
Supplementary Material of PLANS: Neuro-Symbolic
Program Learning from Videos

Raphaël Dang-Nhu
ETH Zürich

dangnhur@ethz.ch

We provide the following appendices

• In A, we give additional information about the datasets (Karel and ViZDoom).

• In B, we describe precisely the neural component of PLANS and its training process.

• In C, we present the implementation of the rule-based solver.

• In D, we analyse the temporal complexity of PLANS.

A Datasets

Table 3 contains high-level information about both datasets. We point to the following three differ-
ences that are relevant to our experimental results:

• Contrary to Karel, the ViZDoom demonstrations have a first-person point of view. Because
of this subjective view, the environment is sometimes only partially observable, for instance
when the agent’s field of vision is occluded by a monster. In this situation, there might be a
doubt about whether a second monster is hidden behind the first one. This accounts for the
high number of uncertain predictions of actions and perceptions in ViZDoom.

• The resolution of observations is significantly larger in the ViZDoom environment, and
there are more possible actions. This explains the need for a longer training of the neural
component in the ViZDoom environment.

• In the ViZDoom environment, PLANS has access to more demonstrations to infer the
underlying program. This is why we achieve similar accuracy on Karel and ViZDoom,
despite the difficulties mentioned above.

For additional information about the datasets, we refer to Sun et al. (2018). Figures 4 and 5 give
examples of programs and demonstrations for the Karel and ViZdoom benchmarks respectively.
These images are taken from Sun et al. (2018). Because of the slightly different formalism in this
paper, the end action is made implicit. The exact list of action and perception primitives is accessible
in the original demo2program 1 repository.

B Architecture and training

All video frames are first encoded with a convolutional neural network. All convolutional layers have
kernel size 3 and stride 2. For the Karel dataset, we use 3 layers with respectively 16, 32 and 48
channels. For The ViZDoom dataset, we use 5 layers with respectively 16,32,48,48 and 48 channels.
All the layers have LeakyRELU (Maas et al., 2013) activation and batch normalization. The resulting
frame encodings are fed to a LSTM layer with 512 hidden units. We use two different LSTM layers
for decoding: one predicts the action sequence, the other the perception sequences. Both decoding

1github.com/shaohua0116/demo2program

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

github.com/shaohua0116/demo2program

Table 3: Dataset properties.

s

Environment Karel ViZDoom

Point of view Third person First person
Frame resolution 8x8 80x80
Actions 5 11
Perceptions 5 6
Observed demonstrations 10 25
Unseen demonstrations 5 5
Training samples 30000 80000
Test samples 5000 8000
Max program size 43 32

Figure 4: Example program and demonstrations for the Karel dataset. Figure from Sun et al. (2018).

layers have 512 hidden units. For both action and perceptions, we use a softmax output layer for
predicting the probability of all classes. This encoder-decoder model is enhanced with the attention
mechanism from Luong et al. (2015).

All models are trained with the Adam optimizer, using default parameters and learning rate (0.001).
In Table 4, we give batch size and number of training steps for both our model and the demo2program

Figure 5: Example program and demonstrations for ViZDoom. Figure from Sun et al. (2018).

2

Table 4: Number of training steps.

Model Karel ViZDoom
Phase 1 Phase 2

Steps Batch size Steps Batch size Steps Batch size
demo2program ? 128 50000 32 50000 8

PLANS 10000 32 30000 8

baseline. To the best of our knowledge, the number of training steps for demo2program on the Karel
environment has not been provided by Sun et al. (2018).

C Details about solver implementation

In C.1, we present two algorithms that describe the exact order of solver calls with static and dynamic
filtering respectively. In C.2, we detail which heuristics were used to improve the program and
sequence accuracy metric. In C.3, we show how the different control-flow constructs were encoded
in the Rosette solver.

C.1 Algorithms

Here, we describe formally the static and dynamic filtering algorithms (Algorithms 1 and 2). The
confidence thresholds εa = 0.98 and εp = 0.9 were chosen to yield best performance on the validation
dataset. For the dynamic filtering heuristic, the perception confidence threshold is incremented such
that we keep a fixed proportion prop of the demonstrations. We use a sequence of 11 predetermined
proportions: [1, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]. The optimal sequence length is a trade-
off between performance and number of solver calls. It is fine to increase the number of solver calls
to a certain extent as they are independent and can be performed in parallel. However, efficient
parallelism will require a higher number of cores.

Algorithm 1: Calls to the solver, with static filtering.

Input: Set of demonstrations T with neurally inferred action and perception sequences
Output: Program summarizing the different demonstrations, or unsat
G ← {τ ∈ T | actionconf(τ) ≥ 0.98 ∧ perconf(τ) ≥ 0.9} . Static filtering
for n ∈ range(max_n) do . Progressively increase number of control-flow statements

solution← solver(G,n) . Call to Rosette solver
if solution is not unsat then return solution

return unsat

3

Algorithm 2: Calls to the solver, with dynamic filtering.

Input: Set of demonstrations T with neurally inferred action and perception sequences
Output: Program summarizing the different demonstrations, or unsat
F ← {τ ∈ T | actionconf(τ) ≥ 0.98} . Static filtering by action confidence
τ1, . . . , τk ← elements of F sorted by decreasing perception confidence
for prop ∈ [1, 0.95, 0.9, 0.8, . . . , 0.2, 0.1] do . Dynamic filtering by perception confidence

u← dprop · ke . Determines number of demonstrations
G ← {τ1, . . . , τu} . Demos with highest perception confidence
for n ∈ range(max_n) do . Progressively increase number of control-flow statements

solution← solver(G,n) . Call to Rosette solver
if solution is not unsat then return solution

return unsat

4

Table 5: Ablation of heuristics on Karel.

% Karel
Model Execution Program Sequence
demo2program 72.1 48.9 41.0

watch-reason-code 74.7 51.2 43.3

PLANS 91.6± 1.3 53.9± 1.0 34.2± 0.5

PLANS (- heuristic 1) 91.8± 1.4 49.4± 0.9 30.4± 0.5

PLANS (- heuristic 2) 89.4± 1.2 49.2± 0.9 30.4± 0.4

C.2 Solver heuristics

We use two additional heuristics to improve program and sequence accuracy on the Karel dataset:

1. Certain synthesis problems can be solved indifferently with an if or a while statement. We
observed that choosing the solution using while yields better perfomance.

2. Some programs involving loops have several satisfying solutions, in which the size of the
block before the loop differs. We observed that choosing the solution with the smallest
number of actions outside the loop body improved program and sequence accuracy.

In order to measure the influence of these heuristics on performance, we made an ablation experiment.
Results are reported in Table 5. We observe very little influence of the heuristics on execution
accuracy. However, they yield around 4% absolute improvement on program and sequence accuracy.

C.3 DSL encoding in Rosette

In Figure 6, we describe the encoding of the different control-flow constructs in the DSL. This
encoding is for the Karel environment that has five different actions and five perception primitives.
The ViZDoom encoding is exactly similar except that it has more actions and perception primitives.
This encoding does not consider nested control-flow constructs: Indeed, we observed experimentally
that these are not necessary to obtain satisfying accuracy. Besides, this allows for faster solver calls
as this reduces the size of the search space. However, if this comes to be needed in other application
domains, this assumption can easily be lifted by slightly modifying the encoding.

D Analysis of temporal complexity

In the section, we analyze the complexity of our algorithms. The static filtering algorithm makes
O(max_n) calls to the solver, where max_n is the maximum number of control-flow statements
allowed in the generated program. The dynamic filtering algorithm makes O(max_n · n_prop)
calls to the solver, where n_prop is the number of iterations of the outer loop that increments the
perception filtering threshold. In both cases, all solver calls are independent and can be performed in
parallel. Therefore, the bottleneck of our algorithms is the duration of the longest solver call.

In both environments, we measured the duration of the longest solver call for each test program,
and we averaged the measurements over all instances. For comparison purposes, we also report the
average time taken by the neural component of PLANS to infer the specifications for one program.
We performed all experiments on a machine running Ubuntu 18.04 with 2.00GHz Intel Xeon E5-2650
CPU and using a single GeForce RTX 2080 Ti GPU. The resulting values are reported in Table 6. We
also report training time of the neural component.

In the ViZDoom environement, we observe that for a given program, the time spent by the neural
component to infer the specifications and the longest solver call have same order of magnitude. This
means that our model has no significant computational overhead with respect to the fully neural
baselines. In the Karel environment, we observe that the duration of the longest solver call is one
order of magnitude higher. In our experiments, we observe that the longest solver call is always the
last one, with n = 2. If max _n is decreased, the average duration falls below 3s, but at the cost of
an execution accuracy decrease of a few %.

5

Table 6: Time measurements for PLANS. We report training and inference time. Training time
corresponds to the whole training process. Inference time is measured for each program individually
and averaged on the whole test set. For inference, we measure separately time spent inferring
specifications with the neural component, and time of the longest solver call.

Karel ViZDoom

Training ∼ 10 hours ∼ 2 days

Inference of specifications 1.39s 3.68s
Longest solver call 12.43s 2.28s

Figure 6: Rosette encoding of the different DSL constructs for the Karel dataset.

6

References
Luong Minh-Thang, Pham Hieu, Manning Christopher D. Effective approaches to attention-based

neural machine translation // arXiv preprint arXiv:1508.04025. 2015.

Maas Andrew L, Hannun Awni Y, Ng Andrew Y. Rectifier nonlinearities improve neural network
acoustic models // International Conference on Machine Learning. 2013.

Sun Shao-Hua, Noh Hyeonwoo, Somasundaram Sriram, Lim Joseph. Neural program synthesis from
diverse demonstration videos // International Conference on Machine Learning. 2018.

7

	Datasets
	Architecture and training
	Details about solver implementation
	Algorithms
	Solver heuristics
	DSL encoding in Rosette

	Analysis of temporal complexity

