
We thank the reviewers for their thoughtful feedback and for appreciating the simplicity and potentially wide impact of1

our results. Due to lack of space, we could only address the major comments, and in this process we add new theoretical2

and experimental developments which we will add to the paper if accepted.3

R1: It seems the main concern is that DBSCAN++ and SNG-DBSCAN are compared using the same sampling rate4

which may not be fair as they may not necessarily have the same meaning. The reviewer brings up a good point. To this5

end, we provide Figure 1 which shows that SNG-DBSCAN is still competitive when both algorithms are optimized over6

both ε and sampling rate. We also note that these procedures may outperform DBSCAN simply because the sampling7

adds an additional degree of freedom and can be interpreted as a regularizer [25].8

R2: The main concern is that the theoretical results have strong assumptions. The reviewer is right. Below, we give level-9

set estimation rates for SNG-DBSCAN under more standard and general non-parametric assumptions. The assumptions10

are borrowed from other works in level-set estimation (i.e. [26, 44]). Given these results, we can straightforwardly11

extended them to obtain clustering results with the same convergence rates (i.e. showing that SNG-DBSCAN recovers12

the connected components of the level-set individually), but omit it here due to space.13

R3: The main concern appears to be the novelty of SNG-DBSCAN relative to DBSCAN++. We emphasize that14

although one samples edges and the other samples vertices, there are still considerable differences: they lead to different15

theoretical analyses, SNG-DBSCAN appears to perform better, SNG-DBSCAN works for arbitrary distance metrics,16

and unlike DBSCAN++, SNG-DBSCAN can be easily used in practice by plugging in a subsampled distance matrix17

into scikit-learn’s DBSCAN implementation under the precomputed distance setting.18

R5: The true clusters are the connected components of a particular level-set of the density function. We show that19

SNG-DBSCAN recovers these clusters at rates depending on various properties of the density function. The reviewer20

is right that since these rates depend on constants that are unknown in practice, they may have little practical use but21

nonetheless makes the algorithm a principled approach. We will further clarify these constant factor dependencies.22

DBSCAN DBSCAN++ SNG

Page 0.1118 0.0727 0.1137
Blocks 0.0742 0.0586 0.0760
kc2 0.3729 0.3621 0.3747

0.1772 0.1780 0.1792
Ozone 0.0391 0.0627 0.0552

0.1214 0.1065 0.1444
Bank 0.1948 0.2599 0.2245

0.0721 0.0874 0.0875
Ionosphere 0.6243 0.1986 0.6359

0.5606 0.2153 0.5615
Mozilla 0.1943 0.1213 0.2791

0.1452 0.1589 0.1806
Tokyo 0.4204 0.4180 0.4467

0.2830 0.2793 0.3147

Figure 1: DBSCAN tuned over ε and SNG-
DBSCAN and DBSCAN++ (which uniformly sam-
ples the nodes) tuned over ε (same grid as in paper
for each dataset) and sampling rate (over grid
[0.1,0.2,..,0.9]) to maximize ARI and AMI cluster-
ing scores. Only some datasets shown.

Additional Theory. We show level-set estimation rates for esti-23

mating a particular level λ (i.e. Lf (λ) := {x ∈ X : f(x) ≥ λ})24

given that hyperparameters of SNG-DBSCAN are set appropriately25

depending on density f , s, λ and n.26

Assumption 1. f is a uniformly continuous density on compact27

set X ⊆ RD. There exists β, Č, Ĉ, rc > 0 such that the following28

holds for all x ∈ B(Lf (λ), rc)\Lf (λ): Č · d(x, Lf (λ))β ≤ λ−29

f(x) ≤ Ĉ · d(x, Lf (λ))β , where d(x,A) := infx′∈A |x − x′|,30

B(C, r) := {x ∈ X : d(x,C) ≤ r}.31

where β can be interpreted as the smoothness and curva-32

ture of f around the λ-level-set boundary of f . Define33

Cδ,n = 16 log(2/δ)
√

log n, ε = (minPts/(sn · vD · (λ −34

λ · C2
δ,n/
√

minPts)))1/D, and minPts satisfies Cl · (log n)2 ≤35

minPts ≤ Cu · (log n)
2D

2+D · n2β/(2β+D) where Cl and Cu are36

positive constants depending on δ, f . Then, the following holds37

where dHaus is Hausdorff distance:38

Theorem 1. Suppose Assumption 1 holds along with the parame-39

ter settings of the above. There exists C,Cl, Cu > 0 depending on40

f, δ such that the following holds with probability at least 1−δ. Let41

L̂f (λ) be the union of all the clusters returned by SNG-DBSCAN:42

dHaus(L̂f (λ), Lf (λ)) ≤ C ·

(
C

2/β
δ,n · minPts−1/2β + C

1/D
δ,n ·

(√
log sn

sn

)1/D
)
→sn/ log(n),n→∞ 0.

Proof Sketch. There are two quantities to bound: (i) max
x∈L̂f (λ)

d(x, Lf (λ)), and (ii) supx∈Lf (λ)
d(x, L̂f (λ)). The43

bound for (i) follows by standard uniform kernel density (KDE) estimation bounds with uniform kernel (i.e. [26]) based44

on the sn samples where the first term in the rate is due to the bias of the smoothing w.r.t. ε and the variance term comes45

from sampling at a rate of s for each estimate. We now turn to the other direction and bound supx∈Lf (λ)
d(x, L̂f (λ)).46

Let x ∈ Lf (λ). Define r0 := ((2Cδ,n
√
D log sn)/(snvD ·λ))1/D. Using standard concentration inequalities, we show47

that B(x, r0) contains at least 1/s samples and by standard density estimation guarantees, at least one of them will48

have sufficiently high KDE with uniform kernel and bandwidth ε leading to the conclusion that its ε-ball contains at49

least MinPts edges after subsampling at a rate of 1/s. Thus, supx∈Lf (λ)
d(x, L̂f (λ)) ≤ r0.50


