
We thank all reviewers for their thoughtful comments. Below, we address their concerns individually.1

[R1, closest point] We don’t impose any constraints on sampling point v and our theorem may be proven for any2

mapping v′ such that lim∆v→0(v
′) = v. We chose the closest point one because it seemed the most natural to us.3

[R1, effective update] The updated point indeed won’t correspond to v′ as described by the theorem because, when4

back-propagating gradients to the latent code for refinement, we constrain surface change through a learned prior. This5

is desirable, as we actually want surface deformations to be regularized by our learned shape-space.6

[R1, differentiable rasterization] Rasterization is indeed not differentiable. We use the continuous relaxation of7

[Kato18], approximating the discrete binary operation by a linear function to back-propagate gradients. We will clarify.8

[R2, comparison to DMC] Deep Marching Cubes (DMC) is designed to convert point clouds into a surface mesh9

probability distribution. It can handle topological changes but is limited to low resolution surfaces for the reasons10

discussed in related work. In the figure below, we compare our approach to DMC. We fit both representations to a toy11

dataset consisting of two shapes: a genus-0 cow, and a genus-1 rubber duck. We use a latent space of size 2. Our metric12

is Chamfer l2 distance evaluated on 5000 samples for unit sphere normalized shapes and shown at the bottom of the13

figure. As reported in the original paper, we found DMC to be unable to handle grids larger than 323 because it has to14

keep track of all possible mesh topologies defined within the grid. By contrast, our approach is unlimited in resolution15

and can capture high frequency details, such as the ears of the cow.

CD-l2 · 102 ↓

DMC@323

1.87

Ours@323

1.84

Ours@2563

1.80

ground
truth

DMC@323

1.98

Ours@323

1.94

Ours@2563

1.90

ground
truth

16
[R2, different categories] In the main paper, we followed the Pix3D benchmark and reported qualitative results for17

chairs only. However, we show results for several other ShapeNet categories in Fig. 8 of Supplementary.18

[R2, failure cases and limitations]. Failure cases for SVR are presented in Fig. 10 of the Supplementary material.19

Furthermore, an important limitation is that the training loss of Equation 1 is insufficiently sensitive to topological20

errors and this is something we are working on.21

[R2, car constraints]. The simplest way to restrict changes would be to either limit training data to a specific car type22

or to increase the regularization weight discussed in section 1.6.4 of the Supplementary material. A more difficult23

but more powerful approach would be to design constraints directly in terms of the mesh surface. We believe the24

differentiability of MeshSDF makes this a practical proposition and this will be a topic for future research.25

[R2, performance] In section 3 of the Supplementary material, we analyze the computational performance of our26

differentiable iso-surface extraction pipeline. We did not report performance for other components of the full pipeline27

(e.g. DeepSDF network, differentiable rasterization) because they are discussed in the original papers.28

[R2, exposition] Following DeepSDF, we set λreg = 10−3. We will add this to a revised version of the manuscript.29

[R3, Marching Cubes discretization]. This is indeed a valid concern, as our differentiation result only holds for30

samples on the zero-crossing surface. In our experiments, we extract surface samples at 2563 resolution. This yields an31

average SDF value of 10−5 for the samples. In practice, this is small enough to safely apply our differentiation result.32

[R3, combining explicit and implicit losses] Our parameterization enables us to jointly exploit the advantages of33

explicit and implicit representations: in experiment 4.2, we train our network by supervising for the implicit field while,34

at inference time, we use explicit surface mesh losses to preform refinement.35

[R3, DISN] Unlike DISN, which uses camera information to perform perceptual feature pooling, our baseline (MeshSDF36

Raw) does not exploit camera information. We speculate that this is the reason for the performance gap.37

[R3, Equation 5] We sample points uniformly with respect to surface area when computing point-to-surface distance.38

[R4, comparison to differentiable rendering] Indeed, recent advances in differentiable rendering [Liu20] have39

shown that is possible to render continuous SDFs differentiably by carefully designing a differentiable version of the40

sphere tracing algorithm. By contrast, we simply use MeshSDF end-to-end differentiability to exploit an off-the-shelf41

differentiable rasterizer and achieve the same result. To highlight the advantages of doing so, we take the generative42

model in figure above, initialize latent code so that to generate the cow, and then minimize silhouette distance with43

respect to the duck. In the table below we compare our approach to [Liu20]. Sphere tracing requires to query the network44

along each camera ray in a sequential fashion, resulting in longer computational time with respect to our approach,45

which projects surface triangles to image space and then rasterizes them in parallel. Furthermore, our approach requires46

less function evaluation, as we do not need to sample densely the volume around the field zero-crossing. We refer the47

reader to Section 3 of the Supplementary section for additional information on how we query our network.48

Method l2 silhouette distance ↓ # network queries ↓ run time [s] ↓

Liu20 [most efficient settings, 5122 renders] 0.005973 898k 1.24
MeshSDF [isosurface extraction at 2563, 5122 renders] 0.004625 266k 0.29


