4 .

We then consider β < 0. Let p2 = eβ(H−1), and set p1 = p′1 = p2 − ∆ and p′2 = p2 − 2∆ for
some ∆ ∈ (0, 1

4e
β(H−1)] to be specified later. Similar to the case β > 0, we construct a pair of

two-armed bandits νp and νp′ . The first bandit νp has X1 = (H−1) ·Ber(1−p1) as the first arm and
X2 = (H−1) ·Ber(1−p2) as the second arm. The second bandit νp′ hasX ′1 = (H−1) ·Ber(1−p′1)
as the first arm and X ′2 = (H − 1) · Ber(1− p′2) as the second arm. When |β(H − 1)| is sufficiently
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Figure 2: Illustration of the MDP for the lower bound proof for β > 0.

large, we have 1− p′2 ≥ 1− p′1 = 1− p1 ≥ 1− p2 = 1− eβ(H−1) ≥ 1
2 and ∆ ≤ 1

4e
β(H−1) implies

∆ ≤ 1
100 .

In the remaining of the section, we provide a unified proof for both cases of β > 0 and β < 0.
We denote by Pπ,νp and Pπ,νp′ the probability measures induced jointly by π and the two bandits,
respectively. We will use the shorthands Pp := Pπ,νp and Pp′ := Pπ,νp′ for notational simplicity.
Note that for both β > 0 and β < 0, the first arm is optimal for bandit νp, while the second is optimal
for bandit νp′ . Let Ta(K) be the number of times we have pulled the a-th arm of a bandit after we
execute policy π for K rounds. It is clear that Ep[T2(K)] ≤ K. Let Rπ,ν(K) denote the regret of
policy π after it is executed for K rounds in bandit ν.

By Lemmas 13 and 14, we have

Rπ,νp(K) &
e|β|(H−1) − 1

|β|
·∆ · Ep[T2(K)]

≥ e|β|(H−1) − 1

|β|
·∆ ·

[
K

2
· Pp(T1(K) ≤ K/2)

]
,

and

Rπ,νp′ (K) &
e|β|(H−1) − 1

|β|
·∆ · Ep′ [T1(K)]

≥ e|β|(H−1) − 1

|β|
·∆ ·

[
K

2
· Pp′(T1(K) > K/2)

]
.

We combine the above two displays and get
1

2

[
Rπ,νp(K) +Rπ,νp′ (K)

]
&
e|β|(H−1) − 1

|β|
·K∆ [Pp(T1(K) ≤ K/2) + Pp′(T1(K) > K/2)]

≥ e|β|(H−1) − 1

|β|
·K∆ · exp [−DKL(Pp‖Pp′)]

≥ e|β|(H−1) − 1

|β|
·K∆ · exp

[
−K · 8∆2

p2(1− p2)

]
(34)

where the second step holds by the Bretagnolle–Huber inequality [41, Theorem 14.2], and the last
step follows from the fact that Ep [T2(K)] ≤ K and Lemma 16. Now we set

∆ :=

√
p2(1− p2)

K
.
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Note that this choice of ∆ ensures ∆ ≤ 1
4e
−|β|(H−1) as long as K is sufficiently large. Hence,

continuing from (34) we have

1

2

[
Rπ,νp(K) +Rπ,νp′ (K)

]
&
e|β|(H−1) − 1

|β|
·K∆

&
e|β|(H−1) − 1

|β|
·
√
p2(1− p2)K

≥ e|β|(H−1) − 1

|β|
·
√

1

2
e−β(H−1)K

&
e|β|(H−1)/2 − 1

|β|
√
K,

where the third step holds since p2 = e−|β|(H−1) and 1 − p2 ≥ 1
2 . The proof is completed by

upper bounding the LHS of the above display by max{Rπ,νp(K), Rπ,νp′ (K)}, and recalling that
λ(u) = (e3u − 1)/u for u > 0 and T = KH .

F.1 Auxiliary Lemmas

Lemma 13. Let π be any policy and ν be any two-armed bandit with distinct arms. Let Xa denote
the a-th arm of ν. Define a∗ := argmaxa∈{a1,a2}

1
β logEνeβXa and b ∈ {a1, a2}\{a∗}. Also define

δb,ν :=

{
(EνeβXa∗ − EνeβXb)/EνeβXa∗ , if β > 0,

(EνeβXb − EνeβXa∗ )/EνeβXa∗ , if β < 0.

We have
Rπ,ν(K) ≥ 1

2 |β|
δb,ν · Eπ,ν [Tb(K)] .

Proof. Let Yk be the reward received at round k by executing π, and A = {a∗, b}. We slightly abuse
the notation by writing πk = a to mean that arm a is pulled in round k by executing π. Recall the
definitions of the value functions V ∗1 and V π1 from (4) and (3), respectively. Since there is no state in
bandit, we omit the arguments of the value functions. We observe that

V ∗1 =
1

β
logEeβXa∗

and

V π
k

1 =
1

β
logEeβYk =

1

β
log

{∑
a∈A

P(πk = a) · EeβXa
}
.

In the RHS of the two displays above, the probability P(·) is with respect to π and ν, and the
expectation E[·] is with respect to ν. Note that by the definitions of a∗ and b, we have δb,ν ∈ [0, 1]
for any β 6= 0.

For β > 0, we have

V ∗1 − V π
k

1 =
1

β
log

{∑
a∈A P(πk = a) · EeβXa∗∑
a∈A P(πk = a) · EeβXa

}

=
1

β
log

{
1 +

P(πk = b) · (EeβXa∗ − EeβXb)∑
a∈A P(πk = a) · EeβXa

}
≥ 1

β
log

{
1 +

P(πk = b) · (EeβXa∗ − EeβXb)
EeβXa∗

}
=

1

β
log
{

1 + E
[
I{πk = b}

]
· δb,ν

}
≥ 1

2β
· E
[
I{πk = b}

]
· δb,ν ,
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where the last step holds since δb,ν ∈ [0, 1] and log(1 + x) ≥ x
2 for x ∈ [0, 1]. Summing both sides

of the above display over k ∈ [K] and noticing Tb(K) =
∑
k∈[K] I{πk = b} yield the result.

For β < 0, we have

V ∗1 − V π
k

1 =
1

|β|
log

{∑
a∈A

P(πk = a) · EeβXa
}
− 1

|β|
logEeβXa∗

=
1

|β|
log

{∑
a∈A P(πk = a) · EeβXa

EeβXa∗

}

=
1

|β|
log

{
1 +

P(πk = b) · (EeβXb − EeβXa∗ )

EeβXa∗

}
=

1

|β|
log
{

1 + E
[
I{πk = b}

]
· δb,ν

}
≥ 1

2 |β|
· E
[
I{πk = b}

]
· δb,ν ,

where the last step holds since δb,ν ∈ [0, 1] and log(1 + x) ≥ x
2 for x ∈ [0, 1]. Summing both sides

of the above display over k ∈ [K] and noticing Tb(K) =
∑
k∈[K] I{πk = b} yield the result.

Lemma 14. Consider the setting of Lemma 13, and recall the bandits νp and νp′ and the quantity ∆
defined in Section F. For ν ∈ {νp, νp′}, we have

δb,ν & ∆(e|β|(H−1) − 1).

Proof. We first consider the case β > 0. For ν = νp, we have

δb,ν =
p1e

β(H−1) + (1− p1)− [p2e
β(H−1) + (1− p2)]

p1eβ(H−1) + (1− p1)

=
∆(eβ(H−1) − 1)

p1eβ(H−1) + (1− p1)

≥ ∆(eβ(H−1) − 1)

3
,

where the second step holds since p1 = p2 + ∆, and the last step holds since p1 = p2 + ∆ ≤
2e−β(H−1) given p2 = e−β(H−1) and ∆ ≤ 1

4e
−β(H−1). For ν = νp′ , we have

δb,ν =
p′2e

β(H−1) + (1− p′2)− [p′1e
β(H−1) + (1− p′1)]

p′2e
β(H−1) + (1− p′2)

=
∆(eβ(H−1) − 1)

p′2e
β(H−1) + (1− p′2)

≥ ∆(eβ(H−1) − 1)

4
,

where the second step holds since p′2 = p′1 + ∆ = p1 + ∆, and the last step holds since p′2 =
p1 + ∆ = p2 + 2∆ ≤ 3e−β(H−1) given p2 = e−β(H−1) and ∆ ≤ e−β(H−1).

Now we consider β < 0. For ν = νp, we have

δb,ν =
(1− p2)eβ(H−1) + p2 − [(1− p1)eβ(H−1) + p1]

(1− p1)eβ(H−1) + p1

=
∆(1− eβ(H−1))

(1− p1)eβ(H−1) + p1

≥ ∆(1− eβ(H−1))

2eβ(H−1)
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=
∆(e−β(H−1) − 1)

2
,

where the second step holds since p1 = p2 − ∆, and the third step holds since 1 − p1 ≤ 1 and
p1 = p2 −∆ = eβ(H−1) −∆ ≤ eβ(H−1). For ν = νp′ , we have

δb,ν =
(1− p′1)eβ(H−1) + p′1 − [(1− p′2)eβ(H−1) + p′2]

(1− p′2)eβ(H−1) + p′2

=
∆(1− eβ(H−1))

(1− p′2)eβ(H−1) + p′2

≥ ∆(1− eβ(H−1))

2eβ(H−1)

=
∆(e−β(H−1) − 1)

2
,

where the second step holds since p′2 = p′1 − ∆, and the third step holds since 1 − p′2 ≤ 1 and
p′2 = p2 − 2∆ = eβ(H−1) − 2∆ ≤ eβ(H−1). We note −β(H − 1) = |β| (H − 1) since β < 0 and
the proof is completed.

Lemma 15. Under the setting of Section F, we have

DKL(Pp‖Pp′) ≤ K ·
8∆2

p2(1− p2)
.

Proof. For β > 0, we have

DKL(Pp‖Pp′) = Ep [T2(K)] ·DKL(Ber(p2)‖Ber(p′2))

≤ K · (p′2 − p2)2

p′2(1− p′2)

= K · 4∆2

p′2(1− p′2)

≤ K · 4∆2

p2(1− p2)
,

where the first step follows from [41, Lemma 15.1], the second step follows from the fact that
Ep [T2(K)] ≤ K and Lemma 16, the third step follows from the identity p′2 = p2 + 2∆, and the last
step holds since p2 ≤ p′2 ≤ 1

2 and the function x 7→ x(1− x) is increasing on [0, 1
2 ].

For β < 0, we have

DKL(Pp‖Pp′) = Ep [T2(K)] ·DKL(Ber(1− p2)‖Ber(1− p′2))

≤ K · (p′2 − p2)2

p′2(1− p′2)

= K · 4∆2

p′2(1− p′2)

≤ K · 8∆2

p2(1− p2)
,

where the first step follows from [41, Lemma 15.1], the second step follows from the fact that
Ep [T2(K)] ≤ K and Lemma 16, the third step follows from the identity p′2 = p2 − 2∆, and the
last step holds since p2 = eβ(H−1) and ∆ ≤ 1

4e
β(H−1) = 1

4p2 means 1
2p2 ≤ p′2 ≤ p2 ≤ 1

2 which
implies p2(1− p2) ≤ 2p′2(1− p′2).

Lemma 16. Let q, q′ be such that 0 ≤ q′ < q < 1. We have

DKL(Ber(q′)‖Ber(q)) ≤ (q − q′)2

q(1− q)
.
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Proof. Let ∆q := q − q′. The KL divergence can be upper bounded as follows:

DKL (Ber(q′)‖Ber(q)) = q′ log

(
q′

q

)
+ (1− q′) log

(
1− q′

1− q

)
= q′ log

(
1 +

q′ − q
q

)
+ (1− q′) log

(
1 +

q − q′

1− q

)
(i)

≤ q′ · q
′ − q
q

+ (1− q′) · q − q
′

1− q

= (∆q − q) ·
∆q

q
+ (1− q + ∆q) ·

∆q

1− q

=
∆2
q

q
+

∆2
q

1− q

=
∆2
q

q(1− q)
,

where step (i) holds since log(1 + x) ≤ x for all x > −1. The proof is completed.
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