
We thank the reviewers for their thoughtful comments and suggestions. Below, we address the reviewers’ main concerns1

and recommendations; our responses will be incorporated in the final version of the paper.2

Relevance of the work to NeurIPS [R1, R3]: Our work is focused on a channel coding setting, and the realization of3

our cluster optimization scheme is geared specifically toward decoder scheduling of sparse graph-based codes. Note4

that channel coding applications have been of interest to the NeurIPS community previously (e.g. [1, 2, 3, 4] recently).5

On a high level, as Bayesian inference over graphical models is at the core of many machine learning applications, we6

believe that learned scheduling of belief propagation (BP) may be similarly applied to BP-based message passing over a7

factor graph defined by an underlying probabilistic model, making our approach very relevant to NeurIPS.8

Providing more intuition [R1, R2]: We note here that our algorithm is dynamic, and depends both on the graph9

structure and on received channel values: thus, the schedule realization may change for subsequent transmissions, and10

will outperform a schedule that is fixed in advance. NS relies on the intuition that in loopy BP, the higher the residual of11

a CN, the further that portion of the graph is from convergence. Hence, scheduling CNs with higher residuals is expected12

to lead to faster decoder convergence. As NS follows a fixed greedy schedule, there exists a non-zero probability that13

initially correct, but unreliable, bits are wrongly corrected into an error that is propagated in subsequent iterations. In14

contrast, our proposed scheme based on Q-learning allows some room for exploration (not just exploitation, as in NS)15

by scheduling the CN with the highest expected long-term residual, mitigating such a potential error propagation.16

Updates to simulation results [R2, R4]: We have added results for higher SNR (see Fig. (a)) for (3, 6)-regular LDPC17

codes, which indicate that the MQO scheme significantly outperforms the non-RL decoding schemes. The results for18

(3, 7) AB codes are given in Fig. (b), showing similar results. We also simulated a (63, 51) BCH code. However, since19

this is a high density parity check code, the training complexity is higher than for LDPC codes. As a snapshot, we20

obtained a result for an SNR of 3.5 dB with a BER of 10−2 for MQO and of 1.3 · 10−2 for the hypernetwork decoder of21

[4], showing again the gain achieved by our RL approach. We have also adjusted the metrics of the paper from BEP to22

BER, as suggested by R4.23

Complexity comments [R2, R3]: We note that the time complexity for selecting a CN in line 12 of Alg.1 grows24

linearly with the total number of CNs, as opposed to being zero for BP flooding. This overhead will be discussed more25

explicitly in the final paper. The concerns of R3 regarding the comparatively larger state space of longer block lengths,26

even with clustering, is an area of ongoing work. However, we believe that the substantial gains of our optimized27

clustering method demonstrated at lower block lengths are promising, and remain an important contribution in and of28

themselves. As a first approach to mitigating complexity at longer block lengths, we have implemented a Thompson29

sampling (TS) approach (see Fig. (a)). Another approach is to approximate the Q-table via a neural network.30

Distinction from previous work [R1]: We thank R1 for the valuable suggestion. Our work also differs from the vast31

majority of works (including those cited below) in that our decoder is not based on deep learning.32

Alternative RL algorithms [R3]: As a first step towards other RL approaches, we have implemented a decoder33

based on TS (see Fig. (a)), which performs better than flooding, but worse than our proposed Q-learning scheme.34

In this TS-based scheme we track the densities of the messages via a Gaussian approximation and use the MSE35

(m′a→v −ma→v)
2 as a non-central chi-square distributed reward, sampled in each sequential decoding step.36
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